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On the Products of Hadamard Matrices,
Williamson Matrices
and
Other Orthogonal Matrices using
M-Structures

Jennifer Seberry* and Mieko Yamadat

Abstract
The new concept of M-structures is used to unify and generalize a
number of concepts in Hadamard matrices including Williamson matri-
ces, Goethals-Seide! matrices, Wallis Whiternan matrices and general-
ized quaternion matrices. The concept is used to find many new sym-
metric Williamson-type matrices, both in sets of four and eight, and
many new Hadamard matrices. We give as corollaries “that the exis-
tence of Hadamard matrices of orders 4g and 44 implies the existence
of an Hadamard matrix of order 8gh™ and “the existence of Williamson
type matrices of orders u and v implies the existence of Williamson type
matrices of order 2uv*, This work generalizes and utilizes the work of

Masahiko Miyamoto and Mieko Yamada.

1 Definitions and Introduction

An orthogonal design of order n sad type (s1,...,84), 8 positive integers, is an
n X n matrix X, with entries {0,+x;,...,+2,} (the z; commuting indetermi-

nates) satisfying
u
xXT = (Z mf) In. (1)
i=1

We write this as OD{n; s, 92,...,84).

Alternatively, each X has s; entries of the type xz; and the distinct rows
are orthogonal under the Euclidean inner product. We may view X as a matrix
with entries in the field of fractions of the integral domain Z[zy,..., 2], (& the
rational integers), and then if we let f = (Z¥ s:27), X is an invertible matrix
with inverse }XT. Thus X X7 = fI,, and so our alternative definition that the
row vectors are orthogonal applies equally well to the column vectors of X.

JCMCC 7(1990), pp. 97-137



An orthogonal design with no zeros and in which each of the entries is re-
placed by +1 or -1 is called an Hadamard matriz. Alternatively an Hadamard
matrix of order n, H has entries +1 or —1 and the distinct row vectors orthog-
onal so

HHT =nI,.

Orthogonal designs, Hadamard matrices and other definitions not given here
are extensively described in Geramita and Seberry [8] and Jennifer Seberry
Wallis [22].

A special orthogonal design, the OD(4¢:¢,¢,1,1), is especially useful in the
construction of Hadamard matrices. An QD(12;3,3,3,3) was first found by
Baumert and M. Hall Jr [4] and an OD{20;5,5,5,5) by Welch (see below).
OD{4¢;1,1,1,1) are sometimes called Baumert-Hall arrays.

X and Y are said to be amicable matrices if

XyT=vx". {2)

Williamson malrices of order w are four circulant symmetric matrices, A,
B, €, D which have entries +1 oz —1 and which satisfy

AAT + BBT + €CT + DT = 4wl,. (3)

{Symmetric) Williemson-type mairices of order w are four pairwise amicable
(that is pairwise satisfy (2)) (symmetric) matrices, A, B, C, D which have
entries +1 or —1 and which satisfy

AAT + BBT + CC7 + DDT = dwl,. (4)

(Symmetric) 8 Williamson-lype matrices of order w are eight pairwise ami-
cable {that is pairwise satisfy (2)) (symmetric) matrices, 4;, i = 1,...,8 which
have entries 41 or —I and which satisfy

]
S AAT = 8wl (5)
[T}
The appropriate theorem for the construction of Hadamard matrices (it is

implied by Williamson, Baumert-Hall, Welch, Cooper-J. Wallis, Turyn) is:

Theorem 1 Suppose there exists an OD(4¢;1,¢,¢,1) and four suitable matrices
A, B, C, D of order w which are pairwise amicable, have entries +1 or —1, and

which satisfy
AAT + BBT + ¢CT + DDOT = 4wi,.

Then there is an Hadamard matrix of order 4wt,
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Suitable matrices of order w for an OD(n; 51, 53,..., sy} are 4 pairwise ami-
cable (that is pairwise satisfy (2)) matrices, 4;, ¢ = 1,..., 4 which have entries
+1 or ~1 and which satisfy

L)
> s i AT = (Bswly. (6)

i=1
They are used in the following theorem.

Theorem 2 {Geramita-Seberry) Suppose there exists an OD(Zsi; 81, ..., 54)
and u suitable matrices of order m. Then there is an Hadamard matrix of order
(Zu;)m.

If some of the sustable matrices have entries 0, +1, —1, then weighing ma-
trices rather than Hadamard matrices could have been constructed.

A set of 4 T-matrices, T}, i = 1,...,4 of order t are four (4) circulant or
type 1 matrices which have entries 8, +1 or —1 and which satisfy

(1) T;«T; =0,i%#j, («the Hadamard product)

(i) 35, 7; is a (1, —1) matrix, (7
(i) Fimy TIT =11,
(iv) t =2 +¢2 + 2 + 12 where ¢; is the row(column) sum of T;.

