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" On the product of the conjugates
outside the unit cirele of an algebraic integer

by

A. BAzZvLEwICZ (Warszawa)

The aim of this paper iy to extend some results of A. Schinzel [4]
and to malke them more precise.

Let K be a number field of degree |K|, let

P(2) = py2"+p:2" 4 . 2,

be a polynomial over K with the content C{P) = (Po; .., D), 1ot G be

the set of all isomorphic injections of K into the complex field ¢ and,
for ge, let

T==

oP{z) = opy”"+ ... +op, = c:r_’poII (B Og).
=]

Generalizing an argument of Smyth [5] concerning the fundamental
case K = @, Schinzel proved that if K is totally real, P (#) is non-reciprocal,
p,; are integers, p, = 1 and p, # 0, then :

(1) max [] 1oyl = 6,
W fugyl>1

where 0, is the real root of the equation #° —§—1 = 0. We extend this
in the following manner. .

Tunowim 1. Let K be o totally complex quadratic extension of a totally
real field and V —8¢ K.

If P(z)e K [2] is @ monic polynomial with integer coefficients, P(0) # 0,
2 P(a?) % constP(2), then (1) holds.

of the equation
14V —3 '

Pl

which ds greater in obsolule value.
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For K being a totally complex quadratic extension of a totally real

field Schinzel considered the product
7= [] 1
el ugi=l

and proved that if p, # 0 and [p,| # [pel, then

- (14V5 e O(P)\5+ = (2a) \i =77
S e s = M
with the equality possible only if Voe K, C(P) = (po},

Pn _E_]'_H/ri
Po 2

He made a conjecture about the possible form of the polynomial P

for which the equality in (2) is attained.
We prove this conjecture as:

TuROREM 2. The equality in {2) is attained if and only if
7 - Je1
14+V5\"
(3) Pie) mpo(z fatE )H (2~

where e; are roots of -umli;y.- _
This theorem is an easy consequence of the following:
THroREM 3. Let K be a totally complex quadratic extension of a totally
real field.
If 1:/(z « Kiz] is a monic polynomial with integer coefficients, P(0)
14; 5

and
2

=1 if  o(VB) = +V5
gl <14 o(VB) = VB
then (3) holds.

The proofs are based on several lemmata.
LemwmA 1. Let f(z)

]anjl =

(J==1,2,...,n),
(7 =1,2,...,n),

Zetz e a functwn holomorphic in an- open dise

condaining |2) < 1 an&.satzafymg [flz)| =1 for |20 = 1. Then

(4) el <1—legl* (2 =1,2,..),
€8, © eyl
(5) o K1l — e (i =1,2,...
. - |Po“ ol 1 — e, .(Tl 22y 00e)
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Proof (due to A. Schinzel). Inequality (4) is proved in [4]. In order
to prove (B) let us observe, following Smyth [5], that for all £,, &

[ @R B+ pdf + 22 < [ 1o+ br#t + de;
|2f=1 12]=1
thus

legBol* + Ignﬁr]‘@;ﬂolz”!‘ £60+eiﬁl+eziﬁ052 < 148"+ ]ﬁligﬁ

and setting

_ ~1. - Pe;
Bo =per’s B meo(a_“eo)
where |p| = |8| =1, we obtain
&p Py 1
: <
for (6—ep) ey * &g < leol
Henee
1 82' 1
2 v e, | << 1.
(G) &GP + [Py T 6y
For an arbitrary e with |e| = 1 the number
' eps+1
PR
has abgolute value 1.
We set
8¢} el e RS
Tt T T e T 4
Then
62 ¢
egp ——--—+ ;= le +2————~+8i
oP - i_e, 2 |§] leof® D 2
‘E ( 2 [61:;2
= | (6} A +|£]].
=T T
Hence 'by (G)
61+ ool i )<1 and (8] < 1— feplt— —
- ™ ha b
m P )| S R ey

which proves the ].emma.
LEmma 2. Let P(2) = 2" +p2" 1+ ...
7 COmst P(z). Then

F P, 11l =1, Q(z) =2"P(z7Y)
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where f and g are holomorphic in an open dise confotwing 2| =<1,

70y = g(0) = [ lal™,  if(2)] = Igla)l =1

14511

Jor |#] = 1,

and if the coefficients of P are veal, the cocfficients of f and g are also veal.

