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On the Processing of Very High-Resolution

Spaceborne SAR Data
Pau Prats-Iraola, Senior Member, IEEE, Rolf Scheiber, Marc Rodriguez-Cassola, Josef Mittermayer,

Steffen Wollstadt, Francesco De Zan, Benjamin Bräutigam, Marco Schwerdt, Andreas Reigber, Senior

Member, IEEE, Alberto Moreira, Fellow Member, IEEE

Abstract—This paper addresses several important aspects that
need to be considered for the processing of spaceborne SAR
data with resolutions in the decimeter range. In particular,
it will be shown how the motion of the satellite during the
transmission/reception of the chirp signal and the effect of the
troposphere deteriorate the impulse response function if not
properly considered. Further aspects that have been investigated
include the curved orbit, the array pattern for electronically
steered antennas, and several considerations within the process-
ing itself. For each aspect a solution is proposed, and the complete
focusing methodology is expounded and validated using simulated
point targets and staring spotlight data acquired by TerraSAR-X
with 16 cm azimuth resolution and 300 MHz range bandwidth.

Index Terms—Synthetic aperture radar (SAR), Spotlight SAR,
SAR processing, stop-and-go approximation, troposphere.

I. INTRODUCTION

Spaceborne SAR processing is already an established topic.

Many efficient solutions have been proposed over the last

decades for every imaging mode, be it stripmap, spotlight,

ScanSAR or TOPS (Terrain Observation by Progressive

Scans). However, the assumptions of some of these algorithms

start to be invalid depending on the acquisition geometry,

especially in terms of the image resolution. While airborne

SAR processors achieve nowadays resolutions in the decimeter

range, the same approaches do not perform perfectly in a low

Earth orbit (LEO) scenario, mainly due to the much greater

sensor velocity and the larger distances involved. Furthermore,

when getting close to decimeter resolutions several effects

appear, which do not show up in an airborne scenario and

must be taken into account to achieve a satisfactory focusing

performance.

In order to design efficient processors that overcome these

effects it is of great help to have real data available, which

in the current case are provided by the TerraSAR-X (TSX)

satellite. The TerraSAR-X mission represents one of the

most successful high-resolution spaceborne SAR missions up

to date, not only because of the impressive geometric and

radiometric accuracy of the calibrated products [1], [2], but
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also because the TSX satellite has become the perfect test-

bed for future SAR mission concepts thanks to its flexible

commanding and operation. TSX has demonstrated for the first

time in space several innovative modes like the TOPS mode

[3]–[5], spaceborne bistatic imaging (together with its twin

satellite, TanDEM-X) [6], bidirectional SAR imaging [7], or

digital beamforming [8]. One of the last milestones achieved

with the TSX satellite has been the acquisition of staring

spotlight (ST) data. By exploiting the maximum azimuth

steering capability of the sensor, it is possible to achieve a

steering range of ±2.2 degrees, hence achieving a potential

unweighted azimuth resolution of 16 cm [9]–[11]. Thanks to

these data several effects could be precisely investigated and

corrected, as expounded in the following sections.

The paper is divided as follows. Section II addresses the

main aspects in the processing of very high resolution spotlight

data, while Section III considers further secondary aspects. In

all cases, a solution is proposed in order to achieve proper

focusing. Section IV suggests a processing flow including the

proposed corrections and finally Section V presents several

results including simulations and high resolution spotlight data

acquired by TSX.

TABLE I
COMPARISON OF THE TSX SPOTLIGHT MODES. VALUES GIVEN FOR

SINGLE POLARIZATION.

Mode Az. resolution Az. scene size

Sliding spot. (SL) 1.7 m 10 km

High-res. spot. (HS) 1.1 m 5 km

Staring spot. (ST) 0.21 m 3 km-5 km

II. KEY ASPECTS OF HIGH RESOLUTION SPACEBORNE

SAR PROCESSING

This section expounds the main effects that need to be

considered when processing very high resolution spaceborne

data. It is assumed that the high azimuth resolution is achieved

by using the spotlight mode, be it staring or sliding [9]. The

ST mode illuminates the same spot on ground during the

whole integration time, while the sliding spotlight mode slides

the beam to extend the azimuth coverage, which occurs at

the expense of azimuth resolution. In both cases, the antenna

is steered in the azimuth dimension, either mechanically or

electronically. Table I summarizes the azimuth resolution and

the azimuth scene extension for the three spotlight modes

offered by the TSX satellite, where note that the ST mode

has been recently implemented in the TSX ground segment
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TABLE II
TSX STARING SPOTLIGHT ACQUISITION OVER OBERPFAFFENHOFEN,

GERMANY

Central frequency 9.65 GHz
Total azimuth processed bandwidth 38.5 kHz
Azimuth resolution 16 cm
Chirp bandwidth 300 MHz
Ground range scene size 8.8 km
Azimuth scene size 3.4 km
Incidence angle 35◦

Central point (longitude/latitude) 11.264◦, 48.088◦

workflow and is available since October 2013. Due to the

larger integration time of the ST mode, several effects appear,

which can be neglected in the operational sliding spotlight

(SL) and high resolution spotlight (HS) modes.

The first of these effects occurs due to the motion of the

satellite during the transmission and reception of the chirp

signal. This effect is well-known in the frame of frequency-

modulated continuous-wave (FMCW) SAR radars mounted on

airborne platforms [12], [13]. In Section II-A, the impact on

high-resolution pulsed radars is analyzed.