T-matrices are known (see Cohen, Rubie, Koukouvinos, Kounias, Seberry,
Yamada [7] for a recent survey) for many orders including:
1,...,70,72,74,...,78,80,...,82 84, ...,88,90,...,06, 98, ..., 102, 104,
..., 106, 108, 110, ..., 112, 114, ..., 126, 128, ..., 130, 132, 136, 138, 140, ...,
148, 150, 152, ..., 156, 158, ..., 162, 164, ..., 166, 168, ..., 172, 174, ..., 178,
180, 182, i84, ..., 190, 192, 194, ..., 196, 198, 200, ..., 210, ...

The following result, in a slightly different form, was also discovered by
R.J. Turyn.

Theorem 3 {Cooper-J. Wallis} Suppose there exist T-matrices {T-sequences)
Xii=1, .., 4of order n. Let a, b, ¢, d be commuting variables. Then

A=aX| +bXa+cXa+dXs

B= —le +GX2 +dX3 - CXq,
C=—eX; - dXq+aXa+ 50X,
D=-dX|+cXy-bX3+aX,

can be used in the Goethal-Seidel (or J. Wallis-Whiteman) array to obtain an
© OD(4n;n,n,n,n).
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Example; Let

" [1 00 0 10 [0 ¢ 1
Xi=]10 1 0|, Xe=|0 0 1], Xa=]|1 0 0}, Xq4=0
001 1 00 L0t 0
Then Xy, X3, X3, X4, are T-matrices of order 3, and the OD(12;3, 3,3, 3) is:

a b c¢|-b a df-« -d al-d ¢ -b

c a b|la d -bj-d a | ¢ -b -d

b ¢ ald -b a|a -¢ -d|-b & ¢

b -a d]a b <¢|]d b ¢] ¢ -a d

-a «d bjfec a blb ¢ -dj-a d ¢

d b -ajb ¢ aje¢ d -bjd ¢ -a

¢c d -ald b -¢ci a b ct-b d a

d -a ¢|b ¢ d}lc¢c a bld a -b

-a ¢ 4|« 4 bfb ¢ a|] a -b d

d ¢« b|l-¢c a d[b d -2l a b ¢

< b dfa -d «[]-d -2 b| ¢ a b

b d «<{-d ¢ al-a b -d|b ¢ a

We will not give the proof here which can be found in J. Wallis [22, p. 360] but
will just quote the resaits given there. Cyclotomy may be used in constructing
these arrays including the orders ¢ = 13, 18, 25, 31, 37, 41, 61.

Such structures are not limited to constructing OD(44;¢,¢,¢,¢). For example
it was shown in Geramita and Seberry [8] that the following matrices

a b ¢ a -b c
A=t e a b |, B= c a —=b 1|,
b ¢ a -b c a

can be used as follows to give an OD(12;4, 4,4}
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3
L]

1]
®
-
o

a b ¢}l a -b ¢ a

¢ a bi-b ¢ ajb -« alb ¢ -a

b ¢ alc¢ a -bj-c a bl c -a b
-a b -cja b ¢|-a ¢ bl-a ¢ -b

b ¢« -alc¢c a b|lc b -alec -b -2
<« -a b{b ¢ al|b -a c|-b -a ¢
-a -b ¢ja ¢ -bja b c}fa ¢ -b
+ ¢ -a{-c -b a]l¢ a b] c b a

¢ -a -bi-b <]ib ¢ al|l-b a ¢

a -b cja -« bl-a -« bl a b ¢
b ¢ ai-c b aj-e b -al ¢ a b
< a -bltb a fb -a <| b ¢ a

We now introduce some new terminology to unify some previous ideas.

2 M-structures

An orthogonal matrix of order 4¢ can be divided into sixteen {16) ¢ x ¢ blocks
M;;. This partitioned matrix is said to be an M-structure. If the orthogonal
matrix can be pariitioned into sixty-four (64) s x 5 blocks M;; it will be called
a 64 block M-structure.

An Hadamard matrix made from (symmetric) Williamson matrices W, W,,
Wi, Wy is an M-structure with

Wy = My = My = Mgz = My,
Wi = Mz = —Myn = May = — My,
Wi = Mya = —Msy = —Moq = Mys, and
Wy= Mg = —My = Myz = —Ms.

An Hadamard matrix made from four (4) circulant (or type 1) matrices A4;, As,
Az, A4 of order n, where R is the matrix which makes all the A; R back-circulant
(or type 2), is an M-structure with

AL = M = Myg = Maa = My,
Az = MmR - —leR - RMg; = —RML,
A3z = M1aR = —My R = —RMT, = RMZ, . and
Aq = M“R = —M.uR = RJWg; == --Rﬁifg;.

