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ON THE PROBLEM

OF RESOLUTION OF SINGULARITIES

IN POSITIVE CHARACTERISTIC

(Or: A proof we are still waiting for)

HERWIG HAUSER

Abstract. Assume that, in the near future, someone can prove resolution of

singularities in arbitrary characteristic and dimension. Then one may want
to know why the case of positive characteristic is so much harder than the
classical characteristic zero case. Our intention here is to provide this piece
of information for people who are not necessarily working in the field. A sin-
gularity of an algebraic variety in positive characteristic is called wild if the
resolution invariant from characteristic zero, defined suitably without reference
to hypersurfaces of maximal contact, increases under blowup when passing to
the transformed singularity at a selected point of the exceptional divisor (a so
called kangaroo point). This phenomenon represents one of the main obstruc-
tions for the still unsolved problem of resolution in positive characteristic. In
the present article, we will try to understand it.

Introduction

The embedded resolution of singular algebraic varieties of dimension greater than
3 defined over fields of characteristic p > 0 is still an open problem. The inductive
argument which works in characteristic zero fails for positive characteristic. The
main obstruction is the failure of maximal contact, which, in turn, manifests in the
occurence of wild singularities and kangaroo points at certain stages of a sequence
of blowups. At these points the standard characteristic zero resolution invariant
increases instead of decreasing. The induction breaks down. No remedy has been
found yet.

In this article, which is mostly expository, we will give a detailed discussion of
the obstructions to resolution in positive characteristic. The description of wild
singularities is based on the notion of oblique polynomials. These are homogeneous
polynomials showing a specific behaviour under linear coordinate changes, which,
in turn, determines them completely. Blowing up a wild singularity may cause the
appearance of kangaroo points on the exceptional divisor. They represent one of
the main problems for establishing the induction in positive characteristic.

Received by the editors November 17, 2008, and, in revised form, December 27, 2008, Febru-
ary 12, 2009, and July 10, 2009.

2010 Mathematics Subject Classification. Primary 14B05, 14E15, 12D10.
Supported within the project P-18992 of the Austrian Science Fund FWF. The author thanks

the members of the Clay Institute for Mathematics at Cambridge and the Research Institute for
Mathematical Science at Kyoto for their kind hospitality.

c©2009 American Mathematical Society

1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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The proofs and the technical details can be found in the original preprint [Ha1],
which is currently being revised and updated, cf. [Ha2]. While this work mainly
addresses algebraic geometers with some experience in resolution matters, we will
add footnote explanations and references for readers who are curious about recent
developments but less familiar with the topic.

Sections A and B develop the overall outset of the resolution of singularities.
Sections C and D then exhibit the specific problems related to fields of positive
characteristic. These sections are written for a general audience. Starting with
section E, the reader will find more detailed information and precise statements.

A. Prelude for the nonexpert reader. Before getting into the actual material,
let us tell you what resolution is about and why it is important (and, also, why
it is so fascinating). Readers acquainted with the subject may proceed directly
to the next but one section. A system of polynomial equations in n variables
has a zeroset—the associated algebraic variety X—whose structure can be quite
complicated and mysterious. You may think of the real or complex solutions of an
equation like

(1) 441(x2y2 + y2z2 + x2z2) = (1− x2 − y2 − z2)3

(see Figure 2 at the end of the article for a visualization of this surface). The
geometry of varieties shows all kinds of local and global patterns which are difficult
to guess from the equation. In particular, there will be singularities. These are
the points where X fails to be smooth (i.e., where X is not a manifold). At those
points the Implicit Function Theorem (IFT) cannot be used to compute the nearby
solutions. As a consequence, it is hard (also for computers) to describe correctly
the local shape of the variety at its singular points.

Resolution of singularities is a method for understanding where singularities
come from, what they look like, and what their internal structure is. The idea is
quite simple: when you take a submanifold X of a high-dimensional ambient space
M and then consider the image X ′ of X under the projection of the ambient space
onto a smaller space M ′, you most often create singularities on X ′. The Klein
bottle is smooth as a submanifold of R4, but there is no smooth realization of it
in R3. You necessarily have to accept self-intersections. Similarly, if you project
a smooth space curve onto a plane in the direction of a tangent line at one of its
points, the image curve will have singularities.

Which singular varieties can we obtain by such “projections”? The answer is
simple: All!

Theorem (Hironaka 1964). Every algebraic variety over C is the image of a man-
ifold under a suitable projection. Such a manifold and map can be explicitly con-
structed (at least theoretically).

For a geometer, this is quite amazing. For an algebraist, this is even more
striking, since it means that it is possible to solve polynomial equations up to the
Implicit Function Theorem. The applications of this result are numerous (it would
be worth listing all the theorems whose proofs rely on resolution). The reason is
that, for smooth varieties, a lot of machinery is available to construct invariants
and associated objects (zeta-functions, cohomology groups, characteristic classes,
extensions of functions and differential forms, . . . ). As the projection map consists
of a sequence of relatively simple maps (so-called blowups), there is a good chance
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RESOLUTION OF SINGULARITIES IN POSITIVE CHARACTERISTIC 3

of carrying these computations over to singular varieties. Which, in turn, is very
helpful in understanding them better.

Resolution is well established over fields of characteristic zero (with nowadays
quite accessible proofs) but still unknown in positive characteristic (except for di-
mensions up to 3). Why bother about this? First, because (almost) everybody
expects resolution to be true also in characteristic p. As the characteristic zero
case was already a great piece of work (built on a truly beautiful concatenation of
arguments), it is an intriguing challenge for the algebraic geometry community to
find a proof that does not use the assumption of characteristic zero. But there is
more to it: many virtual results in number theory and arithmetic are just waiting
to become true by having at hand resolution in positive characteristic.1 Again, it
would be interesting to produce a list.

Another important feature of such a proof is our understanding of solving equa-
tions in characteristic p. If we agree not to aim at one-stroke solutions but to sim-
plify the equation step by step (for instance, using blowups) until we can see the
solution (again, modulo IFT), there appears this delicate matter of understanding
local coordinate changes in the presence of the Frobenius homomorphism. Phrased
in very down-to-earth terms this means, How do you measure whether a polynomial
is, up to coordinate changes and up to adding pth power polynomials, close or far
from being a monomial? This is less naive than it may sound: it is an extremely
tough question (it has resisted solution for over 50 years), and it lies at the very
heart of the resolution of singularities in characteristic p. A meaningful proposal
for such a measure (which should be compatible with blowups in a well-defined
sense) could break open the wall behind which we suspect there will be a proof of
resolution in positive characteristic. The rest would be mainly technicalities.

In the present article we will see some of these “elementary” characteristic p
features, and we will make them very explicit. Of course it would be nice to have
in parallel the conceptual counterparts of these constructions and phenomena, but
this would require much more space and effort (for both the reader and the writer).
As a consolation, the problems will be so concrete that everybody with a minimum
talent in algebra will be tempted to attack them. The more geometrically oriented
reader is referred to the survey [FH] for various visualizations of the resolution of
surface singularities.

At the end of this paper, we briefly describe the present state of research in
resolution of singularities in positive characteristic and arbitrary dimension (work
of Hironaka, Villamayor, Kawanoue and Matsuki, W�lodarczyk).

1. Overall discussion

B. Resumé of techniques and results. This section will explain the main res-
olution devices that work independently of the characteristic. The material has
become classical, with many excellent references. After this survey section we will
return to the failure of maximal contact and the description of wild singularities
and kangaroo points in positive characteristic.

By far the most important modification of a variety is given by the concept of
blowup. Every blowup comes with a center (a carefully chosen subvariety of our
variety) which is the locus of points where the variety is actually modified. Outside

1De Jong’s theory of alterations, valid in arbitrary characteristic but slighty weaker than
resolution, already produced a swarm of such results, cf. the next section.
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the center, the variety remains untouched. The center itself is replaced by a larger
subvariety, which affects the way in which the variety approaches this locus. The
hope is that blowups gradually improve the singularities of the varieties until, after
possibly many steps, all singularities are eliminated. Whereas this elimination is
granted in characteristic zero if one chooses the correct sequence of blowups, the
situation is much more delicate in positive characteristic. The main difficulty is to
measure the complexity of a singularity by an invariant (usually a lexicographically
ordered vector of integers) in a way such that after each blowup (chosen suitably)
the invariant has decreased. This is precisely the theme of this article: the invari-
ant that works well in zero characteristic tends to behave erratically in positive
characteristic.

Apart from blowups, the two other main characteristic-free techniques are nor-
malizations and alterations. They will be described at the end of this section.

Blowups. We will start with a short introduction to blowups. There are many
equivalent ways to define them (see, e.g., [EiH, Ha5]). We shall choose the most
geometric and intuitive description. By an affine variety we shall always understand
a subset of affine space An

K over a field K to be the zeroset X of a bunch of
polynomials in n variables. We do not assume that X is irreducible. The coordinate
ring K[X] is the quotient of K[x1, . . . , xn] by the ideal IX generated by these
polynomials.2

A blowup of X is a new variety X ′, the blowup or transform of X together with
a morphism π : X ′ → X, the blowup map. Any blowup is determined by its center
Z. This is a closed, nonempty subvariety Z of X, usually smooth and included in
the singular locus Sing(X) of X (the locus of points where X is not smooth; below
we define the blowup with respect to an arbitrary ideal). The definition of X ′ and
π does not need the embedding X ⊂ An, but the explanation is easier if we use it.
Moreover, we shall assume that we are given a projection ρ : X → Z (again, this is
not substantial, but makes things simpler). We should think of X as being fibered
by transversal sections along Z. If Z is just a point, ρ is the constant map. If Z is
a line, then ρ is typically the restriction to X of a linear orthogonal projection from
An to Z (having chosen some scalar product on An). For any point a of X not in
Z there is a unique line in An, call it ℓa, passing through a and its projection point
ρ(a) in Z. This is just the secant line through a and ρ(a), and it belongs to the
space L(An) of all lines in An. In particular, the notion of limit line makes sense
when a approaches ρ(a) inside the fiber of ρ.