The curved orbit and the validity of the hyperbolic ap-

proximation is also a topic that has been addressed before

in the literature [14]–[16]. Section II-B suggests an inno-

vative correction of the orbit curvature based on state-of-

the-art airborne SAR motion compensation techniques [17]–

[19]. Besides being very simple to implement, it can also

accommodate to a large extent the azimuth variance of the

geometry.

One last aspect is the delay introduced by the troposphere

in the range history. This delay can change significantly due

to the variation of the squint (or azimuth) angle during the

formation of the synthetic aperture, hence resulting in azimuth

defocusing if not considered, especially at higher frequency

bands. Section II-C addresses this topic and suggests a model-

based correction.

Through the different sections, ST data acquired by TSX

are used. The particular data take was acquired over Oberp-

faffenhofen, Germany, where five corner reflectors (CRs) were

deployed in order to analyze their impulse response function

(IRF) and validate the methodology. The main data take

parameters appear in Table II.

A. Stop-and-Go Approximation

In the processing of spaceborne SAR raw data it is usually

assumed that the platform does not move during the transmis-

sion of the pulse signal and the reception of the backscattered

echoes. Such an assumption is usually called the stop-and-

go or start-stop approximation and has mainly two effects. A

“slow-time” one, which is linked to the fact that the satellite

indeed moved between transmission and reception, e.g., about

30 m in the TSX case. This fact implies mainly a range-

dependent azimuth shift of the focused signal, which can be

efficiently considered with a linear azimuth phase ramp in the

range-Doppler domain after the range cell migration correction

(RCMC) given by [20]

Hslow

SS
(fa, r) = exp

[

j · 2π ·
r

c
· fa

]

, (1)

where r is the range vector, fa is the azimuth-frequency vector,

and c is the speed of light. With this correction the targets have

a constant azimuth time over range and are aligned with the

annotated GPS instrument time. An additional effect occurs

due to the slight bistatic operation, which becomes more

evident the larger the integration time, i.e., the range history is

the sum of two hyperbolas rather than just one. Although the

effect is minor, it is properly accounted for in the correction

suggested in the next section, where the accommodation of

the curved orbit uses the position of the satellite at the

transmission and reception events for the reference range.

A second effect deals with the motion of the satellite during

the transmission and reception of the chirp signal itself, i.e., a

“fast-time” effect or, in other words, a real Doppler effect. The

TSX chirp signal has a length of about 50 µs, during which

the satellite moves about 40 cm in the azimuth direction. This

effect is well-known in FMCW SAR systems [12], [13]. The

phenomenon was also discussed in [21] for pulsed radars,

where the analysis was done in terms of a mismatch during the

matched filtering in range. As shown in [21], the difference

in the instantaneous frequency between the nominal range

variation and the one including the motion of the platform

is given by

∆f = −
2

λ
·
∂R(t)

∂t
= fDC, (2)

where λ is the wavelength, R(t) is the range history and fDC is

the Doppler centroid caused by the platform movement during

transmission/reception. By assuming a large time-bandwidth

product, the shift in the signal in the range-time dimension is

then given by

∆τ =
∆f

Kr

=
fDC

Kr

, (3)

where Kr is the chirp rate and τ represents the fast time.

This means that there is a range shift present in the signal

as a function of the instantaneous azimuth frequency. In the

case of large azimuth bandwidths, this effect will introduce

different range shifts along the azimuth integration interval,

hence deteriorating the impulse response function in both

dimensions.

Another intuitive way to visualize this effect is by con-

sidering different azimuth phase ramps as a function of the

range frequency, since, due to the large time-bandwidth prod-

uct, there is a direct mapping between fast-time and range

frequency. In other words, due to the motion of the satellite,

the zero-Doppler time changes as a function of the range fre-

quency, corresponding to a range-frequency dependent linear

phase ramp in the azimuth dimension. The azimuth shift can

then be expressed as

∆t =
τp · fr

Brg

=
fr

Kr

, (4)

where fr is the range frequency, t is the slow time and τp and

Brg are the chirp length and chirp bandwidth, respectively.

Fig. 1 shows the resulting phase error due to the stop-and-

go approximation measured over a corner reflector of the TSX

ST acquisition and the corresponding IRF. The first plot on the

left is the phase of the 2D phase spectrum after removing the

global linear ramps due to the target position. The error reaches
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Fig. 1. Effect of the stop-and-go approximation in the TerraSAR-X staring
spotlight mode. (Left) Residual phase in radians of a CR in the 2D frequency
domain, and (right) the corresponding contour plot of the oversampled IRF.
The chirp length is 50µs, the bandwidth 300 MHz, and the azimuth processed
bandwidth 38.5 kHz.

TABLE III
TERRASAR-X-LIKE ORBIT PARAMETERS

Eccentricity 0.001
Inclination 97.44◦

Semi-major axis 6883.513 km
Argument of perigee 90◦

Ascending node 88.617◦

±177◦ at the edges of the spectrum. If not corrected, this error

introduces resolution loss of up to 15% in both dimensions for

an azimuth bandwidth of 38.5 kHz (16 cm resolution without

weighting), a range bandwidth of 300 MHz and a chirp length

of 50µs. Please note that in order to generate the plots of

Fig. 1 and properly appreciate the effect of the fast-time stop-

and-go approximation, the suggested corrections for the other

aspects, namely the consideration of the curved orbit and

the troposphere, were applied (see Sections II-B and II-C,

respectively).