In this paper we will mostly not be concerned with the structure of the My;
but two interesting cases should first be mentioned.
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Weleh’s OD(20, 5,5, 5,5) composed of block circulant matrices is:

-DB-C-C-B|CA-D-D-A|-B-AC C-A|A-B-DD -B
-B-DB CCl-ACA-D-DI-A-B-AC-C|-BA-B-DD
-C-B-DB-C|-D-AC A-D|-C-A-B-AC{D-BA-B-D
-CL-BDB|-D-D-ACA[JC-C-A-B-A{-DD-BA -B
B-C-C-B-D|A-D-D-AC|[-AC-C-A-B|-E-DD-B A
-CADD-AI-DB-C-CB|-AB-DD B[-B-A-CC -A
-ACADD|{B-DB-C-C)B-AB-DD|[-AB-A-CC
D-ACAD|I-CB-D-BE-C[DB-AB-D|C-A-B-A-C
DDACA|C-CB-D-B|-DDB-AB|-CC-A-B-A
ADD-AC|-B.C-CB-D|B-DD B-A|[-A-CC-A-B-
B-A-CC-A{/AB-DDB{-D.BCCBI|-CA-D-D-A
-AB-A-CC|BAB-DD|(B-D-BCC|-A-CA-D.D
C-AB-ACIDBAB-D|CB-DBC|-D-A-CA-D
-CC-AB-A|-DDBAB|CCB-D-B|-D-D-A-C A
-A-CC-AB|B-DDBA{-BCC B-DI/A-D-D-A-C
-AA-B-DD-B|B-AC-C-A|CADD-A-DBCC-B
-B-A-B-DD|-AB-AC-C[-ACADD|-B-DBC C
D-B-A-B-D|-C-AB-AC(D-ACAD|C-B-DB C
-DD-B-A-B|C-C-AB-A{DD-ACA|(CC-B-DBE
-B-DD-B-A{;-AC.C-AB|(|ADD-AC|BCC-B-D

Each M;; in its M-structure is circulant. In fact it can be constructed using
sixteen (16) circulant matrices with first rows using:

Mu 1 1 -1 -1 -1 My 1 -1 1 1 1;
M13 : -1 i 1 -1 1 Mld vo-l -1 1 -1 -1‘,
M;u . -1 -1 -1 -1 1 Mzg : i -1 -1 -1 ].,
M 1 1 1 -1 1 Mag @ -1 1 -1 1 1;
My @ 1 1 1 1 1 My + -1 1 1 -1 1;
Mss 1 -1 1 1 i Ma + -1 -1 1 1 1;
M.ﬂ : 1 -1 1 -1 -1 “'lvf.:m . 1 1 1 -1 l,
M.qg : 1 -1 -1 -1 1 A’LH : 1 1 1 1 -1;

K. Yamamoto’s {38] restructuring of Ono and Sawade’s OD(36;9,9,9,9) [13]
composed of biocks of type I (or block circulant) matrices, Each A in its
M-structure is type 1. In fact it can be constructed using sixteen (16) circulant
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matrices with first rows:

viz
My = A pI+C b -C7T
Myp= bI+aBT bI+DT bI-D7
Miz= cl+aBT —bI+C bI+D7T
M= dl+aBT BI-D —bI+CT

My = —bI+aB -bI+D —bI-DT
Mo = A M —-C = +CT
Mys= —dI4+aBT BI+D —bI-CT
Msy = el+aB b +C -~ +DT
Mu= —-cIl+eB -~bI-D HI-CT
Max= dI+aB b +C - D7
Mg = A —I+D b-D7
M3y = ~bl+aBT —bI+C -—-bI-C7
My= —dl+aB bI-C —bI+D7
Mg = —el+aBT W -D —pI+CT
Mya= b +aB b+ C  bI-CT
My = A —bI—-D W+ D7

When written in full the Ono-Sawade-Yamamoto 0D(36,9,9,9,9) is as on
the following page.

The following theorem shows the power of M-structures comprising wholly
circulant or type 1 blecks. The original version with circulant matrices was due
to Turyn.
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Theorem 4 Suppose there are T-matrices of order t. Further suppose there is
an OD(4s;uy,...,uy,) constructed of sixteen circulant (or type 1} s x s blocks on
the variables x1,...,2,. Then there is an QD(4st;tuy,. .. tuy). In particular
if there is an OD(4s;s,s,5,8) constructed of sixteen circulant (or type 1) s x s
blocks then there is an OD{4st; st, st, 51, st).