Proof (cf. [4], Lemma 2). We Het
]ajl Z“"aj “(l; l ""ﬂjﬁ
0= [T i o= [0 2%
|ﬂj1<l(maj) l*“ﬂjz . it |(1j‘ z

and using the equalifies

n

[]i~e)y =Py, P

b=l

(0)] =1,

we easily verify all the assertions of the lemma. Note that if |uf =1,
the factor z—e; occurs both in P(2) and in @(2). Also if P(2) has real
coefficients,

Limnrma 3 (Kroneckel 2n. If a % 0 48 an algebraic infeger with \a] =1,
then « i3 a vootl of unity.

If a is a totally real algebraic integer with |a| = 2, then a =
where w 18 rational.

Levwa 4. If a = 0 is on algebraic integer of a field K satisfying the
assumptions of Theorem 1, then either o is a root of unity or W > V2.

2eosum,

Proof. By the first part of Lemma 3 we can assume thatb [a] =1,

For all e G we have
o{lal?) = ca'odt = owga = |oal?;

thus |z is totally real and fotally positive, |a] is totally real and ]a[ = J|u|[
On the other hand, by the second part of Lemma, 3,

e 7 -
|lal| = 2005--«5 = V2,

Proof of Theorem 1. Let

A = max letg]

o laggl>1
Since V2 > 85, we can assume that 4 < V2. It follows that P(O)] =
since. otherwise by Lemma 4

A=|P(0)] = V2.
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The asswnption I'(2)/6Q(z) ot const implies that

1’(0)1’( 2)
Q)
where on the right-hand side we have infinitely many non-zere coefficients,
ay,, @ being the first two of them. Since o, ave integers of K, [a;] = 1 for

- fe, L
Using Lemma 4,
== V2. Since e A(P) == 4(oP), we can assume | ak|>1/2

(7 E(z) = 1+%z’“+a;z 4+,

we distinguish two cases.

The case | =

© replacing if necessary P by a suitable o*I’ Applying Lemma 2 to P, we
gob
_T;(‘()')‘P(z) f&)  eteztestt ..
) e T ge) T T dade
|F(2)] = |g(2)] == 1 for |2} =1, -f,¢ holomorphic for |e! =< 13
7(0) = g(0) = [[ I == d. '
lagli=1 .

Comparing (7} with (8), we get

o1}, ¢ = dy+mc,
Z-*-;’G— ), Cl= dl—l—al‘d—‘—a’kdl—k'

o ==d; (1 =1,2,
®) Opyq == i+ a‘.’ndi (’t. =1,2,...,
It follows from e, = d,+ a,¢, by Lemma 1, that

eyl - [dy] =

The case {akl == 1, m,r is & root of unity. Let # be a root of .unifr;y,
P,(2) = n"P{n"'2). We have A(P) = A(P), P, and K(n) satisfying
the assumptions of the theorem.

Satting

Ve < laylle] < <29, Voe<ge'<A.

woe got

: ‘n‘f:( ) 11,1)(” ) P(0)
Byl®) = " ey Q0
hence for all 4

(9a) oy = oy el = lagl

. [
Taking = Vay, we got

a1,  ap =0 (0<i<E), “érsE_K-
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Therefore, without loss of generality we assume that a, = 1 if < 2%

and e, = £1, aye L if I 2
of symmetry).

The case [< 2k a, =1. Applying to P a suitable s @, we con
obtain ]al| = 1. We shall exploit the following inequality, due to Smyth
(I8, pp. 172, 173):

2k {we admit both signs here for the sake

a6y, Yo g
e T O o

(10) g 3

5]
B = < ]2 =+ ley g 4 e |2 -+

<2+ 8P+ I')’Jza :

where £ and y are arbifrary complex numbers.
Pot F(8,y, 6.4 = BB~ Iy~ tlzlf’(ﬂ :

tian form with the matrix

(f;{ ok . :
‘-) is o hermi-

[;

le2 -1 o =t i J‘z,
2 2 >
|e]®
S LeP—1 e lalep
M = -
g
Y it 1 ~ T
lol? . al%le
“L 3 ;a’”cF ;‘}aic dl I + ‘ llll‘ I

with diagonal minors

—1<0, M, = ;cr*»—‘-;[e[z_l >0,

- le]® Jay*
4
In order to justify the secomd inequality we notice that the equation