The idea of blowups consists in pulling apart X inside a larger ambient space.
As ℓ is defined on X \ Z and takes values in L(An), the graph Γ(ℓ) of ℓ will be
an algebraic subset of (X \ Z) × L(An). It allows us to see X \ Z embedded into
(X \Z)×L(An) via a → (a, ℓa). We now extend this embedding to the whole of X.
The result will no longer be an embedding, but rather a subvariety X ′ of X×L(An)
which projects onto X. Above points a of Z, there will be, in general, several points
in X ′, namely all the limiting positions of secants through a. Taking the limit of the
secants ℓa as a ∈ X \Z approaches Z corresponds to adding the boundary points of
Γ(ℓ) ⊂ (X \Z)×L(An) when considered as a subset of X×L(An). More precisely,
let X ′ be the Zariski closure of Γ(ℓ) in X×L(An), i.e., the smallest algebraic subset

2All of what follows can be defined for arbitary schemes, the center being a closed subscheme.
See the paragraphs after the examples below for a more conceptual definition of blowups.
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containing Γ(ℓ). Then X ′ will be the blowup of X along Z, and π : X ′ → X is the
restriction of the projection X × L(An) → X.

Intuitively, we can interpret ℓ(a) as the “height” of the point on X ′ projecting
to a ∈ X \ Z. Above points a in Z, this height will in general be multivalued. All
this can be made very precise and has both algebraic and axiomatic interpretations
(see the definition after the next examples and the references). For the moment,
we apply this technique to specific geometric situations. As the blowup map will
be an isomorphism over X \Z (by definition), and since we have no need to modify
the smooth points of X, we shall always choose the center Z, as mentioned earlier,
inside the singular locus Sing(X) of X.

Example 1. Let X be the cone in the three-dimensional real affine space A3
R
of

equation x2 + y2 = z2, and let the center Z be its unique singular point, the origin
0. We claim that the blowup X ′ of X in 0 is the cylinder x2 + y2 = 1. This
can be checked algebraically, but it is nicer to convince ourselves by a geometric
argument. See the lines in A3 through 0 as elements of projective space P2. Our
height function ℓ : X \ 0 → P2 is defined by associating to any point a ∈ X \ 0
the line through a and 0 (which is just a generating line of the cone). As a moves
on the cone straight toward 0, the line ℓa will always be the same, so the map ℓ
is constant on the lines of X. Clearly, the limiting positions form a circle, and we
conclude that X ′ is indeed the cylinder.

Example 1′. Take for X the plane curve of equation x2 = y2 + y3, the node.
The natural center to choose is the singular point 0. The same reasoning as before
shows that X ′ is a smooth curve. Also, taking the Cartesian product Y of X with a
perpendicular axis in A3 (seeing A2 as the plane A2×0 in A3) will pose no problems:
the center Z is now the z-axis, we fiber A3 by the planes A2 × {t} with t varying
in A1, and get a blowup Y ′ of Y which is the Cartesian product of the blowup X ′

of X with the z-axis.

Example 2. The cusp X of equation x2 = y3 is slightly more complicated to treat.
The blowup of X with center the origin 0 will be a space curve X ′ in the three-
dimensional ambient space A2 × P1. As X has just one limit of secants at 0 (the
y-axis), there is precisely one point on X ′ sitting above 0 ∈ X. Call it a′. We have
to check whether X ′ is smooth or singular at a′. Unfortunately, this can no longer
be done by purely geometric methods, and we have to resort to algebra. Points a
on X are of the form (t3, t2), the respective secant, taken as an element in P1, has
projective coordinates (t3 : t2) = (t : 1), so that the points of X ′ are parametrized
by t → (t3, t2, t). Hence X ′ is smooth at a′ = 0. The same computation applied
to the “sharper” cusp Y defined by x2 = y5 yields for Y ′ the parametrization
(t5, t2, t3). This shows that Y ′ is still a singular curve. Project Y ′ to the plane A2

by forgetting the first component. The image curve is the ordinary cusp X. By
construction, X is isomorphic to Y ′. Therefore, another point blowup suffices to
resolve Y ′.

There is an algebraic and slightly more general notion of blowup which is related
to an arbitrary ideal N in K[x1, . . . , xn] (now K can be any field). The geometric
version above is recovered by taking for N the radical ideal IZ defining Z in An.
Let g1, . . . , gk be a system of generators of N , and let Z ⊂ An be the common
zeroset of the gi (which coincides with the subvariety of An defined by N). Then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6 HERWIG HAUSER

the map
g : An \ Z → Pk−1, a → (g1(a) : · · · : gk(a))

is well defined. The Zariski closure Ãn of its graph in An × Pk−1 is defined as the

blowup of An with center N . It is easy to see that Ãn is a variety of dimension n,
and isomorphic to the blowup defined geometrically above in case N is the radical

ideal of the subvariety Z of An. In particular, Ãn is smooth if Z is smooth. The

restriction to Ãn of the first projection An × Pk−1 → An yields the blowup map

π : Ãn → An.

Embedded resolution. We will have to distinguish between embedded and nonem-
bedded resolution. To explain the difference, let our singular variety be irreducible
and embedded in some smooth ambient space W , say, for simplicity, W = An. Let
Z be a subvariety of X (our chosen center of blowup). It is a general fact that
the blowup X ′ of X along Z can be constructed from the blowup of W along Z.
To this end, denote by π : W ′ → W the blowup map, and consider the inverse
image X∗ = π−1(X) of X under π. The variety X∗ is called the total transform of
X. It turns out that X∗ has two components. The first is the exceptional divisor
E = π−1(Z) ⊂ W ′ given by the pull-back of the center. It is a hypersurface in
W ′ which contracts under π to Z, whereas outside E the map π is an isomorphism
onto X \Z. The second component, say X ′, is the geometrically interesting object.
It coincides with the blowup of X along Z and is called the strict transform of X
under π. Taking the inverse image π−1(X \ Z) of X \ Z in W ′, the Zariski closure
of π−1(X \ Z) in W ′ gives X ′.

An embedded resolution of X ⊂ W is a birational proper morphism π : W̃ → W
so that the total transform X∗ is a variety with at most normal crossings.3 This
signifies that the strict transform X ′ of X under π is smooth and transversal to the

components of the exceptional divisor E in W̃ .
In contrast, a nonembedded resolution of X is just a birational proper morphism

ε : X̃ → X with X̃ smooth. It does not take into account the embedding of X but
considers X as an abstract variety. We should think of ε as a parametrization of the

singular variety X by the smooth variety X̃. A basic result in birational geometry
says that any projective birational morphism is given as a single blowup of X along
a center Z defined by a possibly very complicated ideal. In particular, this holds
for any resolution, where now the center should be supported on Sing(X). Even in
the first nontrivial examples it is not clear how to define such a center ab initio in
order to get the required resolution via the induced blowup.

For many applications one needs embedded resolution. The concept has a vari-
ant known as log-resolution of varieties, respectively principalization or monomi-
alization of ideals—the ideal will be the one defining X in W.4 If a nonembedded

resolution ε : X̃ → X is given by a sequence of blowups in certain centers and if we
have an embedding X ⊂ W of X into a smooth variety W , one may take the suc-
cessive blowups of W defined by these centers. This yields a birational morphism

3Birational morphism: A map given locally by quotients of polynomials inducing an isomor-
phism onto a dense open subset of the target space. Proper : The preimage of compact sets is
compact. Normal crossings: Locally, the variety is, up to isomorphism, a union of coordinate
subspaces, or, equivalently, can be defined by a monomial ideal.

4For a log-resolution one requires that the total transform is in addition a divisor, say, a
hypersurface of the smooth ambient space. This can be achieved from an embedded resolution by
an extra blowup with center the entire strict transform of the variety.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RESOLUTION OF SINGULARITIES IN POSITIVE CHARACTERISTIC 7

π : W̃ → W of smooth varieties together with an embedding X̃ ⊂ W̃ . At this stage,

X̃ need not meet the exceptional divisor E of π transversally (here, E is defined

as the subvariety of W̃ where π is not an isomorphism). But then one can apply

further blowups to W̃ until all components of the transform of X̃ and E do meet
transversally, which then provides an embedded resolution of X in W .

Small dimensions. Let us now turn to resolution of curves, surfaces, and three-folds
in arbitrary characteristic.

The resolution of curves is governed by the fact that all singular points are
isolated, so that only point blowups have to be considered. One can choose any of
the singular points as center. The order in which these are taken does not matter.
So the only problem is to show that after finitely many such blowups the resulting
curve is smooth (and, for the embedded resolution, transversal to the exceptional
divisor). This is done by defining a local invariant at each of the singular points
of the curve and showing that, after one blowup, this invariant has dropped at all
singular points sitting above the center. Various invariants for this task have been
proposed and work; see the first chapter of Kollár’s book describing thirteen ways
to resolve curve singularities [Ko]. The most frequent invariant for plane curves
consists of two numbers (o, s) (considered lexicographically), where o is the order
of the Taylor expansion of the defining equation at the point and s is the first
characteristic number (which we do not define here). For a detailed discussion of
this invariant in arbitrary characteristic and the proof that it drops under blowup,
you may consult the survey [HR].

Let us next consider singular surfaces that are embedded as hypersurfaces in
a smooth three-dimensional ambient space. The singular locus consists now of
isolated points and (possibly) curves, which themselves can be singular.5 The
isolated points can be taken as the center of a blowup as before, with the task to
exhibit numerically the improvement of the singularities after the blowup. The first
complication is due to the fact that an isolated singularity may produce a whole
curve of singular points under blowup on the transformed surface. The second
complication stems from the curves along which the surface is singular. If the curve
is smooth, it can be taken as center, with the hope of getting an improvement. If
it is singular, its singular points are the only reasonable centers, because blowups
whose center is a singular curve are very difficult to control. So we start with point
blowups. By resolution of curves, finitely many blowups resolve these curves (i.e.,
make them smooth). On the way, new curves may appear in the singular locus
of the surface. Zariski has shown that they are always smooth. This allows us to
conclude that after finitely many blowups the singular locus of the surface consists
of isolated points and smooth curves that, moreover, intersect transversally. From
that point on we also take curves as centers: any component of the singular locus
of the surface may be chosen (again, the order does not matter, as Zariski showed).