Proof: We write the OD as {Ny;), 1,7 = 1,2,3,4, where each Nj; is circulant
{or type 1}. Hence we are considering the OD purely as an M-structure. Since
we have an OD

4 E] - -
_y up2id,, =1,
NUN_?1+N£2N.3;+N;3N£+NHN§ - { Ek_l ETEs : j

Suppose the T-matrices are Ty, Ta, Ta, T4. Then form the matrices

A=Ti x Niy+ Ty X Noy + T3 x Ngg + Ty x Ny
B=T x Nyg+T3 x Nag+ T3z x Nag+ T x Ngz
C=TiIxXNia+Tex Nog+T5x Naa+Ty x Ny3
D=Ty x Nya+To ¥ Naa+ T3 x Nag + T x Nyq.

Now .
AAT + BBT + CCT + DDT =t wzil,,
k=1
and since A, B, C, D are type 1, they can be used in the J. Wallis-Whiteman
generalization of the Goethals-Seidel array to obtain the result. a

Corollary 5 Suppase the T-matrices are of order t. Then there are orthegonal
designs QD{201; 5¢, 5¢, 5¢, 5t) and OD(36¢; 9¢, 9¢, 9¢,9t).

Proof: We use the Welch array for the OD(20¢; 5¢, 5¢, 52, 52 and the Yamamoto-
Ono-Sawade array for the QD(36t;9¢, 9¢, 9¢, 91).

Note that to prove the Hadamard conjecture “there is an Hadamard matrix
of arder 4t for all ¢ > 0” it would be sufficient to prove:

Conjecture 6 There exists an OD{4;¢,1,1,t) for every positive integer i.

We also conjecture

Conjecture 7 There exists an M-structure OD(4f;t,1,t,1) for every t = 1
{mod 4) comprising sixteen circulant or type 1 blocks.
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3 Some properties of certain amicable
orthogonal matrices

Lemma 8 Suppose there exist two amicable (0,+1, —1} matrices U, V of order
u satisfving UUT + VVT = (2u — 1)I. Then there exist matrices A, B, D of
order u satisfying

AAT + BBT = BTB 4+ DTD = (2u— 1)I
AT = (~1)30-14, DT = (~1)3t=D D,

where A and D have gero diagonal.

Proof: By the properties of I/ and V' we have

v v
v=[v %]
is a (0, +1, —1) matrix of order 2u satisfying WW7T = (2u — 1}y,

Then by the Delsarte-Goethals-Seidel theorem (see [7} or [22, p. 306]) W is
Badamard equivalent (i.e. use the operations of multiplying rows or columns
by —1 and rearranging rows or columns} to a (0,41, —1) matrix C' with zero
diagonal satisfying

CCT = (Qu-1Ly, C7=(-1¥Ne

Hence C can be written
A B
€= [ =BT +D7 ]

where AT = (—1)3u-1D4, DT = (~1)}-1D, and A and D have zero diago-
nal. O

Lemma 9 Let g+ 1 be the order of a conference matrix. Then there exist four
matrices Cy, Ca, Ca, Cy, of order %(q « 1) satisfving
C1ClT + C;;C;r = Cacg' + CQCT =qf-2J,
eCl =eCl =e, eCT=eCT =0,
CCl-CCh =0, CT =0, CF =Gy CT =0,

where e is the 1x 1(¢—1) matrix of ones, Cy and Cy have zero diagonal elements
+1, Cy and C4 have elementis +].
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Proof: By the Delsarte-Goethals-Seidel theorem (see [7] or [22, p. 306]) we can
ensure the conference matrix is symmetric and of the form

. G 63‘ T _
-2 5], oo

" where D has zero diagonal. We now simultaneously permute the rows and
columns of I (so if row { and j are interchanged then column i and column j
are also interchanged) to keep symmetry and obtain

0 1 e €
E= ]i" 0 e —e

e%‘ eI ~C C2
eg weg‘ 03 C4
Since Eis orthogonal e—eCT —eC] =0 =e—eCT +eCT s0eCT =, eCT =0

and
C1CT + C2CF = C3CF + €4CT = g1 -2,
eCT =eCT =e¢,eCT =eCT =0,
CCF -CT =0, ¢(T=Cy, ¢T=¢Cy, =0,
D

Lemma 10 Suppose there exist two amicable (0,+1,—1) matrices U, V of
order u satisfving UUT + VVT = (2u — 1)I. Further suppose U has zero
diagonal and 7, V have other elements +1 or —1. Then there exist matrices A,
B of order u— 1 satisiying

AAT 4 BBT = {2u— I,y — 2Ju_1,
eA¥ =e, eBT =0, ABT = BAT,

where A has one zero element per row and column and the other entries of A
and B are +1. Further if 7 and V are symmetric (or skew-type respectively}
then A and B are symmetric (or skew-type respectively).

