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ON THE PROBLEM OF SPURIOUS EIGENVALUES
IN THE APPROXIMATION OF LINEAR ELLIPTIC PROBLEMS

IN MIXED FORM

DANIELE BOFFI, FRANCO BREZZI, AND LUCIA GASTALDI

Abstract. In the approximation of linear elliptic operators in mixed form,
it is well known that the so-called inf-sup and ellipticity in the kernel prop-
erties are sufficient (and, in a sense to be made precise, necessary) in order
to have good approximation properties and optimal error bounds. One might
think, in the spirit of Mercier-Osborn-Rappaz-Raviart and in consideration of
the good behavior of commonly used mixed elements (like Raviart–Thomas
or Brezzi–Douglas–Marini elements), that these conditions are also sufficient
to ensure good convergence properties for eigenvalues. In this paper we show
that this is not the case. In particular we present examples of mixed finite
element approximations that satisfy the above properties but exhibit spurious
eigenvalues. Such bad behavior is proved analytically and demonstrated in nu-
merical experiments. We also present additional assumptions (fulfilled by the
commonly used mixed methods already mentioned) which guarantee optimal
error bounds for eigenvalue approximations as well.

1. Introduction

We consider, as a model problem, the eigenvalue problem for Laplace operator

−∆u = λu(1.1)

in a convex polygonal domain Ω with suitable boundary conditions (to fix ideas,
zero Dirichlet boundary conditions). Here and in the following we will always
implicitly assume that eigenvectors (here u) are looked for among nonzero functions
or vectors. We are interested in the approximation of eigenvalue/eigenvector pairs
in the so-called mixed formulation that reads:

find (σ, u, λ) in H(div; Ω)× L2(Ω)×R such that{
(σ, τ ) + b(τ, u) = 0 ∀τ ∈ H(div; Ω),
b(σ, v) = −λ(u, v) ∀v ∈ L2(Ω),

(1.2)

where, as usual, (·, ·) is the inner product in L2(Ω) or in L2(Ω)2 and b(τ , v) =
(div τ , v). Given finite dimensional subspaces Σh and Vh of H(div; Ω) and L2(Ω)
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respectively, we consider the approximate problem

find (σh, uh, λh) in Σh × Vh ×R such that{
(σh, τh) + b(τh, uh) = 0 ∀τh ∈ Σh,
b(σh, vh) = −λh(uh, vh) ∀vh ∈ Vh.

(1.3)

We point out explicitly that the study of the properties of the mixed eigenvalue
problem (1.3) enters as a crucial ingredient in the analysis of more complicated
applied problems, such as fluid-structure interactions (see e.g. [2, 18, 11]) or wave-
guide resonance (see e.g. [3, 19, 5, 6]) where, in general, one cannot approximate
the problem in the easier and more conventional form (1.1).

We assume that the choice of Σh and Vh satisfies the usual stability conditions
for mixed discretizations. These are the inf-sup condition:

there exists β > 0, independent of h, such that

inf
vh∈Vh

sup
τh∈Σh

b(τh, vh)
||τh||H(div;Ω)||vh||L2(Ω)

≥ β,(1.4)

and the ellipticity in the kernel :

there exists α > 0, independent of h, such that
(τ , τ ) ≥ α||τ ||2H(div;Ω) ∀τ ∈ IKh,

(1.5)

where the discrete kernel IKh is defined as

IKh = {τ ∈ Σh such that b(τ , v) = 0 ∀v ∈ Vh}.
One might think (in the spirit of [15]: (3.12–16) and Section 7.a) that the above
conditions are sufficient in order to give good approximation properties for eigen-
value/eigenvector pairs, whenever Σh and Vh are reasonably good approximations
of H(div; Ω) and L2(Ω) respectively. However, this is not the case, as we are going
to show in this paper. The reason for failure is hidden in the definition of the
compact operator whose spectrum has to be approximated (here the inverse of the
Laplace operator) when the mixed formulation is used. To make things clearer, let
us introduce the associated boundary value problem in its usual form and in the
mixed formulation. Therefore, let f be given in L2(Ω), and consider the problem

find u ∈ H1
0 (Ω) such that

−∆u = f in Ω.
(1.6)

The unique solution of this problem defines a linear compact operator T from L2(Ω)
into itself: u = Tf . Consider the same problem in its mixed formulation: now, for a
given f ∈ L2(Ω), we are looking for a pair (σ, u) in H(div; Ω)×L2(Ω) that satisfies{

(σ, τ) + b(τ , u) = 0 ∀τ ∈ H(div; Ω),
b(σ, v) = −(f, v) ∀v ∈ L2(Ω).(1.7)

Clearly, the u part of the mixed formulation is still given by u = Tf , while σ is
just the gradient of u. However, to be precise, we have now another operator (say
TM ) which is acting from L2(Ω) into H(div; Ω)×L2(Ω). This is not a good setting
if we want to look for eigenvalues. Therefore [15], following [14], considers first the
product space H = H(div; Ω)×L2(Ω) and the operator TH from H ′ into H defined
as follows:

given (g, f) in H ′, find (σ, u) in H such that{
(σ, τ) + b(τ , u) = 〈g, τ〉 ∀τ ∈ H(div; Ω),
b(σ, v) = −(f, v) ∀v ∈ L2(Ω).
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ON THE PROBLEM OF SPURIOUS EIGENVALUES 123

Then they consider the cutoff operator (say, F ) from L2(Ω)2 × L2(Ω) into itself,
given by F (g, f) = (0, f), and they are led to a generalized eigenvalue problem of
the type

(σ, u) = λTHF (σ, u).