It remains for us to show that the sequence of blowups (which is geometrically
motivated) does indeed resolve all singularities. To this end it suffices to show that
the order of the defining equation must drop after finitely many blowups. This
problem and the solution to it are known as the theorem of Beppo Levi. Again, an

5In practice, one considers instead of the singular locus the usually smaller top locus defined
earlier as the set of points where the local order of the defining equation is maximal; the same
reasoning applies with slight modifications.
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invariant that drops after each blowup has to be defined. There are several propos-
als. Zariski was able to construct one for characteristic zero, and Abhyankar was
the first to give a proof of termination in positive characteristic [Za, Ab1]. Hiron-
aka later defined a different and characteristic-free invariant based on the Newton
polyhedron of the defining equation [Hi4, Ha3]. The construction is quite special
and does not seem to apply to higher dimensions. Hauser and Wagner showed,
relying on a proposal of Zeillinger, that the nowadays standard characteristic zero
invariant of Villamayor, Bierstone and Milman, and successors that works in ar-
bitrary dimension (but may increase for blowups in positive characteristic) can be
modified suitably in the case of surfaces by subtracting a bonus from it. This bonus
is a small correction term which takes values between 0 and 1 + δ according to the
internal structure of the defining equation; see the section on the resolution of sur-
faces. The modified invariant then decreases after each blowup and thus provides
an induction argument [HW]. Quite recently, Cossart, Jannsen and Saito estab-
lished resolution for surfaces that are not necessarily hypersurfaces over a field by
extending Hironaka’s construction to arbitrary excellent two-dimensional schemes
[CJS]. It turns out that all these techniques actually allow us to produce an embed-
ded resolution (since we are working with the defining equations of the surface). In
contrast, Lipman’s proof of resolution of surfaces via normalization plus blowups
yields a nonembedded resolution [Lp1].6

The situation for three-folds is much more involved. At the moment only nonem-
bedded resolution is established (in arbitrary characteristic). The proof relies vitally
on the embedded resolution of surfaces. Abhyankar gave a long proof (more than
500 pages) that is scattered over several papers and requires that the characteristic
of the algebraically closed ground field is greater than 5. Cutkosky was then able
to make this proof much more transparent and to reduce it to less than forty pages
[Cu]. In Cutkosky’s paper, Abhyankar’s work is described in great detail, giving all
necessary references. Cossart and Piltant succeeded in removing the restriction on
the characteristic and the algebraic closedness of the ground field. The resulting
proof is rather long and challenging [CP1, CP2], based on ideas of [Co].

Normalization. All the above approaches use in some way or other the modification
of a variety by blowups. Let us now describe two alternatives.

An important way to improve the singularities of a variety is by means of its
normalization. This is an extremely elegant, characteristic independent method to
get rid of all components of the singular locus of codimension one in the variety
(e.g., curves in the singular locus of a surface). One says that the variety becomes
regular in codimension one. The construction does not look at the embedding.

The normalization is defined through the integral closure of rings. Assume that
X is an irreducible algebraic subset of affine space An over the ground field K, and
let R be the coordinate ring of X whose elements are the polynomial functions on
X. The ring R is a finitely generated K-algebra and an integral domain. Let Q
be its field of fractions (the function field of X). Now recall that any morphism
f : X ′ → X of varieties induces a dual ring homomorphism f∗ : R → R′ between
the coordinate rings given by composition with f . If the morphism f is birational,
the map f∗ is injective and induces an isomorphism of function fields Q ∼= Q′.

6The proof selects among all normal varieties proper over the ground field and birational to
X one of minimal arithmetic genus, shows that all its singularities are pseudo-rational, and then
resolves these by point blowups.
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Identifying Q′ with Q, the morphism f can then be read as a ring extension R ⊂
R′ ⊂ Q. This observation suggests that we look at overrings of R inside Q that are
again finitely generated K-algebras (in order to be the coordinate ring of a variety)
and so that the corresponding variety is “closer” to a smooth variety than X.

One answer to this approach is the integral closure R of R in Q. It can be shown
that R is a finitely generated K-algebra and that the extension R ⊂ R is finite.
Therefore, R is the coordinate ring of a variety X, and the inclusion R ⊂ R defines
a finite morphism X → X, the normalization map. The variety X is normal (its
coordinate ring is integrally closed), in particular, it is regular in codimension one.
For curves, this signifies smoothness (giving a nonembedded resolution); for surfaces
we will only have isolated singularities (which are good for many purposes, but not
yet a resolution). It can be shown that iterated compositions of normalizations and
point blowups allow us to resolve surfaces.

Alterations. The last method that we shall mention in this Introduction is the
notion of alterations introduced by de Jong [dJ]. It works in all characteristics but
yields a resolution only up to a finite map. This, however, is sufficient for many
applications [Be].

Let us briefly describe the idea. Whereas a modification of a variety X is a
birational proper morphism π : X ′ → X yielding an isomorphism of function fields,
an alteration is a proper, surjective morphism that induces a finite extension of
function fields. Geometrically speaking, π is an isomorphism, respectively a finite
morphism over a (dense) open subset U of X (generic isomorphism, respectively
generically finite morphism). A modification is a birational alteration, and an
alteration factors into a modification followed by a finite map.

De Jong shows that any variety (say, over an algebraically closed field) admits an
alteration ε : X ′ → X with X ′ smooth (and quasi-projective) [dJ, Be, AO]. For the
proof by induction one needs a stronger and more precise statement: If S is a closed
subvariety of X, the alteration ε can be chosen together with an open immersion
i : X ′ ⊂ Y into a projective and smooth Y so that the union i(ε−1(S)) ∪ (Y \X ′)
forms a normal crossings divisor in Y .

The method of proof is opposite to the resolution proofs via blowups: After a
preliminary alteration which allows us to assume X to be projective and normal,
the variety X is fibered in curves by constructing a suitable morphism to a variety
P of dimension one less than the dimension of X. This may create singularities in
the fibres which lie outside the singular locus of X. Then, using the theory of semi-
stable reduction, a further alteration together with induction on the dimension of
the base space reduces to the case where the fibres have at most nodal singularities
(i.e., are defined locally by xy = 0), and the singular fibres sit only over the points
of a normal crossings divisor of P . The situation has then become so explicit that
it can be treated by toric methods, finally yielding an alteration ε : X ′ → X of X
with the required properties.

This concludes our summary on resolution. We now turn to the main theme of
the article, the obstructions to the resolution of singularities in positive character-
istic and arbitrary dimension.

C. Failure of maximal contact. There is a concrete reason why resolution is
more difficult in positive characteristic: The behaviour of the singularities under
blowup is much more erratic than in characteristic zero. Therefore it is harder to
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10 HERWIG HAUSER

pinpoint and then measure a continuous improvement of the singularities yielding
eventually to a resolution. In this section we explain this phenomenon. Some
preliminary material is necessary.

For the ease of the exposition, we restrict our discussion to hypersurfaces X
defined by one equation f = 0 in a smooth ambient space W (e.g., affine space
An). Fix a point a of X. Then X is smooth at a if and only if the order of the
Taylor expansion of f at a is 1, i.e., if the expansion starts with a linear term. If a
is a singular point of X, the order is at least 2. Denote by Sing(X) the set of all
singular points of X. This is an algebraic subset, called the singular locus of X; it
is defined by the vanishing of the partial derivatives of f . The complexity of the
singularity of X at a point a ∈ Sing(X) is related to the order of vanishing of f
at a. Denote this number by ordaX, and by ord(X) the maximal value of ordaX
on X. As ordaX is an upper semicontinuous function in a and X is a Noetherian
space with respect to the Zariski topology, ord(X) is finite and the set top(X) of
points of X where ordaX attains its maximum ord(X) is an algebraic subset. This
top locus collects the “worst” singularities of X. Zariski calls it the equimultiple
locus [Za]. The objective of the resolution process is to make ord(X) drop by a
sequence of blowups in well-chosen centers until it becomes 1. Then X will have
become everywhere smooth.7

As blowups are isomorphisms outside the center, they will not change the local
order of X there. Since we are only concerned in a first instance to improve X along
top(X), the natural choice of center is therefore Z = top(X). The problem is that
in general the top locus may itself be singular. Blowing up the smooth ambient
space W in a singular center creates a new ambient space W ′ which now may be
singular and whose singularities can be hard to control. It is then unknown how to
measure a possible improvement of the transform X ′ of X in W . Therefore we are
confined to choose always smooth centers Z. Something nice happens.

Fact. Let Z ⊂ top(X) be a smooth center, let π : W ′ → W be the induced blowup
with (strict) transform X ′ of X in W ′. Let a be a point in Z, and let a′ be a point
in E = π−1(Z) ⊂ W ′ mapping under π to a. Then

orda′X ′ ≤ ordaX.

In particular, we get ord(X ′) ≤ ord(X) for the maximum value of the local orders.
This says that the complexity of the singularities of X does at least not get worse.
If ord(X ′) < ord(X), we can apply induction. If ord(X ′) = ord(X), there will be
at least one point a′ ∈ E with image a ∈ Z and such that orda′X ′ = ordaX. We
call such points equiconstant points (classically, they are also called infinitely near
points). They are the points where induction cannot be directly applied. Some
refined argument is necessary.

One might hope that ord(X) always drops. This is immediately seen to be
too optimistic, equality may indeed occur. One situation where equality must
occur is the case when top(X) is singular. As the center Z is required to be
smooth, Z is then strictly included in top(X). Therefore, orda′X ′ remains constant
equal to ordaX for all points a′ above a ∈ top(X) \ Z. Hence ord(X ′) = ord(X).
Moreover, by the above fact and the upper semicontinuity of the order, it follows

7For an embedded resolution, one has to consider the total transform of X and try to make
it into a normal crossings variety. It is not known how to measure efficiently the “distance” of a
singularity from being normal crossings.
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RESOLUTION OF SINGULARITIES IN POSITIVE CHARACTERISTIC 11

that orda′X ′ = ordaX also holds for all points a′ above a ∈ Z. So there is no
obvious improvement.

To respond to this quandary, one may try to make first Y = top(X) smooth
by some auxiliary blowups, in order to take it afterward as the center of the next
blowup. This fails in two directions: First, the blowup Y ′ of Y need not coincide
with the top locus of the transform X ′ of X. New and even singular components
may pop up; see [Ha7] for an explicit example. So resolving Y (for instance by
induction on the dimension) does not really help to make top(X) smooth (except
for surfaces). Secondly, even if top(X) were smooth and would be taken as center,
it can be shown that ord(X) may not drop under the respective blowup.

