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ON THE PRODUCT OF A RANDOM AND A REAL MEASURE
UDC 519.21

V. M. RADCHENKO

Abstract. The product of a random measure X and a real measure Y is defined

as a random measure on X × Y . We obtain conditions under which the integral of
a real function with respect to the product measure equals the iterated integrals of
this function.

Let (X,BX) and (Y,BY ) be measurable spaces, Z = X × Y , and BZ = BX ⊗ BY .
By L0 = L0 (Ω,F , P) we denote the set of all random variables defined on the proba-
bility space (Ω,F , P) (to be more specific, L0 is the set of classes of equivalent random
variables). The convergence in L0 is the convergence in probability.

Definition 1. Any σ-additive mapping µ : BX → L0 is called a random measure on BX .

Note that we do not assume that µ is nonnegative and we do not pose any moment
condition.

Here are some examples. If X(t), 0 ≤ t ≤ T , is a continuous square-integrable
martingale, then µ(A) =

∫ T

0
IA(t) dX(t) is a random measure on Borel sets of [0, T ]. A

fractional Brownian motion BH(t) for H > 1
2 defines a random measure in a similar

way (this follows from inequality (3.11) in [1]). Other examples as well as conditions
for increments of a stochastic process to generate a random measure can be found in
Chapters 7 and 8 of [2].

Further let µ be a random measure on BX , and m a finite nonnegative measure on BY .
A set A ∈ BX is called µ-negligible if

µ(B) = 0 a.s.

for all B ∈ BX such that B ⊂ A. Let ξ be a random variable and put

‖ξ‖ = sup{δ : P{|ξ| > δ} > δ}.
The integral

∫
A

f dµ is defined and studied in [3] where f : X → R is a real measurable
function and A ∈ BX . When constructing this integral one starts with simple functions
and proceeds similarly to [2, Chapter 7] (see also [4]). In particular, any measurable
bounded function f is integrable with respect to any measure µ.

In this paper, we define the product of a random and a real measure and prove analogs
of Fubini’s theorem for integrals of real functions.

Theorem 1. There exists a unique random measure η on BZ such that

η(A1 × A2) = µ(A1)m(A2)
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for all A1 ∈ BX and A2 ∈ BY . If f : Z → R is integrable on Z with respect to η,
then for all fixed x ∈ X, except for a µ-negligible set, the function f(x, ·) : Y → R is
integrable on Y with respect to m and

∫
Y

f(x, y) dm(y) is integrable on X with respect
to µ. Moreover

(1)
∫

Z

f(x, y) dη =
∫

X

dµ(x)
∫

Y

f(x, y) dm(y).

Proof. Let A ∈ BZ and put

(2) η(A) =
∫

X

dµ(x)
∫

Y

IA(x, y) dm(y).

The latter integral exists, since the inner integral does not exceed m(Y ) and any bounded
function of x is integrable with respect to µ. Corollary 1.2 of [3] implies that η is σ-
additive in probability. The equality η(A1×A2) = µ(A1)m(A2) is obvious; the uniqueness
of η can be proved in a standard way.

Now we prove (1). If f = IB, B ∈ BZ , then (1) follows from (2). Thus (1) holds for
simple functions on Z. Let f : Z → R be a measurable bounded function and let fn,
n ≥ 1, be a sequence of simple functions such that fn → f and |fn| ≤ |f |. Equality (1)
for f follows from the same equality for functions fn by passing to the limit with the help
of Corollary 1.2 in [3]. Since m is finite, the functions f , f(x, ·), and

∫
Y

f(x, y) dm(y)
are bounded and integrable. The latter result is an analog of the Lebesgue dominated
convergence theorem.

Let f : Z → R be an arbitrary function integrable with respect to η. Let D be the set
of points x ∈ X for which f(x, ·) is nonintegrable with respect to m. For x ∈ D we have∫

Y

|f(x, y)| dm(y) = +∞

and thus the classical Fubini theorem implies that D ∈ BX . Assume that D is not a
µ-negligible set. Then for some ε0 > 0 and all k ≥ 1 there are n(k) > k and D1 ⊂ D,
D1 ∈ BX , such that ‖µ(D1)‖ > ε0 and∫

Y

|f(x, y)|I{k<|f |≤n(k)} dm(y) > 1

for x ∈ D1. Theorem 1.3 of [3] with h(x) = 1 and A = D1 implies that

‖µ(D1)‖ ≤ 16 sup
B⊂D1

∥∥∥∥
∫

B

dµ(x)
∫

Y

|f(x, y)|I{k<|f |≤n(k)} dm(y)
∥∥∥∥ .

