ON THE PRODUCT OF A RANDOM AND A REAL MEASURE

V. M. RADCHENKO

Abstract

The product of a random measure X and a real measure Y is defined as a random measure on $X \times Y$. We obtain conditions under which the integral of a real function with respect to the product measure equals the iterated integrals of this function.

Let $\left(X, \mathcal{B}_{X}\right)$ and $\left(Y, \mathcal{B}_{Y}\right)$ be measurable spaces, $Z=X \times Y$, and $\mathcal{B}_{Z}=\mathcal{B}_{X} \otimes \mathcal{B}_{Y}$. By $L_{0}=L_{0}(\Omega, \mathcal{F}, \mathrm{P})$ we denote the set of all random variables defined on the probability space $(\Omega, \mathcal{F}, \mathrm{P})$ (to be more specific, L_{0} is the set of classes of equivalent random variables). The convergence in L_{0} is the convergence in probability.

Definition 1. Any σ-additive mapping $\mu: \mathcal{B}_{X} \rightarrow L_{0}$ is called a random measure on \mathcal{B}_{X}.
Note that we do not assume that μ is nonnegative and we do not pose any moment condition.

Here are some examples. If $X(t), 0 \leq t \leq T$, is a continuous square-integrable martingale, then $\mu(A)=\int_{0}^{T} I_{A}(t) d X(t)$ is a random measure on Borel sets of $[0, T]$. A fractional Brownian motion $B^{H}(t)$ for $H>\frac{1}{2}$ defines a random measure in a similar way (this follows from inequality (3.11) in [1]). Other examples as well as conditions for increments of a stochastic process to generate a random measure can be found in Chapters 7 and 8 of [2].

Further let μ be a random measure on \mathcal{B}_{X}, and m a finite nonnegative measure on \mathcal{B}_{Y}. A set $A \in \mathcal{B}_{X}$ is called μ-negligible if

$$
\mu(B)=0 \quad \text { a.s. }
$$

for all $B \in \mathcal{B}_{X}$ such that $B \subset A$. Let ξ be a random variable and put

$$
\|\xi\|=\sup \{\delta: \mathrm{P}\{|\xi|>\delta\}>\delta\}
$$

The integral $\int_{A} f d \mu$ is defined and studied in [3] where $f: X \rightarrow \mathbb{R}$ is a real measurable function and $A \in \mathcal{B}_{X}$. When constructing this integral one starts with simple functions and proceeds similarly to [2, Chapter 7] (see also [4]). In particular, any measurable bounded function f is integrable with respect to any measure μ.

In this paper, we define the product of a random and a real measure and prove analogs of Fubini's theorem for integrals of real functions.

Theorem 1. There exists a unique random measure η on \mathcal{B}_{Z} such that

$$
\eta\left(A_{1} \times A_{2}\right)=\mu\left(A_{1}\right) m\left(A_{2}\right)
$$

2000 Mathematics Subject Classification. Primary 60G57.
Key words and phrases. Random measure, stochastic integral, product of measures, Fubini theorem. Partially supported by the Alexander von Humboldt Foundation, grant 1074615.
for all $A_{1} \in \mathcal{B}_{X}$ and $A_{2} \in \mathcal{B}_{Y}$. If $f: Z \rightarrow \mathbb{R}$ is integrable on Z with respect to η, then for all fixed $x \in X$, except for a μ-negligible set, the function $f(x, \cdot): Y \rightarrow \mathbb{R}$ is integrable on Y with respect to m and $\int_{Y} f(x, y) d m(y)$ is integrable on X with respect to μ. Moreover

$$
\begin{equation*}
\int_{Z} f(x, y) d \eta=\int_{X} d \mu(x) \int_{Y} f(x, y) d m(y) \tag{1}
\end{equation*}
$$

Proof. Let $A \in \mathcal{B}_{Z}$ and put

$$
\begin{equation*}
\eta(A)=\int_{X} d \mu(x) \int_{Y} I_{A}(x, y) d m(y) \tag{2}
\end{equation*}
$$

The latter integral exists, since the inner integral does not exceed $m(Y)$ and any bounded function of x is integrable with respect to μ. Corollary 1.2 of 3] implies that η is σ additive in probability. The equality $\eta\left(A_{1} \times A_{2}\right)=\mu\left(A_{1}\right) m\left(A_{2}\right)$ is obvious; the uniqueness of η can be proved in a standard way.