From this analysis we learn that the main problem sits in the appearance of
equiconstant points on the transform X ′ after a blowup. There, the order of X has
not dropped, and some refined measure for the improvement of the singularities
has to be designed (provided that an improvement—as we hope—has occurred;
this also depends on the correct choice of the center, a question which we will not
address here).

The next step is to study in more detail the equiconstant points, especially
their location on X ′. This may help us to understand better how the singularities
transform under blowup when the order remains the same. So fix a point a ∈ Z
in the center Z ⊂ top(X) of a given blowup π : W ′ → W , and let a′ ∈ E be
an equiconstant point of X ′ above a. Zariski already observed that there exists,
locally in a neighborhood of a in W , a smooth hypersurface V containing a whose
transform V ′ under π contains all equiconstant points a′ above a [Za]. This restricts
considerably the location of these points. Zariski describes quite explicitly all such
hypersurfaces.

Now comes the distinction between zero and positive characteristic. In zero char-
acteristic Abhyankar and Hironaka observed8 that V can be chosen even so that
its transform V ′ not only contains all equiconstant points but moreover has itself
a transform V ′′ containing all equiconstant points a′′ sitting above a′. And this
continues like this until the order of X drops. It is thus possible to capture the
whole sequence of equiconstant points above a by one hypersurface together with
its transforms. Such local smooth hypersurfaces, which accompany the resolution
process, are called hypersurfaces of maximal contact (and are known as Tschirn-
hausen transformations in the terminology of Abhyankar). They play the crucial
role for the resolution of singularities in characteristic zero and are defined locally
at each point of interest. One may construct on them a new, subordinate resolution
problem, call it X− in V . Formulating this descent properly is not easy but can
be done. The resolution of X− in V exists by induction on the dimension (this
induction tells us also how to choose the centers). Having resolved X− it can be
proven that the singularities of X in the original ambient space W must also have
improved (in a precisely defined way). This is the key argument in characteristic
zero.

In positive characteristic, this argument fails drastically: hypersurfaces of maxi-
mal contact need not exist. There are examples of (e.g., two-dimensional) hypersur-
faces with isolated singularities together with a sequence of (point) blowups where
any local smooth hypersurface V passing through the singularity eventually loses

8According to rumors, one breakthrough happened at the end of the 1950s on the occasion of
a four day visit of Hironaka at Abhyankar’s house.
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the sequence of equiconstant points sitting above the initial point [Na1, Ha2]. This
prohibits the application of the same descent in dimension as in characteristic zero.

Still, for a single blowup, one can choose, by Zariski’s observation, locally at
a ∈ top(X) a smooth hypersurface V in W whose transform V ′ contains the
equiconstant points a′ of X ′ in W ′. The defect is just that this transform V ′

can possibly not be taken again for the subsequent blowups. In this situation,
Abhyankar proposed, at least for plane curves, to change the hypersurface after
each blowup if necessary. Again one gets a sequence of hypersurfaces, but they
will no longer be related as transforms of each other under blowup. The descent
becomes more complicated. Moreover, there is a priori no canonical choice for those
hypersurfaces.

In the next section we shall describe this descent in more detail and explain how
one can still formulate a resolution problem in smaller dimension. However, its
solution is much harder, and up to now it has only been achieved for curves and
surfaces.

D. Kangaroo phenomenon. Recall that the now classical resolution invariant in
characteristic zero consists of a vector of integers whose components are orders of
ideals in decreasing dimensions.9 The ideals are the consecutive coefficient ideals in
hypersurfaces of maximal contact, and the vector is considered with respect to the
lexicographic ordering. Two things are then shown: first, that the locus of points of
X where the invariant attains its maximal value is closed, smooth and transversal to
the possibly already existing exceptional divisor (stemming from earlier blowups);
and second, that the invariant drops under blowup when taking as center this locus
of maximal values, as long as the ideals in lower dimension are not yet resolved
(in a precise sense). The decrease allows us to apply induction (the lexicographic
order is a well ordering) and to reduce by a finite sequence of blowups to the case
where the invariant attains its minimal possible value. We arrive in this way at
the so-called monomial case, for which an instant combinatorial description of the
resolution is known. This program appears in different disguises in many places,
see, e.g., [Hi5, Vi1, BM, EV1, EH, Wl, Ko].

In section E we will review the characteristic-free version of the characteristic zero
invariant of an ideal at a point as it was developed in [Ha1, EH]. For this definition,
hypersurfaces of maximal contact (which need not exist in arbitrary characteristic)
have to be replaced by hypersurfaces of weak maximal contact. These are defined
as local smooth hypersurfaces that maximize the order of the coefficient ideal of
the given ideal (as hypersurfaces of maximal contact do), but whose transforms, in
contrast, are not required to contain the points along a sequence of blowups where
the order of the original ideal remains constant.

Take then as resolution invariant the lexicographic vector consisting of the order
of the ideal and of the orders of the iterated coefficient ideals with respect to such
hypersurfaces. It turns out that the resulting vector (more precisely, its second
component given by the order of the first coefficient ideal) may increase in positive
characteristic under certain (permissible) blowups. The first examples of this phe-
nomenon were observed by Abhyankar, Cossart, Moh and Seidenberg [Co, Mo, Se].
See also the work of Panazzolo on the resolution of real analytic vector fields in
three variables [Pa]. At first glance the increase destroys any kind of induction.

9For the basics on resolution in characteristic zero, you may consult [Ha3, Lp2, Ko].
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Figure 1. The configuration of kangaroo, antelope and oasis points.

Moh succeeded in bounding the maximal increase, but it was not yet possible to
profit from this bound so as to save the induction argument (except for surfaces).

We shall describe accurately the situations in which an increase of the invariant
occurs. To make the increase happen, the variety which is blown up must have a
wild singularity. It is located at a so-called antelope point of the current stage of
the sequence of blowups we are considering. On the transform of the variety, the
increase of the invariant can then only occur at a kangaroo point.10 The location
of these points and the structure of the singularities is meanwhile well understood
and can be explained quite explicitly (cf. section G). Kangaroo points always lie on
the new exceptional component of the last blowup but never on the transforms of
the (old) exceptional components passing through the preceding antelope point (see
Figure 1). This phenomenon is also known as the occurence of a “a translational
blowup”. To have a wild singularity at an antelope point preceding a kangaroo
point, three conditions must hold: the residues modulo p of the multiplicities of the
exceptional components appearing in the defining equation must satisfy a certain
arithmetic inequality, the order of the coefficient ideal of the equation must be di-
visible by the order of the equation, and strong restrictions on the (weighted) initial
form of the defining equation are imposed (cf. the theorem in section G on kanga-
roo points). It turns out that the initial form of a wild singularity must be equal
(up to multiplication by pth powers) to an oblique polynomial. Oblique polynomi-
als are characterized by a very peculiar behaviour under linear coordinate changes
when considered up to addition of pth powers. Fixing the exceptional multiplicities
and the degree, both subject to the arithmetic and divisibility condition, it can
be shown that there is precisely one oblique polynomial with these parameters (cf.
section I).

For surfaces, it is possible to show that the characteristic zero resolution invari-
ant decreases in the long run also in positive characteristic; i.e., that the occasional
increases are compensated by decreases in the blowups before and after them. A
first method for proving this was developed in [Ha1] and will be sketched in section
J below. A second, more systematic approach introducing the bonus of a singular-
ity appears in [HW]. It “adjusts” the characteristic zero invariant in the critical
situations by a small correction value—the bonus—so as to ensure a permanent
decrease of the invariant. We emphasize that there are earlier proofs of resolution
of surfaces in arbitrary characteristic by Abhyankar, Lipman and Hironaka using
different invariants and arguments [Ab1, Lp1, Hi4]. For three-folds and higher di-
mensional varieties, no complete induction argument for the embedded resolution
seems to be known.

10In [Hi1], kangaroo points run under the name of metastatic points.
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With these remarks we conlude the general introduction. In the next sections,
more detailed information will be given.

2. Detailed discussion

E. The invariant. We define only the first two components of the classical resolu-
tion invariant as these suffice for the phenomena to be described here. For an ideal
sheaf J on a smooth ambient space W and a point a ∈ W denote by J = Ja the
stalk of J at a. For convenience, we denote—if appropriate—by the same character

J the ideal generated in the completion ÔW,a of the local ring OW,a.
11 For a local

smooth hypersurface V in W through a, the coefficient ideal of J in V is defined
as the ideal

coeffV J =

o−1∑

i=0

(af,i, f ∈ J)
o!

o−i ,

where o = ordaJ is the order of J at a, x = 0 is a local equation for V and
f =

∑
af,ix

i is the expansion of f with respect to x, with coefficients af,i ∈ OV,a.
Among the many variants of this definition in the literature, the one given suits
best our purposes. More specifications appear in [EH].

In case J is a principal ideal generated by one polynomial f(x, y) = xo + g(y) in
A1+m with variables x and y = (ym, . . . , y1), the coefficient ideal of J with respect
to the hypersurface x = 0 is simply the ideal in Am generated by g(o−1)!. The
factorial is only needed to ensure integer exponents when f has other x terms.

The order of the coefficient ideal at a depends on the choice of the hypersurface
V , but remains unchanged under passing to the completions of the local rings. The
supremum of these orders over all choices of local smooth hypersurfaces V through
a is a local invariant of J at a (i.e., by definition, it only depends on the isomor-

phism class of the complete local ring ÔW,a/J). This supremum is ∞ if and only if

J is bold regular at a, viz generated by a power of a parameter of ÔW,a [EH]. If the
supremum is finite and hence a maximum, any hypersurface V realizing this value
is said to have weak maximal contact with J at a. In characteristic zero, hypersur-
faces of maximal contact have weak maximal contact [EH]. Moreover, their strict
transforms under a permissible blowup W ′ → W contain all equiconstant points
(classically called infinitely near points in W ′), i.e., those points of the exceptional
divisor where the order of the weak transform J ′ of J has remained constant (recall
that this order cannot increase if J has constant order along the center).