Since the effect is space invariant, it can be easily corrected

in the 2D frequency domain using the following phase function

[12], [21]

H fast

ss
(fa, fr) = exp

[

j · 2π ·
fa

Kr

· fr

]

. (5)

This phase correction shall be applied at the beginning of the

processing before calling the focusing kernel. In the spotlight

modes one needs to consider the azimuth aliasing at raw data

level, which can be done either by using sub-apertures [4],

[22], [23] or a deramping approach [24] (see Section IV).

B. The Curved Orbit

A hyperbolic range history, i.e., a linear track, is assumed

by most spaceborne SAR image formation algorithms, but this

approximation becomes less accurate the larger the integration

time. For example, the TSX ST mode has an integration time

of about 7 seconds, which yields the error that can be ob-

served in Fig. 2 for the Oberpfaffenhofen scene. Such an error

degrades the azimuth resolution and introduces asymmetric

sidelobes.

Some solutions exist in the literature that use a numerical

approach to circumvent this problem, e.g. [14], [15]. Also in

the present case a numerical approach has been selected, which

resembles the motion compensation approach in airborne SAR

systems [17]–[19]. The line-of-sight (LOS) approximation

error, δrhyp, shown in Fig. 2, can be computed for a reference

target in the middle of the scene, yielding

δrhyp(t; rref) =
1

2
·
[

|pTx

sat
(t)− pbc(t; rref)|

+ |pRx

sat
(t)− pbc(t; rref)|

]

−
√

r2
ref

+ v2
e,ref(t; rref) · (t− t0)2, (6)

where t0 and ve,ref are the zero-Doppler time and the effec-

tive velocity for the reference point, respectively. psat is the

satellite position vector in Earth-Centered Earth-Fixed (ECEF)

coordinates and the superscripts Tx and Rx indicate the

different positions at transmission and reception, respectively,

i.e., the bistatic character of the survey is accounted for. The

target at the center of the beam is indicated by the vector pbc,

where the dependence with time indicates that the reference

target might change in time, as for example occurs in the SL

mode [9].

Two options are described in the following in order to

correct for δrhyp: one perfectly matched to the point in the

middle of the beam, which performs the correction in the

azimuth-frequency domain; and a second one that approxi-

mates the compensation optimally to a line at mid-range by

performing the correction in the azimuth-time domain. Their

residual errors are analyzed quantitatively, thus allowing the

choice of the most convenient approach for the final processing

flow. The first, less attractive, possibility is to correct δrhyp

both in terms of envelope and phase in the azimuth-frequency

domain by using the following phase filter

H freq

OCO1
(fa, fr; rref) = exp

[

j ·
4π

c
· (f0 + fr) · δ̃rhyp(fa, fr; rref)

]

,

(7)

where rref is the reference range, f0 is the central frequency,

the subscript OCO1 refers to the first-order orbit compensa-

tion and the superscript freq refers to the correction in the

azimuth-frequency domain. δ̃rhyp is now the error given in

(6) mapped into the 2D frequency domain by computing the

azimuth time of stationary phase numerically.

The correction in the Doppler domain using (7) assumes

azimuth invariance. However, the spaceborne SAR geometry

is azimuth-variant due to the curved orbit and Earth’s rota-

tion. Indeed, although the term δrhyp varies mildly with the

azimuth time, the effective velocity inside (6) shows a stronger

variation. The azimuth-variant geometry can be evaluated by

computing the effective velocity for a target separated only in

the along-track dimension and then computing the mis-match

during azimuth compression. Analytically, this is given by

ϕvar

error
(fa; r0) = −

4π

λ
· r0 ·

(

√

1−

(

λfa

2ve

)2

−

√

1−

(

λfa

2ve,ref

)2
)

, (8)

where ve is the effective velocity of the target under con-

sideration. The phase error in (8) can result in defocusing
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Fig. 2. Error of the hyperbolic approximation using an effective velocity.
The duration corresponds to the TerraSAR-X staring spotlight (ST) data take,
whose main parameters are shown in Table II.

depending on the azimuth distance to the reference point and

the azimuth processed bandwidth. A numerical simulation

using a TSX-like orbit was performed in order to evaluate

(8) for different incidence angles and latitudes. The selected

Keplerian orbit parameters are shown in Table III. Fig. 3 shows

the quadratic phase error (QPE) at the edge of the azimuth

processed bandwidth, which in this case corresponds to 15 cm
azimuth resolution without weighting. The analyzed target is

located 2 km away from the reference target in the azimuth

dimension, but at the same slant-range. Both points are located

at 0 m altitude over the WGS-84 ellipsoid. Note that the plot

analyzes the azimuth variance assuming the residual error has

already been corrected in the azimuth-frequency domain using

(7). Note also that the given values vary linearly with the

distance to the scene center, quadratically with the azimuth

processed bandwidth, and linearly with the wavelength, i.e.,

C-band has a larger error than X-band for the same processed

bandwidth since it requires a larger integration time. The plot

corresponds to an ascending orbit configuration and right-

looking geometry, but similar plots are obtained for other

configurations or orbits. In the configuration of the ST mode,

the resulting values will degrade the azimuth resolution and

introduce interferometric phase errors. As a final comment,

note that due to the spotlight acquisition geometry, it does not

help to process the raw data in azimuth blocks to accommodate

the azimuth variance.