Now we prove (1). If $f=I_{B}, B \in \mathcal{B}_{Z}$, then (1) follows from (2). Thus (1) holds for simple functions on Z. Let $f: Z \rightarrow \mathbb{R}$ be a measurable bounded function and let f_{n}, $n \geq 1$, be a sequence of simple functions such that $f_{n} \rightarrow f$ and $\left|f_{n}\right| \leq|f|$. Equality (1) for f follows from the same equality for functions f_{n} by passing to the limit with the help of Corollary 1.2 in [3. Since m is finite, the functions $f, f(x, \cdot)$, and $\int_{Y} f(x, y) d m(y)$ are bounded and integrable. The latter result is an analog of the Lebesgue dominated convergence theorem.

Let $f: Z \rightarrow \mathbb{R}$ be an arbitrary function integrable with respect to η. Let D be the set of points $x \in X$ for which $f(x, \cdot)$ is nonintegrable with respect to m. For $x \in D$ we have

$$
\int_{Y}|f(x, y)| d m(y)=+\infty
$$

and thus the classical Fubini theorem implies that $D \in \mathcal{B}_{X}$. Assume that D is not a μ-negligible set. Then for some $\varepsilon_{0}>0$ and all $k \geq 1$ there are $n(k)>k$ and $D_{1} \subset D$, $D_{1} \in \mathcal{B}_{X}$, such that $\left\|\mu\left(D_{1}\right)\right\|>\varepsilon_{0}$ and

$$
\int_{Y}|f(x, y)| I_{\{k<|f| \leq n(k)\}} d m(y)>1
$$

for $x \in D_{1}$. Theorem 1.3 of [3] with $h(x)=1$ and $A=D_{1}$ implies that

$$
\left\|\mu\left(D_{1}\right)\right\| \leq 16 \sup _{B \subset D_{1}}\left\|\int_{B} d \mu(x) \int_{Y}|f(x, y)| I_{\{k<|f| \leq n(k)\}} d m(y)\right\|
$$

Equality (1) is already proved for the bounded function $|f(x, y)| I_{\{k<|f| \leq n(k)\}}$. Now Corollary 1.2 of [3] implies that

$$
\sup _{B \in \mathcal{B}_{X}}\left\|\int_{B \times Y}|f(x, y)| I_{\{k<|f| \leq n(k)\}} d \eta\right\| \rightarrow 0, \quad k \rightarrow \infty
$$

since f is integrable with respect to η. This result contradicts the condition $\left\|\mu\left(D_{1}\right)\right\|>\varepsilon_{0}$. Thus the set of points x where $f(x, \cdot)$ is nonintegrable is μ-negligible. In what follows we assume that this set is empty (in fact, we change the values of f on a η-negligible set).

Now we prove that the function $g(x)=\int_{Y} f(x, y) d m(y)$ is integrable with respect to μ. Consider the functions $g_{n}(x)=\int_{Y} f(x, y) I_{\{|f| \leq n\}} d m(y), n \geq 1$, and

$$
h(x)=\int_{Y}|f(x, y)| d m(y)
$$

Equality (1) is already proved for the bounded functions $f I_{\{|f| \leq n\}}$; we also have that $g_{n}(x) \rightarrow g(x), x \in X$. For all $c>0$

$$
\left\{x:\left|g_{n}(x)\right|>c\right\} \subset\{x:|h(x)|>c\}
$$

thus

$$
\begin{aligned}
\sup _{n, A \in \mathcal{B}_{X}}\left\|\int_{A \cap\left\{\left|g_{n}\right|>c\right\}} g_{n} d \mu\right\| & =\sup _{n, A \in \mathcal{B}_{X}}\left\|\int_{\left(A \cap\left\{\left|g_{n}\right|>c\right\}\right) \times Y} f I_{\{|f| \leq n\}} d \eta\right\| \\
& \leq \sup _{B \in \mathcal{B}_{Z}}\left\|\int_{B \cap(\{|h|>c\} \times Y)} f d \eta\right\|
\end{aligned}
$$

The set $\{x:|h(x)|>c\}$ approaches the empty set as $c \rightarrow \infty$. Since f is integrable with respect to η, Corollary 1.2 of [3] yields that conditions for the uniform integrability hold in Theorem 1.7 of [3] (see also the theorem in [5]). Thus Theorem 1.7 of [3] implies that g is integrable. Now equality (11) can be proved by passing to the limit along the sequence g_{n}.
Remark 1. The existence of a random measure η defined by (2) and the equality between the integrals on the left- and right-hand sides of (11) is stated without proof in Example 10.1.2 of [2].