¢ = am—a nnplxes by Lemma 1

My = |e®
) -

My =%—-202>0, M, — g2

5 [
el + > flel* —glel’.

and since ¢ iy an algebraic integer,

Vi7T-1 . 9
G<-~4—~: el —-Z-|G]2+1>0_'
Now
Flf, 7, i) = M1 2 v 2
. gy R
T [€1k % ,
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(zee, e.g. [3], p. 461), from (10) we get
M )

%= minmax F(§, y, ¢_,) < 2
M:; oy &y
and from (11) we get
A010|* — 93 |¢|* 40 = 16 (2M, —M,) > 0.

As proved by Smyth, the latter inequality implies 4 = ¢! > 6,.
The case !z 2k a, = 41, dye I, By (9)
Cyp, = oy Oyl + aypc.

On applying (B) to oy, and dy, and adding the resulting inequalities, we
get

. dk ¢ — d,
(12{) | G ~— ‘ )k+ !6]2 ﬂ2k0+akd;‘,+ 1——_62 ¢
: |gl® a2
<2—30= T—e? 1—g?

(¢ s real). We now set
= ) iel), dp = @+,
where ¢f?, d', af) are veal for i =1,2; and we get from ¢, = &+ a6
the equations - : .
?) =d, i—d =P d{2aed) .
The inequalily |»|z Rewx| applied to (12) gives
C&:)a 1)2 0951)2 d(,i)? .

{1 0.k Tk P — .
ale 4 a,dl - ?l.-—-c“‘ ¢ 7 i

L a'(zll-):‘]""’a'(znzb

13 /2—202~

The left-hand side of (13) is greater than or equal o

5”: @\ = 16 ¢ a, @] & (

91)2 d(l)z )

10l et a,dP) — i

Hence

. Gsl)z dg)?. 4;[)2 dscl)z
1 (1) | D ? D D¢ e i LI .
(14) oo+ a dP] < 220 mm(i_w + 1—o' 10 + 1o

8ince d = e+ dP, we have

(15) e 4 14 =

for otherwise by Lemma 1

toese A=clBVE - .

d . Aada Awltheankias VWY1
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Again by Lemma 1

(186)
By (15) and (16)
AFo—1< o] <12,

17
) 02-{—'cw1< ) < 1 —e.

The further argument depends on all).

1, Y. o) =0, % 0< |af)

- We distinguish three cases: X. ‘&Tﬁ W< 1
laf| 2 1.

X. Applying to P a suitable ce@, we can ‘obtain
By (A7)
(18) lafle 45| = a%lcv—ld%’l > +o—1.
By (14) and (18) _
) 2 2
Fte—1g M = mMax '(2—202— - (0—) )
2 o—1Cmgl—e? L4¢ 1—e¢

As proved by Smyth ([5], p. 175), the latter inequality implies

A=¢120,.
Y. By (17) '
. oo ) = @] > o*+o—L.
By (14) .
' dte—1<M and 436
as in X,

- Z. Bince |2a(”| < 2 and 208) = a,, 1@, i3 & totally real a]gebrmc integer,
we have by Lemma 3

_ al} = eos2wn,
Since ) = +e+dP, we have by (14)

e e, 12 gz
(L L. S

w rational.

e (afl) —1)el < 2 — 2% — min ( .
W (el -1 < 1—}—0 R T R

If |a(” j 1 or of)—1 == 0, then the situation differs from that
occurring in the case X or Y only by the per mui.:mtmn of ¢ and 4. Let
]&(1)__1| < 1.