In order to efficiently handle the azimuth variance, the

second possibility is to perform the correction with a phase

multiplication in the azimuth-time domain using

HOCO1(t, fr; rref) = exp

[

j ·
4π

c
· (f0 + fr) · δrhyp(t; rref)

]

,

(9)

which, again, shifts the signal both in terms of envelope

and phase. Effectively, eq. (9) can accommodate the azimuth

variance besides correcting the non-hyperbolic term due to the

small beamwidth of the antenna. This correction makes the

beam-center approximation [25], i.e., the correction is only

valid for the target in the middle of the beam, but given the

small beamwidth of current spaceborne sensors, e.g., 0.33◦ for

TSX, the introduced error is very small. With the correction

given by (9), a pure hyperbolic phase history is forced, so that

a conventional frequency domain kernel assuming a hyperbolic

phase history can still be used to process the data without
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Fig. 3. Quadratic phase error (QPE) in degrees at the edge of the azimuth
processed bandwidth due to the azimuth variance of the imaging geometry as
a function of the incident angle and the latitude. A Keplerian TerraSAR-X-
like orbit was simulated (see Table III). The azimuth processed bandwidth is
40 kHz and the target is located ∆x = 2km away from scene center only in
the azimuth dimension. The orbit is in ascending configuration and a right-
looking geometry was assumed. This plot evaluates (8) assuming the orbit
curvature was corrected using (7), which neglects the azimuth variance of the
geometry.

modifications. Note that this correction is accurate in wide-

bandwidth terms, but only for the reference target. Therefore,

for other ranges or azimuth positions the correction becomes

less accurate the larger the scene size.

Since the correction given by (9) is only valid for mid range,

a range-dependent (second-order) OCO might be necessary,

as it is usually the case with airborne SAR systems. Due to

the small magnitude of the residual errors, a phase correction

suffices, which is given by [17], [19]

HOCO2(t, r) = exp

[

j ·
4π

λ
·

(

δrhyp(t; r)− δrhyp(t; rref)

)]

.

(10)

For large errors, a range interpolation might be additionally

needed in order to correct the range-dependent shift. In any

case, note that due to the large separation between the sensor

and the scene and the small swath width, the range-dependency

can be neglected in most cases (the residual phase errors at

the edge of the bandwidth are smaller than 1◦ for the TSX

ST data take shown in Section V). The accuracy of the orbit

compensation depends mainly on the accuracy of the orbit

product, which for the TSX science orbit is about 3 cm (1σ)

in periods of low solar activity [26]. Since only the relative

error given by (6) is of interest for the compensation, such an

accuracy suffices.

Similar as in Fig. 3, the performance of the OCO approach

can be evaluated numerically. In this case though, the residual
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Fig. 4. Interferometric phase error (IPE) after applying the proposed orbit
compensation for a target located 2 km away from the scene center in the
azimuth direction and assuming an azimuth processed bandwidth of 40 kHz.
A Keplerian TerraSAR-X-like orbit was simulated (see Table III). The orbit
is in ascending configuration and a right-looking geometry was assumed. No
weighting for sidelobe suppression was used.

error is not quadratic, and the interferometric phase error (IPE)

is shown instead, which is the integration of the error along

the azimuth frequency. The error for the OCO approach is

given in Fig. 4, where no weighting was assumed. Note that

the maximum IPE is smaller than 3◦, while it reduces to less

than 2◦ with the usual weighting of TSX, i.e., a raised cosine

window with αw = 0.6. The OCO approach leads to very

good results for the TSX case, but needs to be evaluated for

each scenario, being the one shown in Fig. 4 already a quite

demanding one.

Finally, note that the suggested orbit compensation scheme

is the simplest to implement compared to existing advanced

motion compensation approaches for airborne SAR [27]–[31],

and despite the good performance of the proposed approach, it

might not be sufficient to accommodate properly the azimuth

variance or higher order effects for more demanding scenarios

(better resolution, larger coverage). In such cases, any of the

aforementioned techniques can be used to improve the perfor-

mance, some of which use a block-wise processing approach,

which in any case might be required due to the topography

within the scene, as commented later in Section III-C.

C. Atmospheric Effects

The troposphere introduces an undesired delay in the elec-

tromagnetic signal in the order of 2−4 meters (one-way). The

zenith path delay through the troposphere as a function of the

target height has been modeled in the literature in different

ways, e.g., using a quadratic [32] or an exponential [20], [33]

function. The operational TSX processor uses the latter model,

which is given by

∆Rtropo(t; rref) =
Z · exp [−h(rref)/H]

cos θ(rref) · cosαi(t; rref)

=
∆Rref

tropo
(rref)

cosαi(t; rref)
, (11)

where Z is a constant zenith path delay in meters, H is a

reference height, h is the altitude of the target, θ is the look

incidence angle, and αi, which has been introduced here in

addition, is the incident azimuth angle during the formation

of the synthetic aperture. The rationale for the additional

term, 1/ cosαi, in the mapping function is sketched in Fig. 5,

where the troposheric delay at zero Doppler is projected

for each time instant during the formation of the synthetic

aperture. The presented model is physically valid assuming a

troposphere that is cylindrical symmetric around the reference

point and time invariant during the synthetic aperture, which

shall be the case at decimeter scales and suffices to achieve the

nominal azimuth resolution, as commented later. Note that for

increasing integration times the difference between α and αi

also increases (cf. Fig. 5). Furthermore, for large squints close

to grazing angles, more sophisticated mapping functions shall

be used [33], [34]. The model is validated experimentally in

Section V for a squint angle variation of ±2.2◦ corresponding

to the ST mode, but further investigations would be required in

order to validate the model for larger integration angles. Fig. 6

plots (11) after subtracting a constant offset, as a function of

the azimuth angle αi assuming the following values: H = 6
km, Z = 2.6 m, h = 629 m and θ = 35◦. As it can be

induced from Fig. 6, for large integration times the dependence

with αi is not negligible, hence introducing defocusing and

phase errors if not considered. Furthermore, the delay in

absolute terms, which in the TSX case shifts the image about 6
pixels in the slant-range dimension for the maximum sampling

frequency, implies a mis-match of the azimuth compression

filter, introducing additional defocusing and phase errors.