Furthermore if U and V satisfy UUT + VVT = 2ul (U, V are (1,-1)
matrices), © even, then there exist matrices A, B of order u — 1, with entries

1, satisfying
AAT + BBT = 2ul,_y — 20y 1,
eAT =e, eBT =e, ABT = BAT,

and if U and V are symmetric (or skew-type respectively) then A and B are
symmetric (or skew-type respectively).
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Proof: Without loss of generality assume V has its (1,1) entry +1, otherwise
replace it by —V. If U/ has no zeros and non zero (1, 1) entry assume it is —1
(the outcome is identical up to equivalence of the desired properties).

Assume U has zero diagonal. Define D = U + iV, then with D} written for
the Hermitian conjugate {(transpose and complex conjugate), we have

(U +iV)UT —svT)

ouT +vvT +iwv? —vuT)

UUT +VVT  (by the amicability of U and V)
= (2u-—1)I,

DDt

il

|l

an orthogonal matrix with diagonal entries £{ and other entries £1 £ ¢. We
wish to normalize the first row and column to

i 144 144 1414
1414
E=| 1+%
; PG
1414 |
i 1+ 144 144 ]
-1 -
or By = -1-:
: F4+iG
—1—i |

if 7 and V are skew-type. If the first element of row/column j of D is | + 14,
14, —1+1, =1 —i we muitiply the row/column by 1, i, —i, ~1 respectively,
to form E. We only form E; if both I/ and V are skew type.
If U and V are symmetric (ot skew-type respectively) the operation on row
J is also carried out on column j preserving symmetry (skew-type respectively).
The operations performed have not affected the orthogonality so

EEt = (2u— 1)1,

We now write £ or F; as
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So

LeT J+LLT (1+MeT J+NNT

. u~1 eNT u—1 e(l+LT)

T @+ LDe” JHINT | 7| NeT J4NLT
2u—1 e{LT + NT +1)

(1+ L+ N)eT 27+ LLT +NNT

; 0 o(NT -1 LT)
T (U+L-N)eT LINT-NIT
(2u — 1)1.

EE} = [u—l eL” ]+[ T u e(1+NT)]

H

Hence LNT = NLT, (1 4+ L+ N)eT = 0= (14 L — N)e¥, giving eL7 = —e,
eNT =0and LLT + NNT = (2u-—- 1)I — 2J. Set —L = M to get the result.

It remains to be shown that M has zero diagonal. Now MMT 4 NNT =
(2u ~ 1) - 2J. So there is ouly one zero per row of [M : N]. Also u is odd so
M and N have even order u — 1. Hence eNT = 0 tells us N has no zero entries
and thus the cne zero entry per row must be in A{. Rearrange the columns of
M (if necessary) to ensure M has zero diagonal.

U and V were (1,—1) matrices of even order then

~1 e 1 e
S EMEIEN
and

£y =[ 2 (L7 + NT) ]

(L+ M)eT 27+ LLT + NNT

+i 0 e(LT — NT 4+.2)
(N-L-2)T LNT_NLY

= 2ul.

Hence LNT = NLIT, (L+ N)eT = 0 = (N — L — 2)eT, giving eLT = —e¢,
eNT=¢and LLT + NNT =2ul - 2J. Set -L = M to get the result, a

Remark 11 This lemma is very similar to the beautiful Lemma 1 of Miyamote

12}.

Remark 12 Let I+ W and V be normalized amicable Hadamard matrices of
order h (see Jennifer Seberry [16] for a list of their orders). Then there exist
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two matrices A, B of order A — 1 satisfying

AAT 4 BRT = (2h — i)fp,_.l — 205,
eAT =0, eBT=e, ABT =BAT, AT =—-A, BT =01,
AAT =(h-1I-J, BBT=RhI-J

where A has zero diagonal and the other entries of 4 and B are £1.

Remark 13 Let [+ W and V be amicable Hadamard matrices of order i (see
Jennifer Seberry {16} for a list of their orders). Then there exist two matrices
W, V of order A satisfying

wwlovvT = @h-11, wvT=vwT, wWi=—-w, vT=vV

Remark 14 From Jennifer Seberry Wallis’ restatement [22, p. 261] of a theo-
tem of R.E.A.C. Paley we have

(i) Ifg =3 (mod 4) is a prime power or there is a skew-Hadamard matrix of
order g+ ! then there is a skew symimetric matrix W of order g such that
WW7T = (¢+ 1) ~J, WT = —W. Let R be a symmetric permutation
matrix such that WR is symmetric (in the case of ¢ a prime power the
back diagonal matrix has this property) then

(WRYWR)T ={(a+1)I-J, (WR)T =(WR),
and (WR)IT = I{WR)T.