We have
_ f—1 = cos2umn —1 = —2gintwn;
hence :
T o 1 1 I 1 P -
pintws| < —,  |sinwn| < ==, [2sinwn| < V2.
L4 : 2 .. ]/2

icm
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2uinwn is a-totally real &lc'ebfaic integer, and hence, by Lemma 4, 28inwr
= 1, af) = 1 —2sinfun = §, ay, = é%—m(,",z. TtV —3¢ K, it is impossible
to have afl) = j_]/—/ and ﬂms dyy, 18 N0t a root of Unity. Hence by Lemma 4
Ve and applying to P a suitable ¢<@,- we can obtain

o] 2 V2, (0]l = 4V,

vioovE o,
We now replace I by P,(2), wheve i = .T‘ By (9a) we get
, 1/2 1/2 .
A = | bty == 0y,

ai:ﬂ for eﬁZ?c, ik, 2k.

P (2) = P(z).‘lﬁ’(z) it a polynomial with totally real coefficients.

2oy 2@ _POIPE) POIPE)
Q=) ¢ (2) Q(z)
— (1 a),2% & ag@® L) (LT 2 Togd™ L)
1/2;(1% ¢ L i) 2 L= LB 4 by

By Lemma 2 , .

() fo"[“"1z+
(21) Q=) fo +figt ..
where f, = ¢, = ¢* and ¢;, ﬁ are real.

The series occurring on the right side of (21) are convergent in an
open disc containing |¢| < 1 and have absolute value 1 .on the circle
2] =
By the inequality (14) ‘ : -
% fi o G T )

by‘fc" V2] 5 2 — 268 —min ( : + "Te | Tten

99
(22) T--eg  L—g

By (20) and (21)

(33) 6 = fo i<l 6 = aV2egFFuy  Ca = bayfoHfur T 4V 2P
The equality &, = fi- %]/5 ¢y implies

(24) el 4 1Szl = V2en,

for otherwise, by Lemma 1, V2e, < 1— e, and

6
&= '/2+]/~n>19>00, A

= ¢™! > f,.
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By (24) and (22)

(28) beg o+ aY 26 < M = maxgp(a),
where
2 Y J—
o) = 2—26i— & (V2e,
1 -i-ﬁo 1 _‘30

‘We have

lcp’(m) T w——‘i@eo _ w2m4~V§eo(J. -+ €y)

9 L} &g 1—¢, 1—e ’ .

thug the m_a,ximum of g(x) taken for x =——22—00(1 -+ €p) equaly

| 1 1 1 '
M :m(~l/—§— ao(l—l—e.,)) =2—233—;eﬁ(l#—eo)wieﬁ(l—en) = 2 —3el.

&

From the equality f, —|-_akl/§¢30 = ¢, we get by (25)

]b;keo+ak}/§ckl < 2-—3¢, where by =5, —2.
§ince 8y, = — afj -+ i}, by, = 1 —2a8), we have by, = —1—2af}. Replacing,
if necessary, f;, by e, and by, by b, we can thus assume that |by| = 1 --V7.
. Hence | _ )
[Boy €5+ akﬁek-] ,>, [Bys 20! —wl/El 6| = I/§e§ + (1 —H/’T) éy —v2
and by (25)
236> 1/—30+ 1+VT)e,—V2,
fleg) = O:
Wheref(m (2 -H/_ 2)p2—(1 -|«l/7 —(3 -4—1/2

Since f(1°)< 0 and 6 = ¢ we have A = ¢ >1>4,.
Consider now the case

V3

ay = -1, tap =‘— :j:"-"—’#, Vtgeff.

+

It follows from (9a) that.

— @ = 0y 6(2d0 + ag0) - 20y d)
and from (15) that '

101® 4 [8el* = )" +2(8P)2 + (0~ [aP))2.
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The inequality (12) implies in virtue of the above identities

PPV . i ol o e 2L
! ‘ 1—¢®
¢+ 363 1-+4¢ V3 1
—l(%‘x.wiz THTT 'dm)+ (i Ty +c )

Hence it follows that

My = maxmax

i e 1—et

e e

The inner maximum is attained for |@})| = ¢/2 sinee then both

; 1462
@+ (o~ a0 and lii? (* —]d“’i)
attain the minimal value. Thus
, s 2)dP: | V3 14-¢2
My = max |2 —2¢2— - — — e —— |dP||) = O
* m5§>1( 2(L—ct) 1 2 1—¢? 2 \_
We set _
¢ P V3 14t
@) = 2 — 26— — —|—_——e— al.
g(@) CTnle)  1_a l 5 T e
) V31— . . .
In the interval [0, ——¢ the function g{x) iz inereasing.
2 146
Indeed we have in this interval
V3 o1 o} g% 4 1-+c® —2V3¢ 142
e ermeen, @4 e v minrore o' () = ~— = P
2 ‘ 1l —et 8> 0, g 1 e 1—et” 14-¢2 ] -t