The product of a random measure with independent values with itself is constructed in [2, Chapter 10]. If m is Lebesgue measure and μ is generated by increments of fractional Brownian motion, then a result on the product of m and μ is obtained in 6].

The iterated integrals coincide only under some additional assumptions. First we prove some auxiliary results.
Lemma 1. If $a_{k} \in \mathbb{R}, a_{k}>0$, and $A_{k} \in \mathcal{B}_{X}, k \geq 1$, are such that

$$
\sup _{x \in \mathbb{R}} \sum_{k=1}^{\infty} a_{k} I_{A_{k}}(x)<\infty
$$

then

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k}^{2} \mu^{2}\left(A_{k}\right)<\infty \quad \text { a.s. } \tag{3}
\end{equation*}
$$

Proof. If inequality (3) does not hold, then for some $\varepsilon_{0}>0$ and all $c>0$ there exists $n \geq 1$ such that $\mathrm{P}\left(\Omega_{1}\right) \geq \varepsilon_{0}$ for $\Omega_{1}=\left\{\omega \in \Omega: \sum_{k=1}^{n} a_{k}^{2} \mu^{2}\left(A_{k}\right) \geq c\right\}$.

Consider independent Bernoulli random variables $\varepsilon_{k}, 1 \leq k \leq n$, defined on another probability space $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathrm{P}^{\prime}\right)$, that is, $\mathrm{P}^{\prime}\left(\varepsilon_{k}=1\right)=\mathrm{P}^{\prime}\left(\varepsilon_{k}=-1\right)=\frac{1}{2}$. Lemma V.4.3 (a) of [7] yields that

$$
\mathrm{P}^{\prime}\left[\left(\sum_{k=1}^{n} \lambda_{k} \varepsilon_{k}\right)^{2} \geq \frac{1}{4} \sum_{k=1}^{n} \lambda_{k}^{2}\right] \geq \frac{1}{8}, \quad \lambda_{k} \in \mathbb{R}
$$

Thus

$$
\mathrm{P}^{\prime}\left[\omega^{\prime}:\left(\sum_{k=1}^{n} \varepsilon_{k}\left(\omega^{\prime}\right) a_{k} \mu\left(A_{k}, \omega\right)\right)^{2} \geq \frac{c}{4}\right] \geq \frac{1}{8}
$$

for all $\omega \in \Omega_{1}$. Integrating over the set Ω_{1} we get

$$
\mathrm{P} \times \mathrm{P}^{\prime}\left[\left(\omega, \omega^{\prime}\right):\left(\sum_{k=1}^{n} \varepsilon_{k}\left(\omega^{\prime}\right) a_{k} \mu\left(A_{k}, \omega\right)\right)^{2} \geq \frac{c}{4}\right] \geq \frac{\varepsilon_{0}}{8} .
$$

Hence there exists $\omega_{0}^{\prime} \in \Omega^{\prime}$ such that

$$
\mathrm{P}\left[\omega:\left(\sum_{k=1}^{n} \varepsilon_{k}\left(\omega_{0}^{\prime}\right) a_{k} \mu\left(A_{k}, \omega\right)\right)^{2} \geq \frac{c}{4}\right] \geq \frac{\varepsilon_{0}}{8} .
$$

Since $\varepsilon_{k}\left(\omega_{0}^{\prime}\right)= \pm 1$, there exists a simple function $f: X \rightarrow \mathbb{R}$ such that

$$
\mathrm{P}\left[\left|\int_{X} f(x) d \mu(x)\right| \geq \frac{\sqrt{c}}{2}\right] \geq \frac{\varepsilon_{0}}{8}, \quad|f(x)| \leq \sup _{x \in \mathbb{R}} \sum_{k=1}^{\infty} a_{k} I_{A_{k}}(x)
$$

Recall that $\varepsilon_{0}>0$ is fixed, while c is arbitrary. The latter inequality contradicts the boundedness in probability of the set of values of integrals of simple functions $\int_{X} f d \mu$ such that $|f(x)| \leq 1$ (see Theorem 1.1 in [3] or Theorem 2 in [4]). Therefore the lemma is proved.