In arbitrary characteristic, the supremum of the orders of the coefficient ideal
coeffV J for varying V can be used to define the second component of the candidate
resolution invariant of J at a. If the supremum is ∞ and thus J is bold regular, a
resolution is already achieved locally at a, so we discard this case. We henceforth
assume that the supremum is finite and can thus be realized by the choice of
a suitable hypersurface V . After factoring a suitable divisor from the resulting
coefficient ideal, one takes the order of the remaining factor as the second component
of the invariant. More explicitly, let D be a given normal crossings divisor in W
with defining ideal IW (D). We shall assume throughout that coeffV J factors for
any chosen V transversal to D (in the sense of normal crossings) into a product of

11You may think here that J is an ideal in a polynomial ring and J is the induced ideal in a
formal power series ring generated by the Taylor expansions of the elements of J at a point.
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ideals
coeffV J = IV (D ∩ V ) · I−,

where I− is some ideal in ÔV,a (this assumption is always realized in practice).
Then define the shade of J at a with respect to D as the maximum value shadeaJ
of ordaI− over all choices of V transversal to D. In [Hi1], a similarly defined
invariant is considered by Hironaka and is called the residual order of J at a. As
usual, questions of well-definedness and upper-semicontinuity have to be taken care
of.12

Along a resolution process, D will always be supported by the exceptional com-
ponents accumulated so far. It coincides with the second entry of the combinatorial
handicap of a mobile as defined in [EH]. At the beginning, or whenever ordaJ has
dropped, D will be empty. If the order of J has remained constant at a point a′

above a, the transform D′ of D is defined as

D′ = D� + (orda(D ∩ V ) + shadeaJ − ordaJ) · Y
′,

where Y ′ denotes the exceptional divisor of the last blowup, and D� the strict
transform of D.13 The formula signifies that D′ consists of the transform of D
together with the new exceptional component Y ′ (which is taken with a suitable
multiplicity). Note that orda(D ∩ V ) + shadeaJ = orda(coeffV J). It follows from
the transformation rule of D that, under permissible blowup, the weak transform
J ′ of J at an equiconstant point a′ above a has as coefficient ideal coeffV ′J ′ in the
strict transform V ′ of V an ideal which factors again into a product IV ′(D′∩V ′)·I ′−,
with I ′− the weak transform (I−)

� of I−. Here, it is assumed that the center Z is
contained in V . This is more delicate to achieve in positive characteristic, due to
the example of Narasimhan where the singular locus of J is not contained locally in
any smooth hypersurface [Na1, Na2, Mu]. It can, however, be realized by refining
the usual stratification of the singular locus of J through the local embedding
dimension of this locus.

We say that the monomial case occurs when the whole coefficient ideal has
become an exceptional monomial, say coeffV J = IV (D ∩ V ) with I− = 1. The
shade has then attained its minimal value 0. This case allows a purely combinatorial
resolution of J .

The commutativity of the passage to coefficient ideals with blowups can be sub-
sumed as follows (cf. [EH, Ha2]). Given a blowup with center Z contained in
the local hypersurface V of W locally at a and transversal to D, we get for any
equiconstant a′ in W ′ above a and I ′− = (I−)

� a commutative diagram

J ′
� coeffV ′J ′ = IV ′(D′ ∩ V ′) · I ′−

↓ ↓
J � coeffV J = IV (D ∩ V ) · I−

Here, the situation splits according to the characteristic: in characteristic zero,
choosing for V a hypersurface of maximal contact for J at a, the strict transform
V ′ constitutes again a hypersurface of maximal contact for J ′ at a′. In particular,
both will have weak maximal contact so that the shades of J and J ′ are well defined.
In addition, shadea′J ′ can be computed from shadeaJ by looking at the blowup

12Semicontinuity works well if only closed points are considered. For arbitrary (i.e., nonclosed)
points, there appear pathologies which are described and studied by Hironaka [Hi1].

13We use here implicitly that V and Z are transversal to D. This is indeed the case in the
resolution process of an ideal or scheme.
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V ′ → V with center Z and the ideals I− and I ′− (recall that Z ⊂ V locally at
a). As shadeaJ = ordaI−, shadea′J ′ = orda′I ′− and I ′− is the weak transform of
I−, it follows automatically that shadea′J ′ ≤ shadeaJ (it is required here that the
order of I− is constant along Z, a property that is achieved through the insertion
of companion ideals as suggested by Villamayor, cf. [EV2, EH]). This makes the
induction and the descent in dimension work.

In positive characteristic, it is in general not possible to choose a local hypersur-
face of maximal contact for J at a. But a hypersurface of weak maximal contact
will always exist, by definition. So choose one, say V . The good news is, as Zariski
already observed [Za], that the strict transform V ′ of V will contain all equicon-
stant points a′ of J in the exceptional divisor Y ′. The bad news is, as Moh’s and
Narasimhan’s examples show, that V ′ need no longer have weak maximal contact
with J ′ at a′. Said differently, V ′ need not maximize the order of the coefficient
ideal of the weak transform J ′ of J at a′. One may have to choose a new hyper-
surface U ′ at a′ to maximize this order. As Moh observed [Mo], there is still worse
news, since the choice of U ′ may produce a shade of J ′ at a′ which is strictly larger
than the shade of J at a. This destroys the induction over the lexicographically
ordered pair (orda(J), shadea(J)). At least at first sight!

F. Moh’s bound. In his paper on local uniformization, Moh investigates the
possible increase of shadeaJ at equiconstant points a′ of J in the purely inseparable
case

f(x, y) = xpe

+ yr · g(y),

with ord(yrg) ≥ pe = ord f and e ≥ 1 [Mo].14 Here, V defined by x = xn = 0
denotes a hypersurface of weak maximal contact for f at a = 0 in W = An, p is
the characteristic of the (algebraically closed) ground field, and y = (xn−1, . . . , x1)
denote further coordinates so that (x, y) form a complete parameter system of R =

ÔAn,0. Moreover, r ∈ Nn−1 is a multiexponent whose entries are the multiplicities
of the components of the divisor D ∩ V at 0, and yi = 0 defines an irreducible
component of D ∩ V in V for all i for which ri > 0. All expressions take place in
the algebra of an étale neighborhood of 0 in An, so that f and possible coordinate
changes are considered as formal power series. The shade of f at 0 with respect to
the divisor D defined by yr = 0 is given by shade0f = ord0g, by the choice of V .

Proposition (Moh). In the above situation, let (W ′, a′) → (W,a) be a local blowup
with smooth center Z contained in the top locus of f and transversal to D. Assume
that a′ is an equiconstant point for f at a, i.e., orda′f ′ = ordaf = pe, where f ′

denotes the strict transform of f at a′. Then

shadea′f ′ ≤ shadeaf + pe−1.

In case e = 1, the inequality reads shadea′f ′ ≤ shadeaf + 1, which is not too
bad, but still unpleasant. The short proof of Moh uses a nice trick with derivations,
thus eliminating all pth powers from yrg(y). He then briefly investigates the case
where an increase of the shade indeed occurs, showing that in the next blowup the
shade has to drop at least by 1 (if e = 1). This, obviously, does not suffice yet to
make induction work.

14It seems that Abhyankar had already observed this increase.
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G. Kangaroo points and wild singularities. In the following paragraphs we
reproduce in compact form the classification of kangaroo points and wild singular-
ities given in [Ha1]. Recall: The shade of a polynomial f at a point a with respect
to a normal crossings divisor D is the maximal value of the order of its coefficient
ideal minus the multiplicity of D at a, the maximum being taken over all choices
of smooth local hypersurfaces at a transversal to D. A kangaroo point in a blowup
W ′ → W with permissible center Z and exceptional divisor Y ′ is an equiconstant
point a′ above a ∈ Z where the shade of f with respect to D has increased,

orda′f ′ = ordaf and shadea′f ′ > shadeaf.

Here, shadea′f ′ is taken with respect to the divisor

D′ = D� + (orda(D ∩ V ) + shadeaf − ordaf) · Y
′,

where D� denotes the strict transform of D and ordaf = ordZf holds by per-
missibility of Z. The point a prior to a kangaroo point a′ is called an antelope
point. Note here that if V and V ′ are hypersurfaces of weak maximal contact, then
orda(D ∩ V ) = ordaD and orda′(D′ ∩ V ′) = orda′D′ by transversality of D and D′

with V and V ′.
For the ease of the exposition, we restrict our discussion to hypersurfaces in

An = A1+m with purely inseparable equation f(x, y) = xp + yr · g(y) of order p at
0 equal to the characteristic, with exceptional multiplicities r = (rm, . . . , r1) ∈ Nm

and coordinates (x, y) = (x, ym, . . . , y1). We shall work only at closed points and
with formal power series. Moreover, we confine to point blowups, since these entail
the most delicate problems. Most of the concepts and results go through for more
general situations. For an integral vector r ∈ Nm and a number c ∈ N, let φc(r)
denote the number of components of r that are not divisible by c,

φc(r) = #{i ≤ m, ri �≡ 0 mod c}.

Define rc = (rcm, . . . , rc1) as the vector of the residues 0 ≤ rci < c of the components
of r modulo c, and let |r| = rm + · · ·+ r1.

The next theorem characterizes kangaroo points and wild singularities. We state
it here only in its simplest form for purely inseparable equations of order p at 0. An
appropriate extension also holds beyond the purely inseparable case for singularities
of any order and for blowups in positive dimensional centers; see section H below,
respectively [Ha1, Thm. 1, sec. 5, and Thm. 2, sec. 12] and its forthcoming update
[Ha2].

Kangaroo Theorem (Hauser). Let (W ′, a′) → (W,a) be a local point blowup of
W = A1+m with center Z = {a} = {0} and exceptional divisor Y ′. Let X be a
hypersurface singularity in W at a with equation f = 0. Let there be given local
coordinates (x, ym, . . . , y1) at a so that f(x, y) = xp + yr · g(y) has order p and
shade ordag with respect to the divisor D defined by yr = 0. Then, for a to be a
wild singularity of X with kangaroo point a′, the following conditions must hold at
a:

(1) The order |r|+ ordag of yrg(y) is a multiple of p.
(2) The exceptional multiplicities ri at a satisfy

rpm + · · ·+ rp1 ≤ (φp(r)− 1) · p.
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(3) The location of a′ on Y ′ is determined by the expansion of f at a. It lies on
none of the strict transforms of the exceptional components yi = 0 for which ri is
not a multiple of p.