(ii) f ¢ =1 (mod 4} is a prime power or there is a symmetric conference
matrix C' + I of order ¢+ 1 then there is a symmetric matrix @ of order
¢ such that QQT = ¢ — J, 7 = Q and so that

@+ NQ+DHT +(Q-NQ-IT =2(¢+1)I -2J.

Remark 15 From Geramita and Seberry’s restatement [8, p. 92, Theorem 4.41)
of a theorem of Goethals and Seidel we have

fg=1 (mod 4)is a prime power there are two circulant symmet-
ric, amicable matrices M and N of order 3(g + 1) satisfying

MMT + NNT = qf§(q+1).
Remark 16 From Seberry-Wallis’s restatement [22, p. 321, Theorem 4.6] of

a theorem of Szekeres for ¢ = 5 (mod 8) and by Yamada's theorem [45, Ap-
pendix] forg =a* =1 (mod 8) we have
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(i) Hg=5 ({(mod 8) is a prime power then there are two circulant or type 1
amicable matrices U/, V of order ¢ satisfying

GUT + VVT = 2q1 - 2J,
eUT =0, e¥T=0, UVI=vUT, UT=-U V7=-V

With R the appropriate permutation matrix (as mentioned in Remark 14(i)
above) set W = I+ V; then

UVOT + (WRYWR)T = (29 + 1)I - 2J,
eUT =0, e(WR)T =e,
UWRYT = (WRUT, UT=-U, (WRT =(WR).

(i) fg=a’=1 (mod8)isa prime powei' then there are two circulant or
type 1 amicable matrices U, V of order ¢ satisfying

UUT +VVT = 2(¢ + 1M — 2,
VT =¢, eVT =,
pvT =vuT, UT=U, Vi=V

Remark 17 From Seberry-Wallis’s restatement [22, p. 323, Theorem 4.7] of a
theorem found independently by Szekeres and Whiteman, we have

Ifg=p'=1 (modB8)is a ptime power, p = 5 (mod 8}, then
there are two circulant or type 1 amicable matrices U/, V of order ¢
satisfying

UUT + vvT = 297 - 2J,
T =0, evT=0, vVT=vpT, 0UT=-U VT=-V

With R the appropriate permutation matrix (as mentioned in Remark 14{i)
above) set W = I+ V then

UUT + (WR)W R = {2¢+ 1)I - 2J,
eUT =0, (WR)T =e,
UWRYT = (WRWT, UT=-U, (WRT =(WR).

Remark 18 From Geramita and Seberry’s restatement {8, p. 256, Theorem
5.80] of a theorem of Szekeres we have

If¢g=4m+3 =3 (mod 4) is a prime power then there are two
cyclic supplementary difference sets 2 — {2m + 1;m; m — 1}, M and
N, called Szekeres difference sets, such that ¢ € M = —a ¢ M,
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BeN=-beN. Thusif / — I, V are the (1,-1) incidence
matrices of M, N respectively, .

UUT +vvT =gl -2J,
eUT =0, eVT=—e, UT=-U VIz=V

Now let R be the back diagonal matrix (as above) and set W = -V R
then U and W are amicable matrices of order (g —1), U with zero
diagonal and W symmetric such that

UUT + WwT = ql - 27,
eUT =0, eWT=¢, UT=-U WTlzW

Indeed the process just described ensures that if there are Szekeres
difference sets on an abelian group of order ¢ then the matrices U/
and W, just mentioned, can be constructed of order q.

Remark 19 If § = 1 (mod 4) is a prime power, Yamada [42] showed that
there exist two circulant matrices I/, V of order -;—(q — 1) satisfying

vuT + vvT =qf - 2J,
eUT=e, eVT=0, UT =V,

where U has zero diagopal. With R the appropriate permntation matrix (as
mentioned in Remark 14(i) above) set W = VR then

UUT + WWT = ¢l — 27,
eUT =e, eWT =0, UWT =WUT, UT=U WI=W
Remark 20 f g = s> 44 =5 (mod 8) is a prime power then J. Wallis [2§]

and independently Yamada [45] showed that there are two.circulant or type 1
matrices UV and V' of order ¢ where

vUT +vvT = (2¢+ 1)1 - 2J,
/T =0, eVT=e, UT=-U VvIiz=V

and where U/ has zero diagonal. Now let R be the back diagonal matrix (as
above) and set W = VR then I/ and W are amicable matrices of order ¢, I/
with zero diagonal and W symmetric with zero back diagonal such that

UUT + WwT = 2q7 — 2J,
eUT =0, eWT=0, UT=-U WT=w UWT=wUT.

