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Abstract
We propose an algorithm to find a starting point for iterative methods. Numerical
experiments show empirically that the algorithm provides starting points for different
iterative methods (like Newton method and its variants) with low computational cost.
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1 Introduction

Let f : Rm → R
m be a nonlinear mapping and � an iteration function with whose

help we try to solve the nonlinear equation f (x) = 0, using the iterative scheme
xn+1 = �(xn). This means that the equation f (x) = 0 is equivalent to the fixed
point problem x = �(x). The aim is to provide a good starting point x0, usually
sufficiently close to the solution. In this paper, we propose a new algorithm to find a
starting point for the considered (Picard) iteration, which is experimentally verified.

The convergence of the iterative methods for various classes of operators was
already investigated from early decades (see, for instance [1]). To find a suitable
starting point for iterative methods, or to compute the convergence ball, numerous
results were obtained especially for the Newton method and its variants. Several
methods were developed to find the starting points or to localize the fixed points,
such as the generalized bisection method [2, 3], cell exclusion [4], interval comput-
ing [5], homotopy continuation method [6], and random search [7]. This problem is
still studied extensively and specialized methods are proposed. However “... effec-
tive, computable estimates for convergence radii are rarely available” [8] (1975), “...
a priori knowledge about the radius of convergence of the local iterative procedure
to be used is unknown, in general” [4] (1996). Similar remarks were made in more
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recent papers: “... no estimate for the size of an attraction ball is known” [9] (2009),
“The location of starting approximations, from which the iterative methods converge
to a solution of the equation, is a difficult problem to solve” [10] (2015).

Let �k be the k iterate of �, d�k(x) the derivative (Jacobian) of �k(x) in the point
x and �(d�k(x)) the spectral radius of d�k(x). The proposed algorithm is based on
the following two facts:

1. Let p be a solution of the equation f (x) = 0 (or a fixed point of �) and R a
region around p. If the numerical sequence {�(df k(p))} is strictly decreasing,
then the set sequence Ck = {x : x ∈ R, �(df k(x)) < 1} is relatively increasing
and tends to a limit set C (see Section 3, Experiment 1).

2. The limit set C is the convergence domain (attraction basin) of the Picard
iteration for �.

Studying the sequence of sets Ck was inspired by [11] where the author formulated
the following problem: In which conditions do we get that

�(df (x)) < 1, ∀x ∈ � ⇒ �(df k(x)) < 1, ∀x ∈ �, k ∈ N
∗?

In the present study, we experimentally investigate the characteristics of the pro-
posed algorithm from the computational effort point of view. As the computational
effort is determined by the derivative of �k (for large values of k the computation
of d�k(x) is exceedingly expensive, both symbolically and numerically) and by the
number of net points n, we are concerned with the influence of k and n on the cost
for computing the set Ck . In fact, we try to answer to the following question: How
should the pair k, n be chosen such that Ck �= ∅?

2 The algorithm

The algorithm has the following three main steps:

1. Compute the iterates of � for some k, �k;
2. Compute the derivative (Jacobian) d�k(x) of �k on some net of points;
3. Find the set of points for which �(d�k(x)) < 1;

In Fig. 1 is shown the algorithm.
As, presumptively, the set Ck is close to the attraction basin, any point in this set

can be a starting point for the considered iteration.
The net of points on which �(d�k(x)) should be computed (to find those points

which satisfies �(d�k(x)) < 1) is usually inside of a given n-dimensional region.
The attempt to use a brute force approach, that is going through all points of a uniform
net, leads to a high computational cost. For mappings with moderate dimensions, this
computation is not very computationally challenging, but for larger dimensions, it
can become very expensive.

To implement the algorithm on a digital computer, a number of computational
issues must be addressed. The following three seems to be the most important: the
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Fig. 1 The algorithm to
compute the set Ck

value of k, the region in which the starting points are searched, and the net of points.
In Section 3, concerning the numerical examples, we use k = 0, 1, 2, a cube centered
in a plausible point on the bissectrice of coordinate axes, and a net of points given by
a function Random−V ector(m, a, b), which generates a vector with m components
between a and b. The routine Random − V ector is called in the main loop of the
algorithm (see Fig. 1), and a net with n points is obtained in the considered region.
From this net of points we keep the points inside of Ck , which presumptively are in
the attraction basin.

3 Numerical experiments

To emphasize the possibility of finding starting points with the proposed algorithm,
we performed numerical experiments for different iterative methods and various
mappings in several variables. The general conclusion is that the proposed algorithm
gives starting points with relative low computational effort for mappings of medium
dimension, m ≤ 100. It is worth noticing that the algorithm works well for small
values of k (even for k = 0), which reduces to a great extent the computational effort.

3.1 Experiment 1

This experiment is devoted to validate the properties of the sequence Ck . After
accomplishing a significant number of numerical experiments, we conclude that
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Fig. 2 The sets C0, C1, C12 and the attraction basin for f1

these properties hold if �(df k(p)) < 1, k = 0, 1, .... Here are two examples of
executed experiments.