(4) The initial form of g equals, up to linear coordinate changes and multipli-
cation by pth powers, a specific homogeneous polynomial, called oblique, which is
unique for each choice of p, r and degree.15

Remarks. (a) The above characterization seems to have been a vital step in Hiron-
aka’s recent approach to the resolution of singularities in positive characteristic (cf.
[Hi1, Prop. 13.1 and Thm. 13.2]).

(b) The necessity of condition (1) is easy to see and already appears in [Mo].
The arithmetic inequality in condition (2) is related to counting the number of
p-multiples in simplices in Rm and their r-translates.16 It implies that at least
two exponents ri must be prime to p. For surfaces (m = 2), condition (2) reads
r2, r1 �≡ 0 mod p and r2+r1 ≤ p. Condition (3) implies that the reference point has
to jump off from all exceptional components with ri �≡ 0 mod p in order to arrive
at a kangaroo point. So it has to leave at least two exceptional components (cf.
Figure 1 from the Introduction). This, together with the jump of shadeaf , justifies
the naming of these points. Condition (4) will be discussed in the example below
and in section I on oblique polynomials.

(c) Conditions (1) to (4) are necessary for the occurrence of kangaroo points.
They are also sufficient, up to the higher degree terms of g, in the following sense:
In the transform g′ of g the terms of g of degree > ordag (i.e., not in the initial
form) may have transformed into terms of degree smaller than the order of the
transform g′ of the initial form g of g. This signifies that orda′g′ < orda′g′. As
orda′g′ = shadea′f ′, ordag = shadeaf by definition, and orda′g′ ≤ shadeaf + 1 =
shadeaf + 1 with f = xp + yrg by Moh’s bound applied to f , the strict inequality
shadea′f ′ > shadeaf becomes impossible. The influence of the higher order terms
of g can be made quite explicit in concrete examples.

(d) We emphasize that the intricacy of the resolution in positive characteristic
lies precisely in these higher order terms. Without them, g is homogeneous (and
thus equal to its initial form). In this case it is easy to make the order of f drop
below p by suitable further blowups. But, in the general case, it seems to be tricky
to control g beyond its initial form.

Example 3. For surfaces (n = 3 and m = 2), condition (2) reads r2 + r1 ≤ p,
provided that r2, r1 > 0. In this case, there is an explicit description of the initial
form P = g of g as indicated by condition (4): If

(
k+r
k+1

)
is not a multiple of p it has

the form

P (y, z) = yrzs ·Hk
r (y, tz − y) = yrzs ·

k∑

i=0

(
k + r

i+ r

)
yi(tz − y)k−i,

where r = r1, s = r2, k = ordag, and t is some nonzero constant in the ground
field. The constant t determines the location of a′ on the exceptional divisor Y ′,

15The possibility of multiplication with pth powers was not properly indicated in the original
version of [Ha1] (though it followed from the proof given there).

16The inequality is equivalent to ⌈
r
p
1

p
⌉+ · · ·+ ⌈

r
p
m
p

⌉ > ⌈
r
p
1
+···+r

p
m

p
⌉, where ⌈u⌉ is the smallest

integer ≥ u. In this case the simplex ∆ = {α ∈ Nm, |α| = ordag} contains more p-multiples than
its translate r +∆.
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and vice versa. The polynomials

Hk
r (y, w) =

k∑

i=0

(
k + r

i+ r

)
yiwk−i

are called hybrid polynomials of type (r, k) in [Ha1]. Note that we can write Hk
r as

Hk
r (y, w) =

k∑

i=0

(
k + r

k − i

)
yiwk−i

=

k∑

i=0

(
k + r

i

)
yk−iwi

= y−r ·

k∑

i=0

(
k + r

i

)
yk+r−iwi

= ⌊y−r ·
k+r∑

i=0

(
k + r

i

)
yk+r−iwi⌋poly

= ⌊y−r · (y + w)k+r⌋poly,

where ⌊Q⌋poly denotes those terms of the Laurent expansion of Q that involve no
monomials with negative exponents.

Roćıo Blanco observed that if
(
k+r
k+1

)
is a multiple of p, the above polynomial

P = yrzs · Hk
r (y, tz − y) is a pth power and thus does not count. In this case one

can use alternatively a description of the initial form of g which is independent of
the divisibility of

(
k+r
k+1

)
by p (cf. section I below):

P (y, z) = zs ·

∫
yr−1(y − tz)kdy

= zs ·

k∑

i=0

(−1)k−i 1

r + i
yr+i(tz)k−i,

the sum being taken over those i for which r + i is not divisible by p. Dominique
Wagner showed that the two formulas for P differ—up to adding pth powers—by
the scalar factor (−1)k

(
k+r
k+1

)
(k + 1). This explains why the first formula requires

that
(
k+r
k+1

)
is prime to p.

Let us illustrate the dependence on p in the case p = k = 2, r = s = 2, where
the binomial coefficient

(
k+r
k+1

)
=

(
5
3

)
= 10 is not prime to p. Indeed,

yrzs ·Hk
r (y, tz − y)

= y3z3 · [

(
5

3

)
(tz − y)2 +

(
5

4

)
y(tz − y) +

(
5

5

)
y2]

= y3z3 · [10(tz − y)2 + 5y(tz − y) + y2]

= y3z3 · [y(tz − y) + y2]

= ty4z4
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is a pth power (provided that K is perfect) and thus does not count as oblique,
whereas

P (y, z) = zs ·

∫
yr−1(y − tz)kdy

= z3 ·

∫
y2(y − tz)2dy

= z3 ·

∫
(y4 + t2y2z2)dy

= y3z3 · (y2 + t2z2)

produces an increase of the shade. In section I, we characterize oblique polynomials
in arbitrary dimension.

H. Proof of the Kangaroo Theorem. We indicate the main points of the argu-
ment for arbitrary polynomials f , i.e., in the case where f is not necessarily purely
inseparable. This makes things more complicated but has the advantage of being
generally applicable in a resolution process. The argument should be compared
with the (much simpler) computation of oblique polynomials for the purely insep-
arable case which is given in section I. Along the way, one obtains an alternative
proof of Moh’s inequality.

It is convenient to work in the power series ring and to assume that f is in
Weierstrass form of order, say c, with respect to the variable x. It then suffices
to consider a weighted homogeneous f with respect to weights (w, 1, . . . , 1) where
w ≥ 1 is the ratio between the order of f and the order of its coefficient ideal with
respect to x, say w = ord f/ord coeffx(f).

The inequality rcm + · · · + rc1 ≤ (φc(r) − 1) · c allows us to count the lattice
points that lie in certain integral simplices in Rn

+ (called zwickels in [Ha1]) but do
not belong to the sublattice p · Zn. The key step of the proof of the Kangaroo
Theorem is then to establish the invertibility of the transformation matrix between
the vectors of coefficients of polynomials with exponents in such zwickels under
prescribed coordinate changes, the polynomials being always considered modulo
pth powers. For illustration, we reproduce the corresponding passage from section
11 of [Ha1].

Let f(x, y) and f̃(x, y) = f(x+
∑

γ hγy
γ , y+ tym) be weighted ho-

mogeneous polynomials of weighted degree e with respect to weights
(w, 1, . . . , 1) on (x, y) = (x, ym, . . . , y1), where the sum

∑
γ hγy

γ

ranges over γ ∈ Nm with |γ| = w, and where hγ and the com-
ponents of t = (0, tm−1, . . . , t1) belong to the ground field. Let
c = e/w be the order of f . Write

f(x, y) =
∑

akαx
kyα and f̃(x, y) =

∑
blβ(t)x

lyβ

with wk + |α| = wl + |β| = e. We assume that ac0 �= 0, i.e., that
xc appears with nonzero coefficient, say ac0 = 1. Let V be the
hypersurface in W = An defined by x = 0. Let

Lc = {(k, α) ∈ N1+m, k < c} → Qm : (k, α) →
c

c− k
· α

be the map projecting elements (k, α) of the layer Lc in N1+m to el-
ements of Qm. The center of the projection is the point (c, 0, . . . , 0).
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Let q ∈ Nm with |q| = qm+· · ·+q1 ≤ e be fixed. Define the upper
zwickel Z(q) in N1+m as the set of points (k, α) with 0 ≤ k ≤ c,
wk + |α| = e and projection c

c−k
· α ≥cp q, denoting by ≥cp the

componentwise order. Thus Z(q) is given by

Z(q) : wk + |α| = e and α ≥cp ⌈
c− k

c
· (qm, . . . , q1)⌉.

Let us fix a decomposition q = r + ℓ ∈ Nm with r = (qm, . . . , qj+1,
0, . . . , 0) and ℓ = (0, . . . , 0, qj , . . . , q1) for some index j between
m− 1 and 0. Define the lower zwickel Y (r, ℓ) in N1+m as the set of
points (k, β) in N1+m with 0 ≤ k ≤ c, wk + |β| = e and projection
c

c−k
· β ≥cp (|r|, 0, . . . , 0, ℓ). Thus Y (r, ℓ) is given by

Y (r, ℓ) : wk+ |β| = e and β ≥cp ⌈(
c− k

c
· |r|, 0, . . . , 0,

c− k

c
· qj , . . . ,

c− k

c
· q1)⌉.

For j = m−1 and hence r = (qm, 0, . . . , 0) and ℓ = (0, qm−1, . . . , q1)
we have Z(q) = Y (r, ℓ). In general, the two zwickels are different.

For any r and ℓ and 0 ≤ k ≤ e/w = c, the slice

Y (r, ℓ)(k) = {(k, β) ∈ Y (r, ℓ)} = Y (r, ℓ) ∩ ({k} × Nm)

has at least as many elements as the slice

Z(q)(k) = {(k, α) ∈ Z(q)} = Z(q) ∩ ({k} × Nm).