Note Yamada has observed that there are other suitable matrices for these
orders.
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4 A multiplication Theorem using M-structures

Theorem 21 Let N = (Ny;), {,7 = 1,2,3,4 be an Hadamard matrix of order
4n of M-structure. Further let Tj;, 4,7 = 1,2,3,4 be 16 (0,+1,-1) type I or
circulant matrices of order t which satisfy

(i) Ty #Tieg = 0, Tji *Th; =0, § # &, (» the Hadamard product)
(i} ooy Tix isa.(l —1) matrix, (8)
(i) Yooy TaTE = th = Tp, TuTH,
(iv) Ek:l ,-;T.?,; =0= E::: Tkiir?,;’ i#j.
Then there is an M-structure Hadamard matrix of order 4nt.

Proof: Define the matrix X = (Xi;) as follows

4
Xij =Z-T,-k x NZ

k=1

From the conditions of the T-matrices and from the M-structure, we have

4 4 4 T
Yo Xy x5 (Zm x N},‘,) (Z Tim X N};,)
i=1

k=1 =}

- i

4
Z T Th, % N7 Njm)

4
J=li=lm=1l
4 4
= 2> TuTix Z TeNim | .
k=1m=1 =1
If & # m, then Z;=1 N;‘:.N_,-m = (. Hence the above equation becomes
4 4 4
EX,';;X‘]; = ZT,;,T'% ® ENJ?;N”
j=1 k=1 =t
= 4tﬂf‘“.
For i # k,
4 /4 4 T
Sty = 3 (L) (5 me o)
F=1 \g=1 m=1



4

4 4
= 32 2 T Th x NjyNim

j=lg=lm=1

4 4 4
= Z E TigTim % (E NJI;'Nf”‘)

g=lm=1 J=1
4
- . T T A,
= 2 TTi x D N N;,
g=1 i=
= 0.

Hence the matrix X is an Hadamard matrix of order 4nf of M-structure and
the matrix X* = {X};) is also an Hadamard matrix of M-structure.
‘We further note that if z:=1 Ti is a (1, 1) matrix and define the matrices

Y =(Yi;), Z = (Z;), and W = (W;;) as follows:

Yy = 4Z‘at=1 Tee x N,

Z{j = ZE=I4T’“ X N:?;, and

W,’j = Ek-_—l Th. X NE;

Then, as in the case for X, we see all three matrices Y, Z and W are Hadamard

matrices of order dnt of M-structure. Furthermore Y’ = (¥}:), Z' = (Z;;), and
W = (W,-.-) are also Hadamard matrices of M-structure. ]

Corollary 22 If there exists an Hadamard matrix of order 4h and an orthog-
onal design OD{4u; tiy, g, 43, ), then an OD{Bhu; Zhuy, 2hu,, 2huy, 2huy) ex-
ists.

Proof: Let H = (Hy;), 1,7 =1,2,3,4 be an Hadamard matrix of order 4. Put

1 1 1 i
B=g(Hat+H), Qi= E(Hil—H:':!), B = ~2-(H.‘3+Hi4), S = §{His—ffi4},
and the required T-matrices of order 2h for the theorem are

fori=1,23,4. Since

4 4
STTE = Y (RPT+QiQT + RBY +5.5T) x I
=1

i=1

114



H

() <o

2hIy,

i

and
Vi1 TaTl =0, Yioy TwTh =0, forisj, and
Tie1 T i=1,2,3,4 is a (1, —1) matrix.

Now let the OD{4u; u1,uz, ug, uy) = D = (Dy;), 1,7 = 1,2,3,4 defined on the
commuting vatiables 21, z4, 23, 4. Then we have

bDT = (ulzf + u;z% + u3z§ + 11423)1'4“,

that is

ZD :Dy;

2 2 2
= (ulzl + ugzs + uazs -+ ugxg)u,

4
S Dy DT
J=1

E:=1 DikD;rk=01 Z:=1 Dh'Dg:f =0: i3j= 15213!41 f?ﬁj
We now define the matrix X = (X;;) as follows
4
X:’j = ET,;, X D}-;.
k=1

Then, as in the theorem, we have

4
ZX,’_,'X?; = 2}1(1.!12? + ug.‘:g + ugz§ -+ ﬂ.;:i)fﬂm,
i=1!

and for { # k,
4

E X.',-XE} =0.

k=1
Thus X = (Xy;) and X' = (X;;) are OD(Bhu; 2hu,, 2hus, 2hug, 2huy) of M-
structure and ¥ = (¥;) = (2;-1 Tii % Dk:)' =(Zz)= (Z:=1 T % Dﬂ)
and W= (Wis)= (Ther Toe x NE), ¥ =(%5), 2'=(Z50) and W= (Wy;), are
aiso OD(8hu; 2hu;, 2hua, 2hug, 2hu,) of M-structure. a
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Corollary 23 If there exists an Hadamard matrix of order 4h and an orthogo-
nal design OD{4u;u, u,u, u), then there exists an OD(8hu; 2hu, 2hu, 2hu, 2hu).