Fig. 7 shows this effect over the same CR as shown in Fig. 1,

where the corrections mentioned in the previous sections have

been already applied. For the configuration of this data take,

the troposphere introduces a quadratic error of about 50◦ at

the edge of the processed bandwidth, and the further 50◦ occur

due to the azimuth filter mis-match, resulting in the total 100◦

that can be observed in Fig. 7, which degrades the azimuth

resolution by about 10%. The correction of the troposphere

using (11) can be applied together with the first order OCO,

since a bulk correction for the middle of the scene suffices.

Therefore, (9) becomes

HOCO1(t, fr; rref) = exp

[

j ·
4π

c
· (f0 + fr) ·

(

δrhyp(t; rref)

+ ∆Rtropo(t; rref)

)]

. (12)

Note that the performance of the tropospheric correction will

depend on the accuracy of the assumed model. In any case,

the troposheric component is space variant, with gradients of

about 1 cm/km [35]. It is not the purpose of the suggested

correction to achieve such an accuracy in absolute terms, but
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Fig. 5. Tropospheric delay variation within the synthetic aperture, Lsa, as
a function of the incident azimuth angle, αi(t). ∆Rref

tropo is the tropospheric
delay at zero-Doppler, htropo is the height of the troposphere, h the height of
the target, and α is the squint angle defined in the slant-range plane. The thick
solid lines represent the delay introduced in the signal when traveling through
the troposphere. Note that despite the exaggerated Earth curvature shown in
the picture, the mapping factor 1/ cosαi can be applied by assuming a flat
geometry, even for large squint angles, as the troposphere thickness is very
small compared to the Earth radius.
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Fig. 6. Delta tropospheric delay, i.e., after subtracting a constant offset, as
a function of the azimuth angle using (11). The angle variation corresponds
to the TerraSAR-X staring spotlight mode. If not considered, the phase error
will turn into azimuth defocusing and phase errors.

rather to reduce the relative disturbance, i.e., the curvature, to a

level where it does not affect the focusing quality. In this sense,

the correction should be accurate at sub-pixel level in the range

dimension, which is sufficient in order to obtain a proper

curvature correction of the disturbance. On the other hand,

strong topography variations within the imaged swath cannot

be adapted with this simple correction. Since the topography

also plays an important role within the focusing kernel itself,

as later discussed in Section III-C, the tropospheric correction

term due to topography variations can be compensated as well.

Concerning the ionosphere, the total delay is roughly 2 cm
at X-band [20], and hence the dependence with αi can be

neglected. On the other hand, the effect on wide-band systems

is an issue not addressed in this paper due to its negligible

effect in the TSX case.

III. FURTHER CONSIDERATIONS

The three aspects mentioned in the previous sections are the

main ones in order to ensure a proper focusing, but not the

Fig. 7. Effect of the troposphere in the TerraSAR-X staring spotlight
mode. (top) Phase error in the Doppler domain measured over a CR for
different range frequencies and (bottom) the corresponding contour plot of
the oversampled IRF.

only ones. This section addresses three further aspects, which

are: special considerations when processing using sub-aperture

approaches to avoid azimuth aliasing; the consideration of the

array pattern to avoid resolution loss in the focused image;

and the topography dependence of the focusing kernel.

A. Sub-Aperture Processing

The division of the raw data in sub-apertures is a well-

known approach to accommodate the Doppler variation intro-

duced in the signal by the antenna steering, which exploits the

fact that the PRF is larger than the beam bandwidth [4], [22],

[23]. The recombination is performed in the time domain after

the range-variant processing has been performed. When using

the azimuth scaling approach during the azimuth processing, a

small margin is considered due to the stretching of the azimuth

signal. Finally, the computed size is zero-padded to the next

power of two for efficiency purposes. Nevertheless, a further

fact needs to be considered: the RCMC filter stretches also

the azimuth signal in time domain for range frequencies other

than f0. This happens especially for sub-apertures with large

Doppler centroids. Hence, when going back to azimuth-time

domain, where the sub-apertures are recombined, time-aliasing

might appear, resulting in a considerable degradation of the

focused image. The amount of this stretching can be computed

using the RCMC filter, resulting in an additional extension that

can be even larger than the effective sub-aperture size itself.

Analytically, it suffices to take the RCMC filter used, e.g., by

chirp scaling [36], so that the stretching can be computed for
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each sub-aperture as

∆trcmc(fDC,i) =
1

2π
·
∂φrcmc(fa, fr)

∂fa

∣

∣

∣

∣

∣

fa=fDC,i

=
2rref

c
·

fDC,i ·
(

λ
2ve

)2

(

1−
(

λfDC,i

2ve

)2
)3/2

·Brg, (13)

where φrcmc is the phase function of the RCMC filter, and

in practice fa has been substituted by the Doppler centroid of

the given sub-aperture, fDC,i, and the range frequency fr by

the range bandwidth, Brg, in order to compute the required

time extension. After converting the extension into samples,

the sub-aperture shall be zero-padded with half of this amount

on each side.