This holds for k = 0, by definition of Z(q) and Y (r, ℓ). For arbitrary
k, the inequality ⌈ c−k

c
· |r|⌉ ≤ |⌈ c−k

c
· r⌉| implies that the condition

wk + |β| = e and β ≥cp (|⌈
c− k

c
· r⌉|, 0, . . . , 0, ⌈

c− k

c
· qj⌉, . . . , ⌈

c− k

c
· q1⌉)

is more restrictive than the condition

wk + |β| = e and β ≥cp (⌈
c− k

c
· |r|⌉, 0, . . . , 0, ⌈

c− k

c
· qj⌉, . . . , ⌈

c− k

c
· q1⌉)

defining Y (r, ℓ)(k). For each k, the set of pairs k, β satisfying the
first condition has as many elements as Z(q)(k) because |r|+ qj +
· · ·+ q1 = |q|. The claim follows.

It is immediate that yq is a factor of coeffV f if and only if f −xc

has all exponents in the upper zwickel Z = Z(q) with q ∈ Nm, and

coeffV f̃ has order > e − |r| in z = (ym−1, . . . , y1) if and only if all

coefficients of the monomials of f̃ − xc with exponent in the lower
zwickel Y (r, ℓ) are zero.

Write elements β ∈ Nm as (βm, β-) where β- = (βm−1, . . . , β1) ∈
Nm−1. Let Y ∗(r, ℓ) be the subset of Y (r, ℓ) of elements (k, β) ∈
N1+m given by

|β-| ≤ e− wk − ⌈
c− k

c
· |r|⌉,

β- ≥cp ⌈
c− k

c
· (0, . . . , 0, qj , . . . , q1)⌉.

By definition, for each k, the slice Y ∗(r, ℓ)(k) has the same cardi-
nality as the slice Z(q)(k) of the upper zwickel Z(q). For α and δ
in Zm, set

(
α
δ

)
=

∏
i

(
αi

δi

)
, where

(
αi

δi

)
is zero if αi < δi or δi < 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



22 HERWIG HAUSER

For Γ a subset of Nm, define for k ∈ N and λ = (λγ)γ∈Γ ∈ NΓ the
alternate binomial coefficient

[

(
k

λ

)
] =

∏

γ∈Γ

(
k − |λ|γ

λγ

)
with |λ|γ =

∑

ε∈Γ,ε<lexγ

λε.

Let Γ ⊂ Nm be the set of γ ∈ Nm with |γ| = w and write h =
(hγ)γ∈Γ. Set λ · Γ =

∑
γ∈Γ λγ ·γ ∈ Nm and fix t=(0, tm−1, . . . , tj+1,

0, . . . , 0). We then have (cf. [Ha1, Prop. 1, sec. 11]) the following
proposition.

Proposition. Let

f(x, y) =
∑

akαx
kyα

and

f̃(x, y) = f(x+
∑

γ∈Γ

hγy
γ , y + tym) =

∑
blβ(t)x

lyβ

be weighted homogeneous polynomials with respect to weights
(w, 1, . . . , 1) as above. Fix q = r + ℓ ∈ Nm with zwickels Z(q)
and Y ∗(r, ℓ) ⊂ Y (r, ℓ).

(1) The transformation matrix A = (Akα,lβ) from the coefficients

akα of f to the coefficients blβ(t) of f̃ is given by

Akα,lβ =
∑

λ∈NΓ,|λ|=k−l

(
k

l

)
[

(
k − l

λ

)
]

(
α

δαβλ

)
· hλ · tα−δαβλ ,

where δαβλ = (αm, β- − (λ · Γ)-) ∈ Nm and hγ = Πγh
λγ
γ .

(2) The quadratic submatrix A� = (Akα,lβ) of A with (kα, lβ)

ranging in Z(q) × Y ∗(r, ℓ) has determinant tρ(Z,Y ∗(r,ℓ)) where
ρ(Z, Y ∗(r, ℓ)) is a vector in Nm−1 independent of h = (hγ)γ∈Γ with
ρm = 0 and ρj = · · · = ρ1 = 0.

(3) Assume that f has support in Z(q). If tm−1, . . . , tj+1 are

nonzero, the coefficients blβ of f̃ in the lower zwickel Y (r, ℓ) deter-
mine all coefficients of f .

This ends the excerpt from [Ha1] about the proof of the Kangaroo Theorem.
Actually, the assertions of the theorem are rather straightforward consequences of
the above proposition: inverting the transformation matrix between the coefficients
vectors of the polynomials allows us to determine the initial form of g as alluded
to in assertion (4) of the theorem. As for the proof of the proposition itself, the
formula from (1) is an exercise in binomial expansion, assertion (2) is tricky and
relies on a special numbering of the lattice points in zwickels in order to make the
matrix block diagonal, and (3) follows rather quickly from (2).

I. Oblique polynomials. We now describe the initial form of the polynomials g
of the (purely inseparable) equations xp+yrg(y) = 0 defining wild singularities. In
[Ha1], the uniqueness assertion (4) of the Kangaroo Theorem was established for
the (weighted) initial form of the equation of an arbitrary wild hypersurface sin-
gularity, and oblique polynomials were characterized in various specific situations.
In [Hi1], a general description of oblique polynomials is given, and Schicho found
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independently a similar formula. Below we combine all viewpoints to a unified
presentation.

Fix variables y = (ym, . . . , y1). Set ℓ = m−1, and let p be the characteristic of the
ground field K. A nonzero polynomial P = yrg(y) with r ∈ Nm and g homogeneous
of degree k is called oblique with parameters p, r and k if P has no nontrivial pth
power polynomial factor and if there is a vector t = (0, tℓ, . . . , t1) ∈ (K∗)m so that
the polynomial P+(y) = (y + tym)rg(y + tym) has, after deleting all pth power
monomials from it, order k + 1 with respect to the variables yℓ, . . . , y1. Without
loss of generality, the vector t can and will be taken equal to (0, 1, . . . , 1). We shall
write ordpzP

+ to denote the order of P+ with respect to z = (yℓ, . . . , y1) modulo
pth powers.

Example 4. Take m = 2, p = 2 and P (y) = y2y1(y
2
2 + y21) with k = 2. Then

P+(y) = P (y2, y1 + y2) = y2y
2
1(y1 + y2) has modulo squares order 3 with respect

to y1.
It is checked by computation that the condition ordpzP

+ ≥ k + 1 on P+ is a
prerequisite for the occurence of a kangaroo point as in the theorem. Moh’s result
implies ordpzP

+ ≤ k + 1, so that equality must hold. Condition (4) of the theorem
tells us that there is, up to addition of pth powers, at most one oblique polynomial
for each choice of the parameters p, r and k. In order that P is indeed oblique it
is then also necessary that the degree of P is a multiple of p and that r satisfies
rpm + · · ·+ rp1 ≤ (φp(r)− 1) · p (again by the theorem).

We dehomogenize P with respect to ym. This clearly preserves pth powers.
Moreover, when applied to monomials of total degree divisible by p (as is the case
for the monomials of the expansion of P ), the dehomogenization creates no new pth
powers. It is thus an “authentic” transformation in our context; i.e., the charac-
terization of oblique polynomials can be transcribed entirely to the dehomogenized
situation. Setting ym = 1 and z = (yℓ, . . . , y1), we get Q(z) = P (1, z) = zs · h(z)
with s = (rℓ, . . . , r1) ∈ Nℓ and h(z) = g(1, z) a polynomial of degree ≤ k. The trans-
lated polynomial is Q+(z) = Q(z+I) = (z+I)s ·h(z+I), where I = (1, . . . , 1) ∈ Nℓ.
The condition ordpzP

+ ≥ k + 1 now reads ordpzQ
+ ≥ k + 1 or, equivalently,

Q+ ∈ 〈zℓ, . . . , z1〉
k+1 +K[zp]. Let us write this as

(z + I)s · h(z + I)− v(z)p ∈ 〈zℓ, . . . , z1〉
k+1

for some polynomial v ∈ K[z]. As h has degree less than or equal to k, the
polynomial v cannot be zero. In addition, we see that the condition ordpzQ

+ ≥ k+1
is stable under multiplication with homogeneous pth power polynomials w(z), in
the sense that ordpz (wp ·Q+) ≥ k + 1 + p · degw. Using that (z + I)s is invertible
in the completion K[[z]], we get

h(z + I) = ⌊(z + I)−s · v(z)p⌋k,

where ⌊u(z)⌋k denotes the k-jet (that is, expansion up to degree k) of a formal
power series u(z). From Moh’s inequality we know that (z + I)s · h(z + I)− v(z)p

cannot belong to 〈zℓ, . . . , z1〉
k+2. Therefore, in the case that v(z) is a constant, the

homogeneous form of degree k + 1 in (z + I)−s must be nonzero. This form equals∑
α∈Nℓ,|α|=k+1

(
−s
α

)
zα. We conclude that if all

(
−s
α

)
with |α| = k + 1 are zero in

K, then v was not a constant.17 Inverting the translation τ (z) = z + I, we get the

17The converse need not hold; see the example.
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following formula for the dehomogenized initial form at antelope points preceding
kangaroo points,

zs · h(z) = zs · τ−1{⌊(z + I)−s · v(z)p⌋k}.

The homogenization of this polynomial with respect to ym followed by the multi-
plication with yrmm then yields the actual oblique polynomial P (y) = yrg(y).

Example 5. In the example P (y) = y32y
3
1(y

2
2 + y21) from the beginning, we have

characteristic p = 2, exponents r2 = r1 = 3 and degree k = 2. Therefore, ℓ = 1
and s = 3, which yields a binomial coefficient

(
−3
α

)
=

(
−3
3

)
= −10 equal to 0 in K.

Indeed, P has as a nonmonomial factor g(y) the square (y2 + y1)
2. In the example

P (y) = y2y1(y
2
2 + y21) from above with r2 = r1 = s = 1, the polynomial g is again

a square, even though
(
−s
α

)
=

(
−1
3

)
= −1 is nonzero in K.

J. Resolution of surfaces. In the surface case, there are several ways to overcome
(or avoid) the obstruction produced by the appearance of kangaroo points. The
first proof of surface resolution in positive characteristic is due to Abhyankar, using
commutative algebra and field theory [Ab1]. Resolution invariants for surfaces then
appear, at least implicitly, in his later work on resolution of three-folds. In [Hi4],
Hironaka proposes an explicit invariant for the embedded resolution of surfaces in
three-space (see [Ha4] for its concise definition). It is not clear how to extend this
invariant to higher dimensions.