This is surely correct, but now the operator THF , from H into itself, is not compact
any more, and all the subsequent theory of [15] does not apply. We point out that
the reason for failure does not originate from an inconvenient way of writing the
eigenvalue problem: indeed, the operator TM itself, (mapping f into (σ, u)) is not
compact as an operator from L2(Ω) in H .

However the results of [15] (Section 7.a) are true (see for instance [1]), since
additional properties (besides the inf-sup and the ellipticity in the kernel) hold for
their choice of finite element spaces Σh and Vh, which make the method work.
On the other hand, other reasonable choices of Σh and Vh, although satisfying the
inf-sup (1.4) and the ellipticity in the kernel (1.5) properties, fail miserably when
applied to eigenvalue problems, as we shall prove analytically and demonstrate by
numerical experiments.

An outline of the paper goes as follows. In Section 2 we present an abstract
framework in which the problem can be set and we define in a precise way what is
to be considered as a good convergence property for eigenvalue/eigenvector pairs.

In Section 3 we recall four types of choices for the spaces Σh and Vh: the truly
mixed approach, the Q1 − P0 element on rectangular grids, the P1 − div(P1)
element and the P ∗

1 − Q0 element on criss-cross grids. We show in particular
that the last two elements satisfy both the inf-sup and the ellipticity in the kernel
properties. The same is already well known for the truly mixed approach, while the
Q1 − P0 element is only used as an auxiliary step for studying the others, although,
being a well-known element, it deserves an analysis for itself: in particular we show
that this element, which does not satisfy the usual inf-sup condition for Stokes
problem, does indeed satisfy a sort of inf-sup condition in H(div; Ω) that might be
of some interest in other applications.

Numerical experiments, reported in Section 4, show however that only the truly
mixed approach gives good discrete eigenvalues, while the others exhibit the pres-
ence of spurious ones. We stress the fact that the type of failure exhibited by
approximations like P ∗

1 − Q0 or P1 − div(P1) is, in practice, much more danger-
ous than the type of failure normally exhibited by choices that do not satisfy the
inf-sup condition. Indeed, the latter elements usually have a cloud of spurious eigen-
values that immediately shows the bad quality of the computation. On the other
hand, as will become clearer from the numerical experiments shown in Section 4,
the former elements have just a few, well-isolated spurious eigenvalues that, when
we look at the discrete spectrum, insidiously look like good ones. In Section 5 we
prove analytically that the above elements (with the obvious exception of the truly
mixed ones) must fail when used to approximate eigenvalues, thus confirming the
numerical results of Section 4. Finally, in Section 6, we give some simple sufficient
conditions for having good convergence properties of eigenvalue/eigenvector pairs.
These sufficient conditions include the usual inf-sup condition and the ellipticity
in the kernel plus an additional property regarding the so-called Fortin operator
(see [10]). The truly mixed approach satisfies this last property, so that the theory
again confirms the numerical results of Section 4. More general sufficient conditions
and additional references can be found in [16] and [1].
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2. Setting of the problem

We are interested in the approximation of the following eigenproblem:

find (σ, u, λ) ∈ H(div; Ω)× L2(Ω)×R such that{
(σ, τ) + (div τ , u) = 0 ∀τ ∈ H(div; Ω),
(div σ, v) = −λ(u, v) ∀v ∈ L2(Ω).

(2.1)

Given finite dimensional subspaces Σh ⊂ H(div; Ω) and Vh ⊂ L2(Ω), the discretiza-
tion of (2.1) is

find (σh, uh, λh) ∈ Σh × Vh ×R such that{
(σh, τh) + (div τh, uh) = 0 ∀τh ∈ Σh,
(div σh, vh) = −λh(uh, vh) ∀vh ∈ Vh.

(2.2)

Let T : L2(Ω) → L2(Ω) be the self-adjoint compact operator defined by{
(σ, τ) + (div τ , T f) = 0 ∀τ ∈ H(div; Ω),
(div σ, v) = −(f, v) ∀v ∈ L2(Ω).(2.3)

Then (σ, u, λ) is an eigensolution of problem (2.1) if and only if

λTu = u, σ = ∇u.(2.4)

Hence the eigenvalues λi (i ∈ N) of problem (2.1) are positive. We denote them
by

0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ . . . ,
lim

i→∞
λi = +∞.(2.5)

For each i ∈ N the algebraic multiplicity of λi is one, and Ei is the one-
dimensional eigenspace associated to λi. In L2(Ω) we introduce an orthonormal
basis {ui} such that

Ei = span(ui),
(ui, uj) = δij .

(2.6)

The following mapping will be useful later on. Let m : N → N be the application
which to every N associates the dimension of the space generated by the eigenspaces
of the first N distinct eigenvalues; that is,

m(1) = dim {
⊕

i Ei : λi = λ1} ,
m(N + 1) = m(N) + dim

{⊕
i Ei : λi = λm(N)+1

}
.

(2.7)

Clearly, λm(1), . . . , λm(N) (N ∈ N) will now be the first N distinct eigenvalues
of (2.1).

Let us denote by Th : L2(Ω) → L2(Ω) the discrete counterpart of T , defined by{
(σh, τh) + (div τh, Thf) = 0 ∀τh ∈ Σh,
(div σh, vh) = −(f, vh) ∀vh ∈ Vh.