In what follows, $X=(a, b] \subset \mathbb{R}$ and \mathcal{B}_{X} is the Borel σ-algebra. Let

$$
\Delta_{k n}=\left(a+(k-1) 2^{-n}(b-a), a+k 2^{-n}(b-a)\right], \quad n \geq 0,1 \leq k \leq 2^{n}
$$

Lemma 2. For all $\alpha>\frac{1}{2}$

$$
\begin{equation*}
\sum_{n=0}^{\infty} 2^{-n \alpha} \sum_{k=1}^{2^{n}}\left|\mu\left(\Delta_{k n}\right)\right|<\infty \quad \text { a.s. } \tag{4}
\end{equation*}
$$

Proof. Let $\alpha=\frac{1}{2}+\beta$. Using the Cauchy-Bunyakovskiĭ inequality we obtain

$$
\begin{aligned}
\left(\sum_{n=0}^{\infty} 2^{-n \alpha} \sum_{k=1}^{2^{n}}\left|\mu\left(\Delta_{k n}\right)\right|\right)^{2} & \leq\left(\sum_{n=0}^{\infty} 2^{-n \beta}\right)\left(\sum_{n=0}^{\infty} 2^{-n(1+\beta)}\left(\sum_{k=1}^{2^{n}}\left|\mu\left(\Delta_{k n}\right)\right|\right)^{2}\right) \\
& \leq\left(\sum_{n=0}^{\infty} 2^{-n \beta}\right)\left(\sum_{n=0}^{\infty} 2^{-n \beta} \sum_{k=1}^{2^{n}} \mu^{2}\left(\Delta_{k n}\right)\right)
\end{aligned}
$$

It remains to apply Lemma 1 to the second factor.
In the sequel the integrals of random functions $\xi(y)=\xi(y, \omega), y \in Y$, with respect to a real measure m are defined according to Definition 5.2 in [3] (see also [8]) (an equivalent condition is given in Theorem 3.8 of [3]). A random function $\xi(y, \omega)$ is integrable with respect to m if it is measurable with respect to the pair of arguments (y, ω) and $\mathrm{P}\left\{\sup _{y \in Y}|\xi(y)|<\infty\right\}=1$. The integral $\int_{Y} \xi(y) d m(y)$ can be defined for any fixed ω as the limit of the Lebesgue integrals of simple functions.

Theorem 2. Let $X=(a, b] \subset \mathbb{R}$, and let \mathcal{B}_{X} be the Borel σ-algebra. Let $f: Z \rightarrow \mathbb{R}$ be a bounded and measurable function. Assume that there exist numbers $\alpha>\frac{1}{2}$ and $L>0$ such that

$$
\left|f\left(x_{1}, y\right)-f\left(x_{2}, y\right)\right| \leq L\left|x_{1}-x_{2}\right|^{\alpha}
$$

for all $x_{1}, x_{2} \in X$ and $y \in Y$. Then

$$
\begin{equation*}
\int_{Z} f(x, y) d \eta=\int_{Y} d m(y) \int_{X} f(x, y) d \mu(x) \tag{5}
\end{equation*}
$$

Proof. The left-hand side of equality (5) is well defined, since f is a bounded function. Now we show that the right-hand side of (5) is well defined, too. Let $x_{k n} \in \Delta_{k n}$ be arbitrary numbers and

$$
S_{n}(y)=\sum_{k=1}^{2^{n}} f\left(x_{k n}, y\right) \mu\left(\Delta_{k n}\right)
$$

The Hölder condition and Corollary 1.2 of [3] imply that

$$
S_{n}(y) \xrightarrow{\mathrm{P}} \int_{X} f(x, y) d \mu(x) \quad \text { as } n \rightarrow \infty
$$

for all $y \in Y$. It follows from the Hölder condition that

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|S_{n}(y)-S_{n-1}(y)\right| \\
& \quad=\sum_{n=1}^{\infty} \mid \sum_{k=1}^{2^{n-1}}\left(\left(f\left(x_{(2 k-1) n}, y\right)-f\left(x_{k(n-1)}, y\right)\right) \mu\left(\Delta_{(2 k-1) n}\right)\right. \\
& \left.\quad+\left(f\left(x_{(2 k) n}, y\right)-f\left(x_{k(n-1)}, y\right)\right) \mu\left(\Delta_{(2 k) n}\right)\right) \mid \\
& \quad \leq L(b-a)^{\alpha} \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} 2^{-(n-1) \alpha}\left(\left|\mu\left(\Delta_{(2 k-1) n}\right)\right|+\left|\mu\left(\Delta_{(2 k) n}\right)\right|\right)<\infty \quad \text { a.s. }
\end{aligned}
$$