A further aspect that needs to be considered is the Doppler

centroid variation due to the wavelength dependence. The

well-known Doppler formula is given by

fDC =
2vs

λ
· sinα, (14)

where vs is the satellite velocity and α is the squint angle.

Therefore, for a given squint angle, the Doppler centroid

changes as a function of the wavelength, i.e., within the range

bandwidth, a fact that needs to be considered in order to avoid

that parts of the spectrum cross the adjacent PRF band. A

solution was proposed in [37] based on the azimuth spectral

extension, which consists in replicating the two-dimensional

spectrum in azimuth and filtering out the undesired parts. By

doing so the azimuth sampling is increased according to the

spectral extension. In the case of the TSX satellite and due to

the small relative bandwidth, it suffices to increase the PRF
in order to accommodate the Doppler-centroid variation, since

the skew of the spectrum at the maximum squint angle is about

Bskew = 600Hz. Note further, that the PRF must be increased

anyway to reduce the impact of the azimuth ambiguities in

the TSX case [9], [11]. The skew of the spectrum imposes

an additional condition when computing the size of the sub-

aperture [4], which now is given by

Tsub =
PRF−Baz −Bskew

|Krot|
[s], (15)

where Baz is the azimuth processed bandwidth and Krot is the

Doppler centroid variation introduced by the steering of the

antenna. If the processing is performed in the Fourier domain,

the proper approach is to perform the spectral extension as

proposed in [37].

B. Array Pattern

In electronically-steered antennas, a significant amplitude

modulation is introduced by the single element antenna pat-

tern when the steering angles become comparable to the

single element pattern beamwidth. Furthermore, other aspects

like, e.g., the feed network or the coupling between antenna

elements, can influence the final signal amplitude. Fig. 8

shows the computed normalized modulation using the TSX

antenna patterns for a given ST data take. This curve has been

Fig. 8. Amplitude modulation introduced by the antenna array when steering
the TerraSAR-X antenna within ±2.2◦. The staircase behavior occurs due to
the quantization of the phase shifts used for the steering of the pattern.

computed by integrating for each echo the transmit-receive

antenna pattern within the main lobe, i.e.,

A[n] =

(
∫

Ω3dB

GTx(α;n] ·GRx(α;n] · dα

)
1
2

, (16)

where G(α;n] is the one-way azimuth antenna pattern as a

function of the azimuth angle α and the discrete echo line

number n. After normalization, the inverse of this curve can

be applied directly at raw data level to correct for the undesired

modulation, similar as the recently proposed approach for the

scalloping correction of TOPS data [38]. Note that, in any case,

a scaling of the noise at scene edges is unavoidable. Note

also that the inter-element distance of the azimuth antenna

tiles (0.4 m for TSX [39]) plays an important role, since, in

combination with the element antenna pattern, it results in

the so-called grating lobes. Precisely at the maximum steering

angles of ±2.2◦ the strongest grating lobe has exactly the same

gain as the main lobe. Therefore, the element antenna pattern

and the grating lobes have an important impact in terms of

azimuth ambiguities and must be precisely considered for the

commanding of the ST mode in the TSX case [9], [11]. On

the other hand, the influence of noise scaling can be partially

mitigated at detected image level by proper noise subtraction

as proposed in [40], but note that this approach has not been

applied to the TerraSAR-X images shown in Section V.

C. Topography Dependence

For a given zero-Doppler slant-range distance r0, the range

history in a spaceborne scenario depends on the topography

due to the curved orbit [5], [41], [42]. Similar as with the

hyperbolic range history approximation, this effect becomes

more noticeable for larger integration times. This means that,

if the processing is performed with an azimuth-invariant refer-

ence height, as is usually assumed within current spaceborne

imaging algorithms, azimuth defocusing might occur. Fig. 9

shows the height error that results in a phase error of π/2
at the edge of the processed bandwidth as a function of the

azimuth resolution for the TSX-like orbit of Table III. This

corresponds to a resolution loss of approximately 10% without

weighting function, since the phase error is mainly quadratic

with frequency. In the ST mode the topography should be

accommodated within 60 m to avoid defocusing greater than
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Fig. 9. Maximum allowed topographic height error as a function of the
azimuth resolution by allowing a maximum phase error of π/2 at the edge of
the azimuth processed bandwidth. A TSX-like orbit has been simulated (see
Table III)

10%. For a more detailed analysis concerning the topography

dependency in SAR focusing please refer to [41].

Due to the space variance of the effect, it is not trivial

to include the compensation within the kernel of a Fourier-

based processor. Therefore, one straightforward approach is to

perform a block-wise post-focusing using an external DEM as

suggested in [42], an approach based on existing topography-

dependent motion compensation approaches for airborne SAR

systems [43], [44]. Please note that for the results shown in

Section V no post-focusing was performed, and instead the

reference height was matched to that of the reference points

to be analyzed.

At this point it is interesting to note that the troposphere

correction also depends on the height of the target [see (11)].

Hence, the block-wise approach could also handle a residual

tropospheric correction. When no external information con-

cerning the topography is available, then autofocus approaches

can be used instead to improve the focusing of the image.

IV. PROPOSED PROCESSING FLOW

Fig. 10 shows the suggested processing chain for the focus-

ing of very high resolution spotlight SAR data, which includes

the corrections mentioned in the previous sections. The block

diagram reflects the generality of these corrections and hence it

is not specified for any particular focusing kernel. Without loss

of generality, the consideration of the higher signal bandwidth

w.r.t. the PRF is presented either by using sub-apertures or

with the deramping solution expounded in [24], where in the

latter case no assembly of sub-apertures is needed, but the

kernel must account for the changing of the azimuth sampling

after the deramping operation.