(2.8)

Then {Th} is a family of self-adjoint compact operators with finite-dimensional
range in L2(Ω). As in the continuous case, (σh, uh, λh) ∈ Σh × Vh × R is an
eigensolution of problem (2.2) if and only if

λhThuh = uh, σh = ∇huh,(2.9)

with ∇h a suitable discretization of ∇.
Let dim Vh = N(h); then Th admits N(h) real positive eigenvalues

λh
1 ≤ · · · ≤ λh

i ≤ · · · ≤ λh
N(h).(2.10)
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The associated discrete eigenfuntions uh
i , i = 1, . . . , N(h), give rise to an or-

thonormal basis in Vh with respect to the scalar product of L2(Ω). Let Eh
i =

span(uh
i ) denote the discrete eigenspace associated to λh

i .
A classical assumption in the theory of spectrum perturbation is the uniform

convergence of the operators, that is,

lim
h→0

||T − Th||L(L2(Ω)) = 0.(2.11)

As a consequence of (2.11), we have

∀ε > 0, ∀N ∈ N ∃h0 > 0 such that ∀h ≤ h0

max
i=1,... ,m(N)

|λi − λh
i | ≤ ε,

δ̂

m(N)⊕
i=1

Ei,

m(N)⊕
i=1

Eh
i

 ≤ ε,

(2.12)

where δ̂(E, F ), for E and F linear subspaces of L2(Ω), represents the gap between
E and F and is defined by

δ̂(E, F ) = max[δ(E, F ), δ(F, E)],
δ(E, F ) = sup

u∈E, ||u||=1

inf
v∈F

||u− v||0.(2.13)

In (2.13) || · ||0 stands for the L2-norm.
We conclude with an additional notation that will be constantly used in the

following. Although the definition of the space Vh ⊂ L2(Ω) will change from one
example of finite element approximation to the next, we shall always denote by the
symbol IPh the L2(Ω)-projection onto Vh, that is,∫

Ω

(v − IPhv)vh dx = 0 ∀v ∈ L2(Ω), ∀vh ∈ Vh.(2.14)

3. Various choices of spaces

In this section we present several possible choices for the spaces Σh ⊂ H(div; Ω)
and Vh ⊂ L2(Ω). For each choice of spaces, we test the validity of the following two
hypotheses:

there exists α > 0, independent of h, such that
(τ , τ ) ≥ α||τ ||2div ∀τ ∈ IKh,

(3.1)

where the discrete kernel IKh is defined as

IKh = {τ ∈ Σh such that (div τ , v) = 0 ∀v ∈ Vh},
and

there exists β > 0, independent of h, such that

inf
vh∈Vh

sup
τh∈Σh

div(τh, vh)
||τh||div||vh||0

≥ β.(3.2)

In (3.1) and (3.2), || · ||div denotes the graph norm in H(div; Ω).
It is well known that the assumptions (3.1) and (3.2) ensure the existence, unique-

ness and stability of the solution of (2.8) (see [8]). We shall see that these hypotheses
are not sufficient in order to have a good mixed approximation of the spectrum for
the Laplace operator.
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3.1. The mixed approach. Let us consider classical approximations of H(div; Ω),
among which there are, for instance, the elements introduced by Raviart–Thomas
(RT), Brezzi–Douglas–Marini (BDM) and Brezzi–Douglas–Fortin–Marini (BDFM).
For a unified presentation we refer to [8]. In this subsection Σh will be one of the
mixed finite element spaces mentioned above. Correspondingly Vh will be the space
div Σh, which contains piecewise polynomials of a certain degree k.

We recall the main properties which are enjoied by the pair (Σh, Vh) and which
turn out to be crucial for the eigenvalue approximation.

The first property concerns the so-called Fortin’s operator Πh, acting from W :=
H(div; Ω) ∩ (Ls(Ω))2 (s > 2 fixed) into Σh. This operator, defined using suitable
degrees of freedom, gives us the commuting diagram

W
div−−−−→ L2(Ω)

Πh

y yIPh

Σh −−−−→
div

Vh

(3.3)

This implies that (3.1) and (3.2) are satisfied (see e.g. [8], p. 131).
The following approximation property holds for 1 ≤ m ≤ k + 1:

||τ −Πhτ ||0 ≤ Chm|τ |m.(3.4)

Let f ∈ L2(Ω). Then, due to the regularity assumptions on Ω, Tf belongs to
H2(Ω). Hence we have (see [8], (IV.1.31))

||Tf − Thf ||0 ≤ Ch(|| ∇Tf ||1 + ||Tf ||1).(3.5)

This last equation means that Th converges uniformly to T , see (2.11).

3.2. The Q1 − P0 element on a rectangular mesh. Let us consider a square
domain Ω and a partition of Ω into N × N macroelements, each made of 2 × 2
squares. As usual K will denote an element (of length h) of the triangulation Th.

We consider the following approximating spaces:

ΣQ = {τh ∈ [C0(Ω)]2 : τh|K ∈ [Q1(K)]2 ∀K ∈ Th},
Vh = {vh : vh|K ∈ P0(K) ∀K ∈ Th}.

(3.6)

This choice of spaces does not satisfy the inf-sup condition (3.2). However, we
prove a modified inf-sup condition involving a mesh dependent norm. This result
will be useful in order to analyze the element of the next subsection.

A local basis of Vh on a macroelement is shown in Figure 1. Notice that the
basis we have chosen is orthogonal.