in view of $\Delta_{k(n-1)}=\Delta_{(2 k-1) n} \cup \Delta_{(2 k) n}$.
Since f is a bounded function, we obtain $\sup _{y \in Y}\left|S_{0}(y)\right|<\infty$ a.s. Thus the set of random variables $\sup _{y \in Y}\left|S_{n}(y)\right|, n \geq 1$, is bounded in probability. Theorem 3.9 of [3] (see also Theorem 2 in [8]) implies that the random function $S(y)=\int_{X} f(x, y) d \mu(x)$ is integrable with respect to m and

$$
\int_{Y} S_{n}(y) d m(y) \xrightarrow{\mathrm{P}} \int_{Y} S(y) d m(y), \quad n \rightarrow \infty
$$

To check (5) we consider the functions

$$
f_{n}(x, y)=\sum_{k=1}^{2^{n}} f\left(x_{k n}, y\right) I_{\Delta_{k n}}(x), \quad n \geq 1
$$

Then $S_{n}(y)=\int_{X} f_{n}(x, y) d \mu(x)$ and the Hölder condition implies that $f_{n}(x, y) \rightarrow f(x, y)$, $n \rightarrow \infty$, for all x and y. According to Theorem 1

$$
\int_{Z} f_{n}(x, y) d \eta=\sum_{k=1}^{2^{n}} \mu\left(\Delta_{k n}\right) \int_{Y} f\left(x_{k n}, y\right) d m(y)=\int_{Y} S_{n}(y) d m(y)
$$

Now we pass to the limit as $n \rightarrow \infty$ and apply Corollary 1.2 of 3 to the left-hand side of the latter relation, while for its right-hand side, we take into account the convergence of integrals of $S_{n}(y)$ proved above.

Bibliography

1. Y. Mishura and E. Valkeila, An isometric approach to generalized stochastic integrals, J. Theoret. Probab. 13 (2000), 673-693. MR1785525 (2001k:60075)
2. S. Kwapień and W. A. Woycziński, Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, Boston, MA, 1992. MR1167198 (94k:60074)
3. V. N. Radchenko, Integrals with respect to general random measures, Proceedings of the Institute of Mathematics of the Academy of Sciences of Ukraine, vol. 27, 1999. (Russian)
4. V. N. Radchenko, Integrals with respect to random measures and random linear functionals, Teor. Veroyatnost. i Primenen. 36 (1991), no. 3, 594-596; English transl. in Theory Probab. Appl. 36 (1991), no. 3, 621-623. MR1141138(93e:60093)
5. V. N. Radchenko, Uniform integrability for integrals with respect to L_{0}-valued measures, Ukrain. Mat. Zh. 43 (1991), no. 9, 1264-1267; English transl. in Ukrainian Math. J. 43 (1991), no. 9, 1178-1180. MR1149591 (93b:28025)
6. Yu. V. Krvavich and Yu. S. Mishura, The differentiability of fractional integrals whose kernels contain fractional Brownian motions, Ukrain. Mat. Zh. 53 (2001), no. 1, 30-40; English transl. in Ukrainian Math. J. 53 (2001), no. 1, 35-47. MR1834637(2002d:60046)
7. N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Probability Distributions on Banach Spaces, "Nauka", Moscow, 1985; English transl., D. Reidel Publishing Co., Dordrecht, 1987. MR0787803 (86j:60014) MR1435288 (97k:60007)
8. V. N. Radchenko, On a definition of the integral of a random function, Teor. Veroyatnost. i Primenen. 41 (1996), no. 3, 677-682; English transl. in Theory Probab. Appl. 41 (1996), no. 3, 597-601. MR 1450086 (98f:60002)

Mathematical Institute, University of Jena, 07740 Jena, Germany
E-mail address: vradchenko@univ.kiev.ua
Received 17/JUN/2003
Translated by OLEG KLESOV