Equality (1) is already proved for the bounded function |f(x, y)|I{k<|f |≤n(k)}. Now
Corollary 1.2 of [3] implies that

sup
B∈BX

∥∥∥∥
∫

B×Y

|f(x, y)|I{k<|f |≤n(k)} dη

∥∥∥∥ → 0, k → ∞,

since f is integrable with respect to η. This result contradicts the condition‖µ(D1)‖ > ε0.
Thus the set of points x where f(x, ·) is nonintegrable is µ-negligible. In what follows we
assume that this set is empty (in fact, we change the values of f on a η-negligible set).

Now we prove that the function g(x) =
∫

Y
f(x, y) dm(y) is integrable with respect

to µ. Consider the functions gn(x) =
∫

Y
f(x, y)I{|f |≤n} dm(y), n ≥ 1, and

h(x) =
∫

Y

|f(x, y)| dm(y).

Equality (1) is already proved for the bounded functions fI{|f |≤n}; we also have that
gn(x) → g(x), x ∈ X. For all c > 0

{x : |gn(x)| > c} ⊂ {x : |h(x)| > c},
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thus

sup
n,A∈BX

∥∥∥∥∥
∫

A∩{|gn|>c}
gn dµ

∥∥∥∥∥ = sup
n,A∈BX

∥∥∥∥∥
∫

(A∩{|gn|>c})×Y

fI{|f |≤n} dη

∥∥∥∥∥
≤ sup

B∈BZ

∥∥∥∥∥
∫

B∩({|h|>c}×Y )

f dη

∥∥∥∥∥ .

The set {x : |h(x)| > c} approaches the empty set as c → ∞. Since f is integrable with
respect to η, Corollary 1.2 of [3] yields that conditions for the uniform integrability hold
in Theorem 1.7 of [3] (see also the theorem in [5]). Thus Theorem 1.7 of [3] implies
that g is integrable. Now equality (1) can be proved by passing to the limit along the
sequence gn. �
Remark 1. The existence of a random measure η defined by (2) and the equality be-
tween the integrals on the left- and right-hand sides of (1) is stated without proof in
Example 10.1.2 of [2].

The product of a random measure with independent values with itself is constructed
in [2, Chapter 10]. If m is Lebesgue measure and µ is generated by increments of fractional
Brownian motion, then a result on the product of m and µ is obtained in [6].

The iterated integrals coincide only under some additional assumptions. First we
prove some auxiliary results.

Lemma 1. If ak ∈ R, ak > 0, and Ak ∈ BX , k ≥ 1, are such that

sup
x∈R

∞∑
k=1

akIAk
(x) < ∞,

then

(3)
∞∑

k=1

a2
kµ2(Ak) < ∞ a.s.

Proof. If inequality (3) does not hold, then for some ε0 > 0 and all c > 0 there exists
n ≥ 1 such that P (Ω1) ≥ ε0 for Ω1 =

{
ω ∈ Ω :

∑n
k=1 a2

kµ2(Ak) ≥ c
}
.

Consider independent Bernoulli random variables εk, 1 ≤ k ≤ n, defined on another
probability space (Ω′,F ′, P′), that is, P′(εk = 1) = P′(εk = −1) = 1

2 . Lemma V.4.3 (a)
of [7] yields that

P′

⎡
⎣(

n∑
k=1

λkεk

)2

≥ 1
4

n∑
k=1

λ2
k

⎤
⎦ ≥ 1

8
, λk ∈ R.

Thus

P′

⎡
⎣ω′ :

(
n∑

k=1

εk(ω′)akµ(Ak, ω)

)2

≥ c

4

⎤
⎦ ≥ 1

8

for all ω ∈ Ω1. Integrating over the set Ω1 we get

P×P′

⎡
⎣(ω, ω′) :

(
n∑

k=1

εk(ω′)akµ(Ak, ω)

)2

≥ c

4

⎤
⎦ ≥ ε0

8
.

Hence there exists ω′
0 ∈ Ω′ such that

P

⎡
⎣ω :

(
n∑

k=1

εk(ω′
0)akµ(Ak, ω)

)2

≥ c

4

⎤
⎦ ≥ ε0

8
.
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Since εk(ω′
0) = ±1, there exists a simple function f : X → R such that

P

[∣∣∣∣
∫

X

f(x) dµ(x)
∣∣∣∣ ≥

√
c

2

]
≥ ε0

8
, |f(x)| ≤ sup

x∈R

∞∑
k=1

akIAk
(x).