Let VJP be the subspace of Vh locally generated by vi, i = 1, 2, 3. In the paper
by Johnson and Pitkäranta [13], it has been proved that the spaces ΣQ and VJP

satisfy the inf-sup condition as follows.

Lemma 3.1. There exists a constant C independent of h such that

sup
τh∈ΣQ

(div τh, vh)
||τh||1

≥ C||vh||0(3.7)

for all vh ∈ VJP .
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Figure 1. Basis for Vh on a macroelement of 2× 2 squares

In Lemma 3.1 the space VJP cannot be replaced by Vh. However, if the norm in
H1(Ω) is replaced by a mesh dependent one, then it is possible to verify the inf-sup
condition. We set

||τh||h = (||τh||20 + ||IPh div τh||20)1/2;(3.8)

then the following theorem holds true.

Theorem 3.2. There exists a constant C independent of h such that for every
vh ∈ Vh there exists τh ∈ ΣQ verifying

(div τh, vh) ≥ ||vh||20, ||τh||h ≤ C||vh||0.(3.9)

Proof. We work on macroelements of 2 × 2 squares. Let us split a given vh ∈ Vh

into the sum of vb
h ∈ VJP and vc

h which is locally generated by v4 (see Figure 1), so
that vh = vc

h + vb
h.

Using Lemma 3.1, there exists τ b
h ∈ ΣQ such that

(div τ b
h, vb

h) ≥ ||vb
h||20, ||τ b

h||1 ≤ C1||vb
h||0.(3.10)

The main step of the proof is to construct an element τc
h ∈ ΣQ such that

IPh div τc
h = vc

h, ||τ c
h||0 ≤ C2||vc

h||0.(3.11)

We fix our attention on the row of macroelements lying in the strip Sj =
]0, 2Nh[×]2(j − 1)h, 2jh[. On each macroelement, vc

h is equal to v4 multiplied
by a certain constant. We denote by ci the value of this constant on the ith macro-
element, i = 1, . . . , N . In the row we have considered, we define τ c

h using the 2N
degrees of freedom drawn in Figure 2. At all other nodes it is set equal to zero.
Since vc

h is piecewise constant, an explicit computation shows that τ c
h can be defined
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Figure 2. Degrees of freedom for a row of checkerboards

as follows, in order to have (IPh div τc
h)|K = (vc

h)|K for each square K ⊂ Sj :

τ c
h((2i− 1)h, (2j − 1)h) = 2h(0,−ci − 2

i−1∑
`=1

c`),

τ c
h(2ih, (2j − 1)h) = 2h(0, 2

i∑
`=1

c`).

The L2(Ω)-norm in Sj of vc
h and τc

h can be evaluated as follows:

||vc
h||20,Sj

= 4h2
N∑

i=1

c2
i ,

||τ c
h||20,Sj

≤ Ch4
N∑

i=1

(
i∑

`=1

c`

)2

≤ Ch4
N∑

i=1

(
i∑

`=1

1

)(
i∑

`=1

c2
`

)
≤ Ch2

N∑
i=1

c2
i .

Then we have

||τc
h||20,Sj

≤ C||vc
h||20,Sj

,(3.12)

which implies the corresponding bound in the whole domain (3.11).
We are now in position to conclude the proof. Let γ = (1 + C2

1 )/2, where C1 is
defined in (3.10). Taking τh = γτc

h +τ b
h and noting that (div τ c

h, vb
h) = (vc

h, vb
h) = 0,

we obtain

(div τh, vh) = γ(div τc
h, vc

h) + (div τb
h, vb

h) + (div τb
h, vc

h)

≥ γ||vc
h||20 + ||vb

h||20 − || div τb
h||0||vc

h||0 ≥ γ||vc
h||20 + ||vb

h||20 − C1||vb
h||0||vc

h||0

≥
(

γ − C2
1

2

)
||vc

h||20 +
1
2
||vb

h||20 ≥
1
2
||vh||20,

||τh||2h ≤ γ||τ c
h||20 + γ||IPh div τc

h||20 + ||τ b
h||21 ≤ C(||vc

h||20 + ||vb
h||20) = C||vh||20.
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Figure 3. A criss-cross macroelement

Remark 3.3. Theorem 3.2 does not imply the inf-sup condition (3.2), since in (3.9)
the mesh dependent norm || · ||h is used instead of the norm of H(div; Ω). The-
orem 3.2 is however crucial for the analysis of the element presented in the next
subsection.

3.3. The P1−div(P1) element on a criss-cross mesh. It is well known that the
P1 − P0 element does not satisfy the inf-sup condition (3.2) on a criss-cross mesh
(see, for instance, [8]). Indeed there exists a piecewise constant function which
is orthogonal to the divergence of every continuous piecewise linear vector fields.
Hence we define Vh to be the space of the divergences of all continuous piecewise
linear vector fields.

For this element we are able to prove both the ellipticity in the kernel (3.1) and
the inf-sup (3.2) conditions.

Let us consider a square domain Ω, which is split into 2N × 2N squares; each
of them is then partitioned into four triangles by its diagonals (see Figure 3). We
denote by Q ∈ Qh the squares and by T ∈ Th the triangles.

We introduce the following finite element spaces:

Σh = {τh ∈ [C0(Ω)]2 : τh|T ∈ [P1(T )]2 ∀T ∈ Th},
Vh = div(Σh).(3.13)

In the following theorem we observe that our choice (3.13) satisfies (3.1).

Theorem 3.4. The spaces Σh and Vh defined in (3.13) satisfy the ellipticity in the
kernel property (3.1).