The blocks highlighted in gray are the new ones proposed

in this paper. First, the array pattern correction is performed

at raw data level if required, i.e., in case an electronically-

steered array is used. After handling the large azimuth signal

bandwidth either with sub-apertures (in which case each sub-

aperture needs to be zero-padded considering the stretching

due to the RCMC filter, see Section III-A) or with the

deramping approach presented in [24], a 2D fast Fourier

transform (FFT) together with, whenever required, the azimuth

spectral extension, follows. The stop-and-go correction defined

in (5) can then be applied. After an inverse azimuth FFT,

the first order OCO and the tropospheric correction are ap-

plied together through the azimuth-dependent phase function

given by (12) to correct both the phase and the envelope of

the signal for mid-range. An inverse range FFT brings the

signal back to the range- and azimuth-time domain, where

any Fourier-based processing kernel can now be used in

order to perform the range-variant processing. This includes

monochromatic kernels, like chirp scaling (CS) approaches

[18], [36], the range-Doppler (RD) algorithm with secondary

range compression (SRC) in the 2D frequency domain [16],

[45], or algorithms based on the chirp-Z transform (CZT) [24],

[46], as well as polychromatic ones, which basically leads

to the ω-k algorithm [47] and its extensions to handle the

spaceborne geometry, especially in terms of the separation of

the azimuth compression step from the Stolt mapping in order

to ease the implementation of the Stolt interpolation itself [48]

or to facilitate the motion compensation in airborne systems

(extended ω-k, EOK [29]), or by computing numerically the

Stolt kernel in order to accommodate more precisely the orbit

curvature and the variation of the effective velocity with range,

an approach named singular value decomposition (SVD)-Stolt

[15]. The range-variant processing shall include a residual

correction of the RCM in the range-Doppler domain via inter-

polation due to the range dependence of the effective velocity,

a step implicitly included in the range-Doppler algorithm. The

selection of the range-variant processing kernel will depend

on the sensor capabilities and image quality requirements. For

the most demanding scenarios it is suggested to use the OCO

together with a modified SVD-Stolt [15] where the azimuth

compression is removed from the Stolt mapping as in EOK

[29], [48]. This approach can account for the residual SRC

due to the curved orbit for targets located at ranges other than

rref , since the OCO is only accurate for this range, while still

being able to handle the azimuth-variant geometry.

After the range-variant processing, the second order orbit

compensation can take place in terms of a residual phase

correction as given by (10) in order to accommodate the

range variance. Again, this correction can include a delta

tropospheric delay correction. The azimuth processing can

take place afterwards, which can be solved with a SPECAN

approach in case of using sub-apertures [18], [23] or with a

conventional matched filtering, and in both cases considering

the range-dependence of the effective velocity.

As a last comment, the higher the resolution, the larger the

sensitivity to the topography, as shown in Fig. 9. For very high

resolution spaceborne SAR imaging, this will be the limiting

factor, which, as already commented, requires a space-variant

correction. Such a correction could deal with other residual

errors not considered by the focusing kernel, e.g., azimuth

variance not corrected by the OCO, residual SRC, residual

RCM, etc. However, the better the performance of the Fourier-

based kernel, the simpler the post-processing will be.

V. EXPERIMENTAL RESULTS

A simulation with point targets was performed using the

parameters shown in Table IV and a TSX-like orbit (see

Table III). Note that the parameters have been chosen based on
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Division into sub-apertures/Deramping

Spotlight raw data

Range IFFT

First order orbit compensation

+

Tropospheric correction

Stop-and-go correction

Processed image

Element pattern correction

2D FFT

Azimuth IFFT

Assembly of sub-apertures/(nothing)

Range-variant processing

(CS, RD, CZT, EOK, SVD-Stolt)

Azimuth processing

Second order orbit compensation + 

residual tropospheric correction

Fig. 10. Proposed processing chain (new steps in gray) to process high
resolution spotlight data. CS stands for chirp scaling, RD for range-Doppler,
CZT for chirp-Z transform, EOK for extended ω-k, and SVD for singular
value decomposition.

TABLE IV
SIMULATION PARAMETERS

Central frequency 9.65GHz
Total azimuth processed bandwidth 33 kHz
Azimuth resolution 19 cm
Chirp bandwidth 1.2 GHz
Ground range scene size 5 km
Azimuth scene size 5 km
Incidence angle 55◦

Central point (longitude/latitude) 11.264◦, 48.088◦

a possible configuration for a next generation X-band satellite

[49]. The motion of the satellite was simulated between and

during transmission and reception, while the troposphere was

not included. Due to the large relative bandwidth, monochro-

matic algorithms do not perform properly, so the EOK ap-

proach was selected, further including a residual RCMC in

the form of an interpolation in the range-Doppler domain after

the Stolt mapping to adapt for the variation of the effective

velocity. The second order OCO is not really needed in this

case and hence was not applied. Fig. 11 shows the IRFs of

the nine point targets, which are located at the edges and the

center of the 5 km × 5 km scene. The measured resolutions

are within 0.5% accuracy while the IPEs are smaller than 1◦.

Real data acquired by TSX in the staring spotlight mode

have been further used to validate the proposed methodology,

Fig. 11. Contour plots of the interpolated IRFs by using the proposed
processing chain with the extended ω-k (EOK). The simulation parameters
appear in Table IV.