Example 1 The Picard iteration (successive approximation, � = f1) and the
mapping:

f1(x) =
{

0.3sin(x1) + x1x2

x3
1 − 0.5x2

}
.

Note that p = (0, 0)T is the fixed point of � = f1. In Fig. 2 are depicted the
sets C0, C1, C12 and the attraction basin B. It can be seen that C0 ∩ B �= ∅ and
C1 ∩B �= ∅; furthermore, a significant subset of C0, C1 also belongs to the attraction
basin B. Therefore, we can expect that in both sets C0 and C1, there exist starting
points.

The numerical sequence {�(df k(p))} is 0.5, 0.25, ..., 1.22 × 10−4, ....

Example 2 The Picard iteration (successive approximation) and the mapping:

f2(x) =
{

0.2x1 + x2
2

x1x2 − cos(x2) + 1

}

Note again that p = (0, 0)T is the fixed point of � = f2. In Fig. 3 are depicted the
sets C0, C1, C12 for function f2.

The numerical sequence {�(df k(p))} is 0.2, 0.04, ..., 8.19 × 10−10, .... For more
details on the behavior of the sequence {�(df k(p))}, see the paper [12].

Fig. 3 The sets C0, C1, C12 and the attraction basin for f2
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If the condition of the numerical sequence �(d�k(p)) is not satisfied, then the
two properties of Ck do not hold. For example, in the case of function f (x, y) =
(x−sin(x), x2+0.5y), �(df k(p)) = 1, k = 0, 1, ..., the sequence {Ck} is decreasing
and tends to the empty set.

Remark 1 The proposed algorithm is based on the properties of the sequence of sets
Ck; in our investigation these properties were observed and studied by numerical
experiments, which can lead to misleading conclusions. But in this case, by taking
into account the shape of the attraction basin, the identity between the limit set of Ck

(or even the set Ck for low values of k) and the attraction basin, does not seem to be
accidental.

3.2 Experiment 2

The classical Newton method (�(x) = x − df (x)−1f (x)) and the mapping:

f (x) =
⎧⎨
⎩

0.9x1 + 0.2x2x
3
3

x3
1x3 − 0.2x2

0.2x3
2 + 0.1x3

⎫⎬
⎭ ,

This experiment has the purpose to show the influence of k and n on the number rk
of points in the set Ck .

In Fig. 4, the variation of rk is presented for some particular values of k and n.
It can be seen that the number of points in Ck increases when k or n is augmented.

This means that if Ck = ∅, then the values of k and n should be augmented, and the
attempt repeated.

One remarkable fact is that rk �= 0 even for low values of k and n, and so, the
points given by the algorithm can be taken as starting points. Note also that rk has
a moderate increase when k and n are getting larger. For example, in the case of
considered mapping and for k = 1, n = 5, the algorithm gives the following three
starting points (0.651, -0.030, -0.013), (0.037, 0.753, 0.425), (0.989, -0.480, 0.211).

Fig. 4 The variation of rk
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Remark 2 The algorithm searches for a starting point in an n-dimensional cube with
side size 2a. If the algorithm does not find starting points, it means that inside this
cube, the equation f (x) = 0 has no solutions.

3.3 Experiment 3

The parallel lines method and the function from [13], f (x) = (f1(x), ..., fm(x)),

fi(x) = xi − 1

2m

⎛
⎝ m∑

j=1

x3
j + i

⎞
⎠ , i = 1, ..., m.

Recall that the parallel lines method is an iterative process of the form

xn+1 = xn − αf (xn),

where α is a positive real constant (in the term of iteration function,�(x)=x−αf (x)).
The sequence {xn} generated by this method converges to a solution p of the equation
f (x)=0 if 〈f ′(p)x, x〉 ≥ ‖x‖2, ∀x ∈ D and α satisfies α < {1, ‖f ′(p) − I‖−2.

We search for the set C0 = {x : �(f ′(x) − I ) < 1} inside the cube D =
[0, a]m, 0 < a < 1. Presumptively, the points in C0 are starting points for the parallel
lines method. The results are satisfactory. For example, if m = 5, a = 0.6, n = 10
the algorithm found 10 points in C0, which are all starting points; if m = 5, a =
1, n = 10, the algorithm found three points in C0; if m = 30, a = 0.6, n = 200,
then C0 contains a few number of points, 1–3. It is worth noticing that the proposed
algorithm is not very computationally expensive, even for medium large m.

4 Conclusions

In this paper we propose an experimentally verified algorithm that finds the starting
point for the considered (Picard) iteration. It is shown that the algorithm gives the
starting points for various iterative methods with low computational effort. Presump-
tively, if the algorithm does not give any starting point it means that the considered
n-dimensional region does not contain solutions of the equation f (x) = 0. If repeat-
edly Ck = ∅ for relatively high values of k and n, it can mean that equation F(x) = 0
does not have solutions in the considered region.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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