Proof. The discrete kernel IKh, due to the definition of Vh, is contained in the
continuous kernel.

In the following lemma, we characterize the space Vh.

Lemma 3.5. The elements of Vh are piecewise constants and are characterized by
the following relation between the values on each triangle in a criss-cross square
(see Figure 4):

a + c = b + d.(3.14)
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Figure 4. Piecewise constants on a criss-cross square

Figure 5. The divergence of B

Proof. In Figures 5 and 6 the divergence of some basis function in Σh are rep-
resented. By linearity the result follows immediately for the divergence of every
vector in Σh.

We set

Vc = {v ∈ Vh : v|Q is constant ∀Q ∈ Qh},(3.15)

Vb = {v ∈ Vh :
∫

Q

v = 0 ∀Q ∈ Qh}.(3.16)

It is immediate to see that Vb, in each square Q, has dimension two, a basis
being given by the two modes on the right-hand side of Figure 5.
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Figure 6. The divergence of an element in Σh

Lemma 3.6. The following orthogonal decomposition holds true:

Vh = Vc ⊕ Vb, with Vc⊥Vb.(3.17)

Proof. Given v ∈ Vh, let us consider the element vc ∈ Vc such that∫
Q

vc =
∫

Q

v ∀Q ∈ Qh.(3.18)

Then vb = v − vc is an element of Vb. It is obvious that with this construction the
decomposition is unique. Moreover,∫

Ω

vcvb = 0.(3.19)

We set

B = span{τ ∈ Σh : supp τ ⊆ Q, Q ∈ Qh}.(3.20)

The divergence of a local basis in B is represented in Figure 5. The inclusion
div B ⊆ Vb is obvious.

The following lemma is also obvious from Figure 5 and a simple scaling argument.

Lemma 3.7. The divergence operator is injective and surjective between B and Vb.
That is, for each vb ∈ Vb there exists a unique b ∈ B which satisfies

div b = vb.(3.21)

Moreover, there exists C independent of h such that

||b||0 ≤ Ch||vb||0.(3.22)

We set

Σc = {τ ∈ Σh : div τ ∈ Vc}.(3.23)

Lemma 3.8. The following decomposition holds true:

Σh = Σc ⊕B.(3.24)

Moreover, the following orthogonalities are satisfied:

(div τc, vb) = 0 ∀τ c ∈ Σc, ∀vb ∈ Vb,
(div b, vc) = 0 ∀b ∈ B, ∀vc ∈ Vc.

(3.25)
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Proof. Let us consider τ ∈ Σh. By definition of Vh and Lemma 3.6 there exist
vc ∈ Vc and vb ∈ Vb such that div τ = vc + vb. Let b be the unique element of B
such that div b = vb (see Lemma 3.7). We define τ c = τ − b. Then div τ c = vc,
and hence τ c ∈ Σc. The decomposition is unique by construction. Finally, the
orthogonalities (3.25) are straightforward.

The following lemma will be useful in order to apply the results of the previous
subsection.

Lemma 3.9. Let ΣQ be the space defined in (3.6) (that is, locally Q1). Then for
each ξ

h
∈ ΣQ there exists τh ∈ Σc satisfying

(div τh, v) = (div ξ
h
, v) ∀v ∈ Vc,(3.26)

||τh||r ≤ C||ξ
h
||r (r = 0, 1),(3.27)

with C independent of h. Moreover, τh can be chosen so that it attains the same
values as ξ

h
at all nodes of Qh.

Proof. For a τh ∈ Σc equation (3.26) means that div τh is the L2(Ω)–projection
of div ξ

h
onto Vc. Let Q be a square in Qh (see Figure 3). Let us denote by ϕi,

i = 1, . . . , 4, the piecewise linear basis functions associated to the vertices P1, P2,
P3 and P4 of Q and by ϕ5 the one associated to the center. On Q, τh ∈ Σh can be
represented as follows:

τh =
5∑

i=1

(ui, vi)ϕi.(3.28)

We take

(ui, vi) = ξ
h
(Pi), i = 1, . . . , 4.(3.29)

Whatever the value of (u5, v5) may be, the mean value of div τh on Q is equal to
the mean value of div ξ

h
, thanks to the Gauss theorem. Hence condition (3.26)

is satisfied. We have only to fix the value of τh in P5 in order to achieve that it
belongs to Σc. A straightforward calculation leads to

u5 = (u1 − v1 + u2 + v2 + u3 − v3 + u4 + v4)/4,
v5 = (−u1 + v1 + u2 + v2 − u3 + v3 + u4 + v4)/4.

(3.30)

A scaling argument gives the bounds (3.27).

We state the main result of this section.

Theorem 3.10. The following inf-sup condition holds true:

inf
v∈Vh

sup
τ∈Σh

(div τ, v)
||τ ||div||v||0

≥ β0 > 0, ∀h > 0.(3.31)

Proof. Given vh ∈ Vh, let vc ∈ Vc and vb ∈ Vb be such that vh = vc+vb. Theorem 3.2
and Lemma 3.7 imply the existence of ξ

h
∈ ΣQ and b ∈ B, respectively, satisfying

(div ξ
h
, vc) ≥ ||vc||20, (div b, vb) = ||vb||20,

||ξ
h
||div ≤ C1||vc||0, ||b||div ≤ C2h||vb||0.