Fig. 12. Contour plots of the interpolated IRFs of five CRs of the TerraSAR-
X staring spotlight image acquired over Oberpfaffenhofen, Germany. The last
CR on the lower row is located at the right edge of the scene in near range.
No sidelobe suppression was performed, so that the obtained resolutions are
16 cm in azimuth and 44 cm in slant-range, hence matching the theoretical
values. The data were processed with the proposed processing chain and the
range-Doppler (RD) algorithm.
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Fig. 15. Contour plots of the interpolated IRF of a CR after processing with
the range-Doppler (RD) algorithm (left) using the proposed processing chain
and (right) without any of the main corrections expounded in Section II.

where in this case the influence of the troposphere needs to

be considered. Table II shows the main acquisition parameters,

while Fig. 12 depicts the IRFs of the five CRs located in the

scene acquired over Oberpfaffenhofen, Germany. During the

processing all the anomalies were considered and corrected.

The data were processed following the flow diagram of Fig. 10

using the RD algorithm in sub-apertures. The second order

OCO was not performed and the reference point for both

the first order OCO and the tropospheric correction is in the

middle of the scene. Without spectral weighting, the measured

values are 44.9 cm and 16.4 cm in range and azimuth, respec-

tively, hence matching the theoretical ones with 2% accuracy.

The reflectivity image is shown in Fig. 13, while Fig. 14 shows

a zoom of it and compares it with the standard high-resolution

spotlight (HS) mode. In the latter case, both images have been

multilooked to a resolution of 1 m×1 m, and the radiometric

resolution improvement of the ST image is evident. Note also

that there is a gain in the detectability of point targets (about

7 dB) in the full resolution ST data due to the increased

compression gain.

Finally, in order to remark the importance of the suggested

corrections, Fig. 15 shows the interpolated IRF of one of

the CRs of Fig. 12 with and without the main corrections

expounded in Section II, namely, the “fast-time” stop-and-go

effect, the tropospheric correction, and the orbit compensation.

Without these corrections the IRF is severely degraded, espe-

cially in terms of resolution, with a loss of more than 50% in

both range and azimuth dimensions.

VI. CONCLUSION

Spaceborne SAR systems are unique in providing high-

resolution, weather independent images of the Earth surface

on a global scale. In order to increase the reliability and

robustness of the information retrieval in SAR images, more

stringent requirements for each specific application are defined

by the users in terms of observables (e.g., time series), space

diversity (e.g., interferometry, tomography), multi-channel ac-

quisition (e.g., polarimetry, multi-frequency) and last but not

least improved geometric resolution. State-of-the-art satellites

like TerraSAR-X, TanDEM-X, COSMO-SkyMed as well as

Radarsat-2 are providing images with a resolution in the meter

regime. The next generation of SAR satellites in X-band will

provide a geometric resolution in the decimeter regime.

In order to cope with the demanding requirements for im-

proved geometric resolution, this paper has presented several

critical aspects for the processing of very high resolution

spaceborne data, of which the motion of the platform during

the transmission/reception of the chirp signals and the tropo-

sphere are the most relevant. The correction of the former can

be efficiently performed in the 2D frequency domain, while

the troposphere can be corrected using a simple model for a

reference target inside the scene, partly accommodating its

azimuth variance. The non-hyperbolic phase history, which

becomes more significant at larger integration times, has been

also addressed, and a simple solution based on the motion

compensation of airborne SAR systems has been proposed.

This orbit compensation can also accommodate to a large

extent the azimuth variance of the geometry without intro-

ducing undesired interferometric phase errors. A numerical

evaluation of this approach has been presented, which confirms

its validity for the processing of relatively large scenes in terms

of spotlight imaging.

Further practical aspects to be considered have been also ad-

dressed, namely, the array pattern of the electronically steered

antenna as well as the handling of the sub-apertures in the

presence of large range bandwidths or large Dopplers. Finally,

the dependence of the focusing kernel with the topography of

the scene has been mentioned. Indeed, the accommodation of

the topography with Fourier-based processors is challenging

due to its inherent space-variant property. This issue has not

been directly addressed in this paper, but ongoing work can

be found in [42]. Similarly, the coupling between troposphere

and topography is currently being investigated [50].

Finally, a generic processing flow has been suggested.

Without entering into implementation details, the proposed

focusing chain can be used with any processing kernel. The

large azimuth bandwidth w.r.t. system PRF can be handled by

using different strategies, be it sub-apertures or a deramping

approach. The separation of the azimuth compression step

allows, among other things, for a residual RCMC in the range-

Doppler domain in order to accommodate the variation of the

effective velocity with range, a necessary step for very high

resolution spaceborne SAR imaging.

Simulated data using point targets as well as TSX ST data

have been used to validate the methodology. In the latter case,

the theoretical azimuth resolution of 16 cm without spectral

weighting, 21 cm with the usual TSX weighting function, has

been achieved after performing all the suggested corrections.
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Fig. 13. Reflectivity image of the TerraSAR-X staring spotlight acquisition acquired over Oberpfaffenhofen, Germany, with 21 cm azimuth resolution and
58 cm slant-range resolution. The usual TerraSAR-X weighting was applied for sidelobe suppression.

Fig. 14. Geocoded zoom of the scene shown in Fig. 13 for the (left) operational HS mode and the (right) ST mode. The resolution of the multilooked
images in both cases is approximately 1 m. Zoom size: 1000 m×500 m.
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