On the other hand, by the assumption < Y2 we have

et >}, (“-+¢2)2>%:
VB e(1 —et) < V3o V3 <2< (L4622,
For a >- ]/1" - ¢ 1-¢ we have
9 14 ‘
V3 1+ . 4 1+te?
werroer (3 e %‘<0 1) I | T
T e . g() T—¢2 1 —e? ’
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thug the function g(#) is decreasing. Since it-is continuous, we have

V3 1—¢
My — =
2 g( 2 1»%02)’
V3 1 e 3 (1—c%)?
e O | 2 D — R e @d —
5’( 3’ 1-[—02) ST T3 ey = %

- and on simplification .
1—ct—g'—cfef 2 0,
whenee A — A% — A'— A24+1 2 0. The equation a*-—ag®—p%— m-}-ﬂ: =0
has-only one real root greater than 1, namely
HL+VIB 4V 2vI5—2),
It follows that’

Az V1434V 18 -2.
On the other hand, the polynomial #%4-pz—1, p = w2720 has

two zeros given by the formula

Hence

f

1 Vi3 —_‘7)2' ( 3
Baf =5 42 V53] +15

o e
== Z(l“/l?’ + =g

. 1 — S
= S+VEeVevis—g :
and we get.
' Az 16,

It remaing to note that the zeros of the polynomwl 2% - p?z —1 are complex
conjugates of the zeros of 22 e#—1 and that

16,2 < 1.73 < 6.

Ft
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LeMMa 5. f(2) = 4,2" 4 ... - a, has all zeros inside the unit civele

if and only if 8,(f) >0, k = 0,1, ..., n where

Gy [ Gy
By Oy ‘ &y gy
H
S &y
. . | Opger +vr Oy Oy L &,
(26) 3u(f) = i . -
‘0 e TN S h—Jour
ty o ay ' '
% L. o a"n-—l
Bgy .. By B "

Proof ree A. Oohn [1].

Tumma 6. If A4 = (ay), i,j<n, nzl>k then

. . . " * . a[ a .
(27) dotd = 3 (—LyHret g, L

i<y

Ay Gy ’
where Ay p, 48 the determinant of the matriz obtained from A by. crossing
out the T-th and 1-th rows and the i-th and j-th columms.
The proof follows from Laplace’s theorem.
TEmmA 7. Let K satisfy the assumptions of Theorem 3,
F(2) = 0,204 oo g, [U(2) = (2 = @R T L T,
' 1+V6

)

where a; are integers of K. If a,=1, ay = & , where £ is a root of

unity, then jow each i << m the eondition .
Suaf) >0 if oV = VB (E=1,2,..,4),

{wy) — - ‘ .
o >0 if B =VE (h=1,2,.,0)
implies ' _ _ '
(28) Slaf) = Sy(af)*  and a’n—k-{-lao—aﬁc-—l = 0

Jor a?l i ond all o0eG.
Proof. We ghall proceed by induction with 1espect to 1, For i =1

) (a/nao"—ao) = 0'0 = 0, ‘
5o o
m.l*'z'/" i cﬂ/ﬁ = 1/5,
= 1_"‘ 10’6’/0[2 w= . ; L
f-’_‘ N
' 1iw~]; it 01/5 = ~VV:

1 Tk

Sy(af) =

6,
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Let us assume that the lemma is true for i <Z 4,. Then, by applying the
formula from Lemma 6 to the rows 4y, 24, and omitting the terms which,
involve the coefficient

a, 0
g 0|
we geb L
N 10~—1
1 Fpipet @, )
(29) by f) = Hif )+ D (=1Y] " J‘” 2| ).
: =1 1=

Now we apply (29) to of and use the inductive assumption. We obtain

) Oy, _; .y O
(30) Bplaf) = dalaffo— | 70 NN b sy (o)
) n-dy+ 1 ol .
(6'{“(.)"))50.%0:;,?‘“