(3.32)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE PROBLEM OF SPURIOUS EIGENVALUES 133

Using Lemma 3.9, there exists τc ∈ Σc such that

(div τ c, vc) = (div ξ
h
, vc),

||τc||H(div;Ω) ≤ C||ξ
h
||H(div;Ω).

(3.33)

It is not difficult to verify that, defining τh = τ c + b, thanks to Lemma 3.8, one
has

(div τh, vh) ≥ ||vh||20, ||τh||div ≤ C||vh||0.(3.34)

Remark 3.11. Inequality (3.31) is optimal; in fact it cannot be improved, since for
each h there exists ṽh ∈ Vh such that

(div τh, ṽh) ≤ C||τh||0||ṽh||0 ∀τh ∈ Σh.(3.35)

This inequality was proved by Qin in his Ph.D. dissertation [17], using an idea of
Boland and Nicolaides [7] (see also [12]). In particular, the element ṽh is a properly
chosen linear combination of checkerboards on the macroelements.

Remark 3.12. In the proof of Theorem 3.2, the normal component of vectors in
Σh has not been used, while we used the tangential component on the boundary
(see Figure 2). Actually the proof could be completed without using any boundary
degrees of freedom for the space Σh. It turns out that the spaces Σh ∩H1

0 (Ω)2 and
div(Σh ∩H1

0 (Ω)2) satisfy the inf-sup condition (3.2).

3.4. The P ∗
1 − Q0 element on a criss-cross mesh. Let us consider again the

P1−div(P1) element of the previous section. During the analysis of this element, we
introduced the subspace Σc (see (3.23) and (3.15)) made, essentially, of P1 vectors
(on a criss-cross grid) where the value at the “cross node” is adjusted in order
to have a divergence which is constant in each square. This is what we call P ∗

1 .
Hence we use here Σc ⊂ H(div; Ω) for approximating the vectors and Vc ⊂ L2(Ω)
for approximating the scalars (we always refer to the definitions (3.23) and (3.15)).
From Theorem 3.2 and Lemma 3.9 we easily obtain (cf. also (3.33)) that this choice
satisfies the inf-sup condition (3.2). Moreover, as div(Σc) = Vc, the ellipticity in
the kernel property (3.1) will also hold trivially.

4. Numerical results

Let Ω be the square ]0, π[×]0, π[. Table 1 shows the first frequencies obtained us-
ing some of the mixed elements discussed in the previous section: Raviart–Thomas
of lowest degree (RT), P1 − div P1 (P1) and P ∗

1 −Q0 (P1∗). For all the elements,
the 16× 16 criss-cross mesh has been used.

We point out that only the RT element gives satisfactory results. In the other
two elements spurious modes appear, which neither converge to any continuous
eigenvalue nor tend to zero or to infinity.

We describe this behavior more precisely in Table 2 for the P1 element. We
can observe that the fourth numerical eigenvalue seems to converge to 6, which
does not belong to the spectrum of the continuous problem. The P1 and P1∗

elements, even if they satisfy both conditions (3.1) and (3.2), give poor results for
the approximation of problem (2.1). The presence of the spurious eigenvalues can
be motivated by the fact that (3.1) and (3.2) are not sufficient conditions to ensure
that the eigensolutions are “well approximated”. In the next section we state the
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Table 1. Comparison of frequencies for different approximations

mode exact RT P1 P1∗

(1,1) 2.00000 1.99786 2.00428 2.01286
(2,1) 5.00000 4.99382 5.02674 5.08056
(1,2) 5.00000 4.99382 5.02674 5.08056

5.98074 6.03707
(2,2) 8.00000 7.96568 8.06845 8.20593
(3,1) 10.0000 9.99754 10.1067 10.3240
(1,3) 10.0000 9.99754 10.1067 10.3240
(3,2) 13.0000 12.9292 13.1804 13.5448
(2,3) 13.0000 12.9292 13.1804 13.5448

14.7166 15.0528
14.7166 15.0528

(4,1) 17.0000 17.0241 17.3073 17.9431
(1,4) 17.0000 17.0241 17.3073 17.9431
(3,3) 18.0000 17.8258 18.3456 19.0411
(4,2) 20.0000 19.8995 20.4254 21.2951
(2,4) 20.0000 19.8995 20.4254 21.2951

Table 2. Nodal approximation on criss-cross mesh

exact computed

2.00000 2.01711 2.00761 2.00428 2.00274
5.00000 5.10637 5.04748 5.02674 5.01712
5.00000 5.10637 5.04748 5.02674 5.01712

5.92302 5.96578 5.98074 5.98767
8.00000 8.27150 8.12152 8.06845 8.04383
10.0000 10.4196 10.1890 10.1067 10.0684
10.0000 10.4196 10.1890 10.1067 10.0684
13.0000 13.7043 13.3195 13.1804 13.1156
13.0000 13.7043 13.3195 13.1804 13.1156

13.9669 14.5093 14.7166 14.8163
13.9669 14.5093 14.7166 14.8163

17.0000 18.1841 17.5423 17.3073 17.1972
17.0000 18.1841 17.5423 17.3073 17.1972

mesh 8× 8 12× 12 16× 16 20× 20

meaning of “well-approximated eigensolutions” and we give a necessary condition
for this property.

Remark 4.1. Although the Q1 − P0 element does not satisfy the inf-sup condition,
the eigenvalues computed by this method behave like those of the P1 and P1∗
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methods. In this case the first spurious eigenvalue converges to 18 (actually, 18 is
a simple eigenvalue of the Dirichlet problem in the square, while in the numerical
computation it is approximated by two distinct modes).