In [Ha1], it is shown for surfaces that during the blowups prior to the jump at
a kangaroo point the shade must have decreased at least by 2 (with one minor
exception) and thus makes up for the later increase at the kangaroo point. To be
more precise, given a sequence of point blowups in a three-dimensional ambient
space for which the subsequent centers are equiconstant points for some f , call the
antelope point the point a immediately prior to a kangaroo point a′, and the oasis
point the last point a◦ below a where none of the exceptional components through
a has appeared yet. The following is then a nice exercise:

Fact. The shade of f drops between the oasis point a◦ and the antelope point a of
a kangaroo point a′ at least to the integer part of its half,

shadeaf ≤ ⌊
1

2
· shadea◦f◦⌋.

In the purely inseparable case of an equation of order equal to the characteristic,
this decrease thus dominates the later increase of the shade by 1 except for the case
shadea◦f◦ = 2, which is easy to handle separately and will be left to the reader. It
seems challenging to establish a similar statement for singular three-folds in four-
space.

In [HW], we proceeded somewhat differently by also considering blowups after
the occurence of a kangaroo point. A detailed analysis shows that when taking
three blowups together (the one between the antelope and the kangaroo point, and
two more afterward), the shade always either decreases in total or, if it remains
constant, an auxiliary secondary shade drops. This shade can again be interpreted
as the order of a suitable coefficient ideal (now in just one variable), made coordinate
independent by maximizing it over all choices of hypersurfaces inside the chosen
hypersurface of weak maximal contact.

The compelling thing is that one can subtract, following an idea of Dominik
Zeillinger [Ze] which was made precise and worked out by Wagner, a correction
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term from the shade which eliminates the increases without creating new increases
at other blowups. This correction term, called the bonus, is defined in a subtle way
according to the internal structure of the defining equation. It is mostly zero and
takes, in certain well-defined situations, a value between 0 and 1 + δ.

This bonus allows us to define an invariant—a triple consisting of the order, the
modified shade and the secondary shade—which now drops lexicographically after
each blowup. The bonus is defined with respect to a local flag as defined in [Ha5].
Flags break symmetries and are stable under blowup (in a precise sense) and thus
allow us to define the bonus at any stage of the resolution process. We refer to [HW]
for the details, as well as for the definition of an alternative invariant, the height,
which is even simpler to use for the required induction. It profits much more from
the flag than the shade and allows a simpler definition of the bonus. The invariant
built from the height yields a quite systematic induction argument which may serve
as a testing ground for the embedded resolution of singular three-folds.

K. Example. This is the simplest example for the occurrence of a wild singularity
and a kangaroo point in a resolution process. Consider the following sequence of
three point blowups in characteristic 2:

f0 = x2 + 1 · (y7 + yz4) (oasis point a0), (x, y, z) → (xy, y, zy),

f1 = x2 + y3 · (y2 + z4), (x, y, z) → (xz, yz, z),

f2 = x2 + y3z3 · (y2 + z2) (antelope point a2), (x, y, z) → (xz, yz + z, z),

f3 = x2 + z6 · (y + 1)3((y + 1)2 + 1)

= x2 + z6 · (y5 + y4 + y3 + y2) (kangaroo point a3).

The oblique polynomial appears at the antelope point a2 in the form y3z3 ·(y2+z2).
The kangaroo point is a uniquely specified point a3 of the exceptional divisor of the
third blowup. It is the unique equiconstant point of the exceptional divisor where
the shade of f increases. It lies off the transforms of the exceptional components
produced by the first two blowups (see Figure 1). The coordinate change x →
x+ yz3 at a3 eliminates y2z6, realizes the shade, and produces

f3 = x2 + z6 · (y5 + y4 + y3).

The order of f has remained constant equal to 2 throughout. But the shade of f
has increased between a2 and a3. Namely, in y3z3 · (y2 + z2) the monomial y3z3 is
exceptional, and the remaining factor y2+z2 has order 2, whereas in z6 ·(y5+y4+y3)
the exceptional factor is z6 and the remaining factor y5+y4+y3 has order 3. Thus
shadea3f3 = 3 > 2 = shadea2f2. Observe that the shade drops between the oasis
and antelope point by 3.

L. Bibliographic comments. We briefly relate the contents of this note to the
existing literature on resolution in positive characteristic. The arithmetic condition
rpm + · · · + rp1 ≤ (φp(r) − 1) · p on the exceptional multiplicities at an antelope
point appears in a different perspective also in the work of Abhyankar on good
points [Ab2]. Cossart and Moh studied in detail many phenomena related to the
appearance of kangaroo points [Co, Mo].

We already mentioned the paper [CJS] on the embedded resolution of surfaces of
arbitrary codimension. As for dimension three, there are recent results and proofs
of Cutkosky, and Cossart and Piltant for the nonembedded resolution of three-folds
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in positive characteristic [Cu, CP1, CP2]. Cutkosky reduces Abhyankar’s proof (of
over 500 pages) of resolution in characteristic greater than 5 to some forty pages,
Cossart and Piltant establish the result with considerably more effort for arbitary
fields. Both proofs use substantially the embedded resolution of surfaces (built on
the invariant from [Hi4]), but they do not provide embedded resolution of three-folds.

As for dimension n, Hironaka develops in [Hi1, Hi2, Hi3] an elaborate machinery
of differential operators in arbitrary characteristic in order to construct generaliza-
tions of hypersurfaces of maximal contact by allowing primitive elements as defining
equations. The main difficulty is thus reduced to the purely inseparable case and
metastatic points, which precisely correspond to our kangaroo points. Hironaka
then asserts that this type of singularities can be resolved directly. There is no
written proof of this available at the moment.

There is a novel approach to resolution by Villamayor and his collaborators Ben-
ito, Bravo and Encinas [Vi2, Vi3, BV, EV3]. It is based on projections instead of
restrictions for the descent in dimension. A substitute for coefficient ideals is con-
structed via Rees algebras and differential operators, which are called elimination
algebras. It provides a new resolution invariant for characteristic p (which coin-
cides with the classical one in zero characteristic). All the necessary properties are
proven. This allows us to reduce by blowups to a so-called monomial case (which,
however, seems to be still unsolved, and could be much more intricate than the
classical monomial case).

In a somewhat different vein, Kawanoue and Matsuki have announced a program
for resolution in arbitrary characteristic and dimension [Ka, MK]. Again, they use
differential operators to define a suitable resolution invariant and then show its
upper semicontinuity. The termination of the resulting algorithm seems not to be
ensured yet.

W�lodarczyk has informed the author that he has recently studied the structure
of kangaroo points and that he sees possibilities to define an invariant which does
not increase. Again, one has to wait until written material becomes available.

M. Retrospective. It is tempting to try the resolution invariant from character-
istic zero also in positive characteristic. After having observed that it may increase
in special circumstances, it is also natural to study the cases where this actually
happens. This attempt has been presented in this paper. The hope then is that
the understanding of the obstruction may allow us to overcome the increase either
by extra arguments or by modifying the invariant thus yielding finally a complete
resolution. This would be the conservative approach to arbitrary characteristic.18

18The results of the author’s investigations on kangaroo points were written up around 2003
and assembled in the manuscript [Ha1], mostly for personal reference. It was only circulated
among the experts working in the field, because the classification of kangaroo points did not
apparently show the way toward resolution in positive characteristic (even though a new proof for
the surface case was found, as well as several other resolution strategies could be designed). In
short, the results were never published.

In fall 2008, Heisuke Hironaka gave several talks at Harvard, the Clay Mathematics Institute
and the Research Institute for Mathematical Sciences at Kyoto. There he presented a program for
attacking the characteristic p case. In the course of the argument, Hironaka relied on the author’s
classification of kangaroo points. He then claimed that this classification does indeed pave the way
toward resolution in positive characteristic; that it does provide the missing link. At this moment,
no complete written proof for the claim is available.
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But genuine progress would consist in inventing a new invariant (which never
increases). This would be, in the simplest case, a new measure which describes
the “distance” of a polynomial to be a monomial (up to coordinate changes and
multiplication by units in the formal power series ring). The classical recipe, “factor
from the polynomial the exceptional monomial and take the order of the remaining
factor as invariant”, seems to be just too crude in arbitrary characteristic.

Many important results in mathematics had a hard time becoming generally
accepted and understood. The original formulation may have been excessively
complicated, with a proof more like a struggle than a concise argument. For the
problem of resolution, we have to admit that we are still in the stage of struggling.
The available proofs are certainly not the final picture. In such cases it helps
to proceed virtually some fifty years (assuming that till then the resolution of
singularities has become a well-understood fact) and to look back at our present
time. What do we see there?

Inductions! And again inductions!
The main feature of many of the present proofs is indeed a weaving of several

intertwined inductions. Induction on the dimension, the local embedding dimension
of a singularity, the local multiplicity, a local resolution invariant. So resolution is
today a multistep procedure, mostly completely ineffective. And, in fact, already
for relatively modest surfaces the resolved variety is covered by hundreds of affine
charts (corresponding to dozens of blowups).

The main challenge for us is to better understand algebraic varieties at their
singularities. The singular locus is described by certain minors of the Jacobian
matrix of the defining equations, but this description is not really convenient here:
taking the singular locus with this ideal structure, the induced blowup does in
general not yield a resolution. This approach is known as the Nash-modification of
the variety. Hironaka and Spivakovsky have shown that surfaces can be resolved
by combining them with normalizations [Hi6, Sp, GS]. There are attempts to
refine Nash-modifications by considering higher order jet schemes [Ya], but without
definite breakthrough yet.

But notice: from Hironaka’s theorem it follows (at least in characteristic zero)
that there does exist another ideal structure on the singular locus of a variety so
that the induced blowup with this center resolves the singularities in one single
stroke. Formidable! The mere existence of this ideal structure is opposed to the
(hitherto) failure of describing its structure in concrete examples. It is there, but
we don’t see it.

Probably we will still have to wait a while for deep understanding of the resolu-
tion of singularities—even though a proof for positive characteristic may appear in
the near future. We shall keep in touch!

Acknowledgments

The author is indebted to many people for sharing their ideas and insights with
him. Among them are Heisuke Hironaka, Shreeram Abhyankar, Orlando Villa-
mayor, Santiago Encinas, Ana Bravo, Gerd Müller, Josef Schicho, Gábor Bodnár,
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