¢ 0 0 a a, By Gy
| Oy 0 a a By Gy
Gy 1 a,

............... 0 0 a, a,

= Oy gy Oy jpo Oy Oy, 0 _ 0 Ay a,

0 0 0 En an.—l -‘nmﬂ-z aa’t--wl-l-l
a, 0 0 &, Bniry Opeiyr
a  a, 0

.y @, ...8 @y, 0 0 i, @, _y

. We develop the determinant 'according to the firat row and the 4,th
row. When these rows are left out, the {tg—1)-th column consisty of zeros
only, and hence it suffices to compute the minors Mll%;%_l’i. For the
elements a of K, we have ¢(a@) = W; thus

Garo 0'0;1 !

= (@) o (@, ) “U(at);@Y

o, O,

. = a(a'ﬂa’n—'t'“ o 0,) = a(a—’ﬂa‘n—i - aian)‘
By the inductive assumption

‘_’(“‘0) cr(ain__l)

61:(0‘f)i',1:;i = —
0+ % g, 2ig5.1 (@) (g 1a)

6i0ﬁ2 (af)

bl 51(0'f)i°_20'(50an—€0—|-1 _“itt,«l “n)

icm
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O the produst of the conjugates oulside the wnit cirele -0y

Substituting the computed value of {84 )igzignsi, iMbO (30), we geb
‘51:0(9:” = d(af )0 — &y (of Yo~ o (@p .41 “““&Hio-l%w- |

Since 8,(f") is obtained from 8,(f) by a transposition of the ith row and
the (k--1)-th row of the latter, we have °

) = (—1)F8(f) Bulaf*) = (=1 d,(of).
Hence the condition (wy) is equivalent to the condition
Sy () >0 i ofF=-VE,
(—1)ed, (o) >0 it o5 =V3,

and

We sel i
. & == aﬂa’n—nia-!-l - aio—la'n
and distinguish two cases: .
A. i, i3 even. We have, for all ve G,

B, (af) = O(of) — 8= (af) loal* >0,

and since
.(af)o and & (gf)o >0,
we get _
| S (5 Vi),
< Bl =t N
| 3"2 ° (a5 = —V3),

| ]J |ow]2 < 1;! 8 (af).

The nyumber N = []low|? iz a non-negative rational integer, a5 the square
oely !
of the norm of a,

J]% N =1.

oel
34+VE 3—-VE ‘ _ tors i :
Since m%ﬁi and T occur equally often as factors in the produet,
we have M = 0 and @ == 0. .
By (31) ‘

!s.“n(qf) = d,{af)e,
" e Fa e ) =0
Bolhy sy ™ By -1 O = 0, "*(a’ﬂ’a’n""a+1 -a'“a'{ﬂ‘l)

and the inductive asgertion is proved.
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B. 4, in odd. We have
8 (af) >0 i oV3 = —V5,
Bylof) <0 i a¥B =VE. S
I : :

we have

51(0].){0 >0, 61(°:f)i0—2 >0
-and the ineguality

8, (af o — 8, (of o2 |o]® > 0

‘imiplies
3—V5
(32) —~5~3~ > low]*.
.H ¢
- = 1-+V5
VB =V5, &(of) = — J;’/ <0, .
“we have

Bio(af) <0, G(afyomt< 0
and the inequality ' |
Su(af)fo— & (of Yo~ [orf* << 0
-implies :

{33} . _3_:;_@ =~ lo—mlz

)

The inductive assertion follows from (32) anf (33) ag ..‘-in the eate A
LEMMA 8. Let K satisfy the assumptions of Theovem, 3y

flo) =", 2" e L e _fig/ﬁ,
‘where a; ave integers of K, ¢ is o root of umty, and et

1

of (2) *—=n(z°—~ ay), o,

i=1

(34 aul >1. if  oVF =3,
eyl <1 if  o¥5 = —VE,
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then =
1+V5
fla) =&k o .
Proof. f(2) has all zeros outside the cirele 2| > 1 if and only if *(2)

= 2*f(27") has all zeros inside the circle |2} < 1. By Lemma 5 the con-
dition (34) is eguivalent to tho condition

Slafy >0 if  oVB = —VB (k= 1;2, ey My

e =0 i /b =VE  (h=1,2,..,n).