For the Neumann problem the following explicit formula of the numerical eigen-
values computed by the Q1 − P0 element is available (see [4]):

λmn
h = (4/h2)

sin2(mh
2 ) + sin2(nh

2 )− 2 sin2(mh
2 ) sin2(nh

2 )
1 − (2/3)(sin2(mh

2 ) + sin2(nh
2 )) + (4/9) sin2(mh

2 ) sin2(nh
2 )

,(4.1)

for 0 ≤ m, n ≤ N − 1, with m + n 6= 0 and h = π/N .
It is easy to verify that for m, n fixed limh→0 λmn

h = m2 + n2 = λmn, and hence
λ3 3

h → 18; on the other hand we also have by (4.1) limh→0 λN−1 N−1
h = 18.

5. On the convergence of eigenvalues and eigenvectors

In this section, using the notation introduced in Section 2, we show that prop-
erty (2.12) is a sufficient condition for the uniform convergence (2.11).

Theorem 5.1. Condition (2.12) implies the uniform convergence (2.11).

Proof. Let f ∈ L2(Ω) be such that ||f ||0 = 1. Since the eigenfunctions ui, for
i ∈ N, are an orthonormal basis in L2(Ω), we have

f =
∞∑

i=1

αiui, where αi = (f, ui),(5.1)

and

||f ||20 =
∞∑

i=1

α2
i = 1.(5.2)

Let IPh be the L2(Ω)-projection operator defined in (2.14); then we can write

IPhf =
N(h)∑
i=1

αh
i uh

i , where αh
i = (f, uh

i ),(5.3)

and

||IPhf ||20 =
N(h)∑
i=1

(αh
i )2 ≤ ||f ||20 = 1.(5.4)

Due to the definition of Th, we have Thf = ThIPhf , so that we obtain

Tf − Thf = Tf − ThIPhf

= T

( ∞∑
i=1

αiui

)
− Th

N(h)∑
i=1

αh
i uh

i


=

∞∑
i=1

αiTui −
N(h)∑
i=1

αh
i Thuh

i

=
∞∑

i=1

1
λi

αiui −
N(h)∑
i=1

αh
i

1
λh

i

uh
i .

(5.5)
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For every N ∈ N we set M = m(N) as defined in (2.7). Then we can write

Tf − Thf =
M∑
i=1

1
λi

(αiui − αh
i uh

i ) +
M∑
i=1

(
1
λi
− 1

λh
i

)
αh

i uh
i

−
N(h)∑

i=M+1

1
λh

i

αh
i uh

i +
∞∑

i=M+1

1
λi

αiui.

(5.6)

Now fix a positive ε. The last term is bounded in norm by 1/λM+1 and is therefore
smaller than ε for M big enough. The third term has a norm smaller than or equal
to 1/λh

M+1. For M fixed and h small enough, it will also be smaller than ε. The
same is true for the first two terms: due to (2.12), for M fixed each one of them
will have norm smaller than ε for h small enough, and the proof is complete.

Let us conclude this section by showing that (2.11) is false for the third choice
of spaces presented in the previous section.

Theorem 5.2. Let Σh and Vh be defined as in (3.13). Then the sequence {Th}
introduced in (2.8) does not converge to T in the norm of L(L2(Ω)).

Proof. In order to prove that (2.11) is false, we construct a sequence {v∗h} ⊂ Vh

such that
||v∗h||0 = 1 ∀h > 0,
||Tv∗h − Thv∗h||0 6→ 0 as h → 0.

(5.7)

We take v∗h = ṽh/||ṽh||0, where ṽh is defined in Remark 3.11. Hence (3.35)
reduces to

|(div τh, v∗h)| ≤ C||τh||0 ∀τh ∈ Σh.(5.8)

Since ||v∗h||0 = 1 and v∗h has zero mean-value in each macroelement, the sequence
{v∗h} converges weakly to zero in L2(Ω). Owing to the compactness of T , it follows
that

Tv∗h → 0 strongly in L2(Ω).(5.9)

Consider the solution (σh, uh) of the problem{
(σh, τh) + (div τh, uh) = 0 ∀τh ∈ Σh,
(div σh, vh) = −(v∗h, vh) ∀vh ∈ Vh.

(5.10)

We observe that by definition uh = Thv∗h. Our aim is to prove that ||uh||0 6→ 0.
From the second equation of (5.10) and the first of (5.7) we obtain

|(div σh, uh)| = |(v∗h, uh)| ≤ ||uh||0,(5.11)

and from the first equation of (5.10)

|(div σh, uh)| = ||σh||20.(5.12)

Using (5.8) and then the second equation of (5.10), we get

||σh||0 ≥
1
C
|(div σh, v∗h)| = 1

C
(v∗h, v∗h) =

1
C

.(5.13)

Finally, putting together (5.11), (5.12) and (5.13), we obtain

||uh||0 ≥
1

C2
.(5.14)
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This concludes the proof of (5.7), because Tv∗h tends to zero as h → 0 while
uh = Thv∗h does not.

Remark 5.3. A similar proof shows that (2.11) does not hold for the Q1−P0 element
of subsection 3.2, nor for the P ∗

1 −Q0 element of subsection 3.4. On the other hand,
from (3.5) it follows that (2.11) holds for the mixed approach of subsection 3.1.