Recall that ε0 > 0 is fixed, while c is arbitrary. The latter inequality contradicts the
boundedness in probability of the set of values of integrals of simple functions

∫
X

f dµ
such that |f(x)| ≤ 1 (see Theorem 1.1 in [3] or Theorem 2 in [4]). Therefore the lemma
is proved. �

In what follows, X = (a, b] ⊂ R and BX is the Borel σ-algebra. Let

∆kn =
(
a + (k − 1)2−n(b − a), a + k2−n(b − a)

]
, n ≥ 0, 1 ≤ k ≤ 2n.

Lemma 2. For all α > 1
2

(4)
∞∑

n=0

2−nα
2n∑

k=1

|µ (∆kn)| < ∞ a.s.

Proof. Let α = 1
2 + β. Using the Cauchy–Bunyakovskĭı inequality we obtain( ∞∑

n=0

2−nα
2n∑

k=1

|µ (∆kn)|
)2

≤
( ∞∑

n=0

2−nβ

)⎛
⎝ ∞∑

n=0

2−n(1+β)

(
2n∑

k=1

|µ (∆kn)|
)2

⎞
⎠

≤
( ∞∑

n=0

2−nβ

)( ∞∑
n=0

2−nβ
2n∑

k=1

µ2 (∆kn)

)
.

It remains to apply Lemma 1 to the second factor. �

In the sequel the integrals of random functions ξ(y) = ξ(y, ω), y ∈ Y , with respect to
a real measure m are defined according to Definition 5.2 in [3] (see also [8]) (an equiv-
alent condition is given in Theorem 3.8 of [3]). A random function ξ(y, ω) is integrable
with respect to m if it is measurable with respect to the pair of arguments (y, ω) and
P

{
supy∈Y |ξ(y)| < ∞

}
= 1. The integral

∫
Y

ξ(y) dm(y) can be defined for any fixed ω
as the limit of the Lebesgue integrals of simple functions.

Theorem 2. Let X = (a, b] ⊂ R, and let BX be the Borel σ-algebra. Let f : Z → R be
a bounded and measurable function. Assume that there exist numbers α > 1

2 and L > 0
such that

|f(x1, y) − f(x2, y)| ≤ L|x1 − x2|α

for all x1, x2 ∈ X and y ∈ Y . Then

(5)
∫

Z

f(x, y) dη =
∫

Y

dm(y)
∫

X

f(x, y) dµ(x).

Proof. The left-hand side of equality (5) is well defined, since f is a bounded function.
Now we show that the right-hand side of (5) is well defined, too. Let xkn ∈ ∆kn be
arbitrary numbers and

Sn(y) =
2n∑

k=1

f(xkn, y)µ(∆kn).

The Hölder condition and Corollary 1.2 of [3] imply that

Sn(y) P→
∫

X

f(x, y) dµ(x) as n → ∞
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for all y ∈ Y . It follows from the Hölder condition that
∞∑

n=1

|Sn(y) − Sn−1(y)|

=
∞∑

n=1

∣∣∣∣∣
2n−1∑
k=1

(
(f(x(2k−1)n, y) − f(xk(n−1), y))µ(∆(2k−1)n)

+ (f(x(2k)n, y) − f(xk(n−1), y))µ(∆(2k)n)
)∣∣∣∣∣

≤ L(b − a)α
∞∑

n=1

2n−1∑
k=1

2−(n−1)α(|µ(∆(2k−1)n)| + |µ(∆(2k)n)|) < ∞ a.s.

in view of ∆k(n−1) = ∆(2k−1)n ∪ ∆(2k)n.
Since f is a bounded function, we obtain supy∈Y |S0(y)| < ∞ a.s. Thus the set of

random variables supy∈Y |Sn(y)|, n ≥ 1, is bounded in probability. Theorem 3.9 of [3]
(see also Theorem 2 in [8]) implies that the random function S(y) =

∫
X

f(x, y) dµ(x) is
integrable with respect to m and∫

Y

Sn(y) dm(y) P→
∫

Y

S(y) dm(y), n → ∞.

To check (5) we consider the functions

fn(x, y) =
2n∑

k=1

f(xkn, y)I∆kn
(x), n ≥ 1.

Then Sn(y) =
∫

X
fn(x, y) dµ(x) and the Hölder condition implies that fn(x, y) → f(x, y),

n → ∞, for all x and y. According to Theorem 1

∫
Z

fn(x, y) dη =
2n∑

k=1

µ(∆kn)
∫

Y

f(xkn, y) dm(y) =
∫

Y

Sn(y) dm(y).

Now we pass to the limit as n → ∞ and apply Corollary 1.2 of [3] to the left-hand side
of the latter relation, while for its right-hand side, we take into account the convergence
of integrals of Sn(y) proved above. �
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