The latter is the same a8 (‘011(111.3,01'1 (Wn) considered in Lemma 7 and in
virtue of that lemma _

(38) By Gy— 0y =0 (1 =1,2,..,n-1),

145
where a, = & - T
(856) gives a8, -4, ; = 0 and on passing to cbmpléx conjugates
we got

\(3413)

(851 Gy =0 (1=1,2,...,n—1).
Hinee B
, G 1| 4, 14VE

'Tl a| =L =5 # 0,

(35) and (35°) imply a; = a,_; =0 for i =1,2,...,n—1. Hence f(z)
=2y, S ‘
. Proof of Theorem 3. Assume firgt that

P(O = g 1—;]/€
Let
. . ne=k¥l
Pe) = 1) [] (2=,
domd

where ¢ aro roots of unity, bub no zexo of f(2) is a root of imity. The prod-
uet [(z—g) divides (™ ——1)‘“ for a Su.it&b_le m; hence . - ‘
Relell

l‘] __“8' - (z)’ ,,-m, '"’)e K[z]

Pt . * —
: 1+V5
&nd f(»)e K[2], f is monic with integer coeﬂmlents and f(0) = & <

For ge @ let _ L
(36) of (¢) = [ [ (e —auy)-

)
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»

By the assnmption about ( 2), we have

37 Iaa;ll = if G(l/vg.) = ‘/.F)'-,
(37 lagl <1 “if  o(VB) = —Vb.
Suppose tha.t for a o,¢ @ and 2 o < k we have
(38) . / et = 1.

Congider the field I = K%{« Wu) and any isomorphic injection v of I

into 0. We have 001/5 = 0'01/5 thus ':crol/a = 1001/5
It vo,V/5 = V5, then, since To,f{ Uaipe) = T (Tagy,)
by (36) and (37)

== 0, we have

and

ifaaojol ‘2 1 I'E'a.aoi(]! ,,>/ 1.
If voVB = 70,/B = —V5 we have similarly
[Tagl <1 and  [zo., [<1.

On the other hand by (38)

T(aaujﬂ'aaojg) == Ttadojoi\z = 1;

Ta"njo 1:‘01‘,090 =

thus [za,; | =1 for all 7. By Lemma 3, g5 38 @ root of wunity and by
(36) a certain conjugate of it is & zero of f(z), contrary to the definition

of f. The contradiction obtained above shows that f satisties all the as-.

sumptions of Lemma 8 and in. virtue of that lemma

;
f8) = & ey 12‘/" .

1-V5
ad

. Then, for a o with oV == wl/g,
1/5-|1

Assume now that P(0) =¢

oP satisfiex the asgumptions of the theorem and eP(0) =

- ¢ (&),
Thug, by the already proved case of the theorem, formula (3) holds,
Proof of Theorem 2. If (3) holds, we clearly have equality in (2).
Suppose that for a polynomial Pe K [z] with the leading * coefficient p,
the equality in (2) is obtained. By the equality O(P) = (p,) quoted in
the introduction, Py(z) = p;'P(z) hasg integral coefficients. Moreover
£1+V5

3 . Bince for ac K, oe @

V5e K and |P,(0)] =

o{lal?)

= loal?,

icm

On the product of the conjugales oulside the unit eircle
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we have for all oc @ )

B 0N | Po(0) \Je Po(0) 1 "

3V 14V5 14V || 7

2 2 ' 2
¥l 2
;ng); i# an integer, and hence by Lemma 4
3 VD
2
Pylo
mji'L(}—))m i a root of unity and —«Lz: is also one.
34V5 11V
Ty 2
Thus .
1+V5
Pyle) =="+p@" T 4.+ iz ’
where g, are integers of K. On the other hand,
- {39)
1+1f_ _
esa e
et lagyl>1 o(VE} e oV gl <1 oV V5 | Gujl>1
14+VE \ 5 :
(ST [T [T ] e

ofy Sy 1%0jl <} o(Y Bz V5 [fajl >1

and the equality in (2) implies thab both double products on the right-hand
side of (39) are empty. Thus Py(2) satisties the assumptions of Theorem 3
and in virtue of that Theorem 3 holds.
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