6. Error estimates

The aim of this section is to recall, for convenience of the reader, the proof of the
good behavior of the mixed approach described in subsection 3.1 when applied to
problem (2.1). In particular we shall prove the uniform convergence (2.11), together
with the error estimates for eigenvalues and eigenvectors for a general choice of
spaces Σh and Vh satisfying some suitable abstract conditions. Results of this type
are well known. For instance, the specific case of Raviart–Thomas elements can be
found in [1], together with an abstract framework and several references.

We introduce the operator S : L2(Ω) → H(div; Ω) given by{
(Sf, τ) + (div τ , u) = 0 ∀τ ∈ H(div; Ω),
(div Sf, v) = −(f, v) ∀v ∈ L2(Ω),(6.1)

and Σ0 = S(L2(Ω)), which due to the regularity assumption on Ω satisfies

Σ0 ⊂ H1(Ω)2.(6.2)

Let us recall the so-called Fortin’s operator (see [10]) Πh : Σ0 → Σh:

(div(σ −Πhσ), vh) = 0 ∀vh ∈ Vh,
||Πhσ||div ≤ C||σ||1.

(6.3)

Proposition 6.1. Let f ∈ L2(Ω) be given. Suppose the existence of Πh : Σ0 → Σh

satisfying (6.3). Assume moreover the ellipticity in the kernel property (3.1). Then,
using the notation of (2.3) and (2.8), the following estimates hold:

||σ − σh||0 ≤ C
(
||σ −Πhσ||0 + 1√

α
infvh∈Vh

||Tf − vh||0
)

,

||Tf − Thf ||0 ≤ C (infvh∈Vh
||Tf − vh||0 + ||σ − σh||0) .

(6.4)

Proof. The result is essentially known (see e.g. [9, 12, 1, 8] for results of this type).
However, for convenience of the reader, we give the idea of the proof. In order to
estimate the difference ||IPhTf − Thf ||0 we can use the inf-sup condition which is
implied by the existence of Πh:

||IPhTf − Thf ||0 ≤ C sup
τ∈Σh

(IPhTf − Thf, div τ )
||τ ||div

≤ C sup
τ∈Σh

(IPhTf − Tf, div τ) + (Tf − Thf, div τ)
||τ ||div

≤ C||IPhTf − Tf ||0 + sup
τ∈Σh

−(σ − σh, τ )
||τ ||div

≤ C||IPhTf − Tf ||0 + ||σ − σh||0.

(6.5)

The second estimate of (6.4) is then obtained by the triangle inequality. Finally,
the first one can be easily deduced using again the triangle inequality, the error
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equations and the ellipticity in the kernel property (3.1):

||Πhσ − σh||20 = (Πhσ − σ, Πhσ − σh) + (σ − σh, Πhσ − σh)
= (Πhσ − σ, Πhσ − σh)− (div(Πhσ − σh), T f − IPhTf)
≤ ||Πhσ − σh||0||σ −Πhσ||0 + || div(Πhσ − σh)||0||Tf − IPhTf ||0
≤ ||Πhσ − σh||0

(
||σ −Πhσ||0 + 1√

α
||Tf − IPhTf ||0

)
.

(6.6)

Remark 6.1. It is well known that the existence of the operator Πh verifying (6.3)
together with (3.1) implies the following error estimate for problem (2.8):

||σ − σh||div ≤ C

(
inf

vh∈Vh

||u− vh||0 + inf
τh∈Σh

||σ − τh||div

)
.(6.7)

Actually, estimates (6.4) and (6.7) are not enough to ensure the uniform conver-
gence (2.11). This has been proved with the counterexample given in the previous
section. The P1 − div P1 element and the P ∗

1 − Q0 element on a criss-cross mesh
satisfy both (3.1) and (3.2). Moreover, it is not difficult to show the existence of
an operator Πh which satisfies Fortin’s hypothesis (6.3). However, they do not
satisfy the uniform convergence (2.11); hence they are not well suited for the ap-
proximation of eigenproblem (2.1), as has been proved in the previous section and
numerically demonstrated in Section 4.

From Proposition 6.1 it follows that it will be sufficient to add the following
hypothesis for the uniform convergence (2.11):

||I −Πh||L(Σ0,L2(Ω)2) → 0.(6.8)

The following theorem gives the error estimates for eigenproblem (2.2).

Theorem 6.2. Assume that there exists a linear operator Πh : Σ0 → Σh which
satisfies Fortin’s conditions (6.3) and (6.8).

Assume also the ellipticity in the kernel property (3.1).
For every N ∈ N define moreover the following function ρN :]0, 1] → R :

ρN (h) = sup
u∈⊕m(N)

i=1 Ei

(
inf

vh∈Vh

||u− vh||0 + || ∇u−Πh∇u||0
)

.(6.9)

Then problem (2.2) is well posed and the following error estimates hold true with
C independent of h:

m(N)∑
i=1

|λi − λh
i | ≤ C(ρN (h))2,

δ̂

m(N)⊕
i=1

Ei,

m(N)⊕
i=1

Eh
i

 ≤ CρN (h).

(6.10)
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Proof. The proof is an immediate consequence of estimate (6.4) of Proposition 6.1,
the definition (6.9) of ρN and classical results on eigenvalues approximation (see
[15], (3.17), (3.18) for the derivation of estimates (6.10); see also the references
therein).

Remark 6.3. This last theorem implies, in particular, that the mixed spaces recalled
in Section 3 give good results for the approximation of problem (2.1). For instance,
when using the RT elements of lowest degree it is well known that for N fixed one
has ρN (h) = O(h) (this is also easy to check using (3.4) and (6.9)).
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