This gives the theorem of Agayan and Sarukhanyan [2} as a corollary by
setting all variables equal to one:

Corollary 24 If there exists Hadamard matrices of orders 4h and 4u then there
exists an Hadamard matrix of order 8hu.

We now give as a corollary a result, motivated by, and a little stronger than
that of Agayan and Sarukhanyan [2]:

Corollary 25 Suppose there are Williarnson or Williamson type matrices of
orders u and v. Then there are Williarnson type matrices of order 2uv.
If the maltrices of orders u and v are symmetric the matrices of order 2uy

are also symmetric.
If the matrices of orders u and v are circulant and/or type 1 the matrices of

order 2uv are type 1.

Proof: Suppose A, B, C, D are (symmetric) Williamson or Williamson type
matrices of order u then they are pairwise amicable and satisfy

AAT + BBT + ¢CT + DDT = dul,.
Define
1 1 1 1
E= §(A+B), F= E(A_ B), G= §{C+D), H= E(C_D)'
then E, F, G, H are pairwise amicable (and symmetric) and satisfy
EET + FFT + GGT + HHT = 2ul,.
Now define

(5 8] 5e[3 2] me2 5], wnels 1]

s0 that

L=

T1 = T]l = T22 = T33 = T44,
h=m2= —Tzl = T34 = -—T43,
Ta = T13 = —Tsl = —T24 = T42 and
Tha=T1d = T4l =Ty3 = -Ta2,

in the theorem. Note T}, T2, T3, Ty are pairwise amicable. If 4, B, €, D were
circulant (or type 1) they would be type 1 of order 2u.
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Let X, ¥, Z, W be the Williamson or Williamson type (symmetric) matrices
of order v. Then X, Y, Z, W are pairwise amicable and

XXT+YYT 4+ 22T s wwT = 401,
Then

= ixX+4TaxY+TaxZ+Tyx W

“NixY 4o xX+TGxW-TyxZ
= NMxXxZ-TxW+ThxX+TyxY
“NxW+Th xZ -Tax Y+ Ty x X.

w2 E e
I

are 4 Williamson type (symmetric) matrices of order 2uw. If the matrices of
orders u and v were circulant or type 1 these matrices are type 1. O

5 Miyamoto’s Theorem and Corollaries
via M-structures

We reformulate Miyamoto’s results so that symmetric Wiliamson-type matrices
can be obtained.

Lemma 26 {Miyamoto’s Lemma Reformulated)} LetU;, V;,4,7=1,2,3,4
be (0,+1, —1) matrices of order n which satisfy

{i) Ui, U;, i # j are pairwise amicable,
(if) Vi, Vi, i 3 j are pairwise amicable,
(iii) U £ V;, (+1,-1) matrices, i =1,2,3,4,
{(iv) the row sum of Uy is 1, and the row sum of U;, i = 2,3,4 is zero,
(v) Tiey UUT = (204 DI =20, i, ViVT = (2n 4+ 1)1

Then there are 4 Wiiliamson type mairices of order 2n + 1. If U; and V;
are symmetric, i = 1,2,3,4 then the Williamson-type matrices are symmetric.
Hence there is a Williamson type Hadamard matrix of order 4(2n + 1).

Proof: Let 51, 52, 53, 54 be 4 (+1, —1)-matrices of order 2n defined by

11 1 -1
Sj—UjX{l 1:|+"3-x[_1 1]
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Sothe rowsumof $] = 2and of §; =0, i = 2,3,4. Now define

_ i —£&an I o 1 £2n .
Xl_{_eg»n 5 ] and X'—[eg;, S.-]’ i=2,3,4

First note that since Uy, U, i # 5 and V}, V;, i # j are pairwise amicable,

11 1 -1 r [11 r [ 1 -1
A BN ICE IR )
oot 3 2] e[ % 7]
= 557

(Note this relationship is valid if and enly if conditions (i) and (ii} of the theorem
are valid.)

ST

i

|

4 4
r [2 2 ot 2 -2
;U,-U.- x[2 2]+;v.v,- X{_z 5

o [2Ca+DI-2] -2J
27 2(2n + 1)I — 27

42 + 1) Jon — 420

4
E 557
i=1

Next we observe

r_|1-2n £3n v 3T .
X X} _[ eI, —J+S1S?']_X'X1 1= 23,4,

and
1+2n 8apn T C .
vT _ — Y. x] =
XiX; —[ eI, J+587 ] =X;Xi  i#5 Li=234
Further
4 4
1420 =3¢ 1+2n ¢z
¥ = 2n n
;X'X' - [ -3¢I, J+ 557 ] + g [ el J+ 587 ]
_ faen+1) 0
- 0 47 +4(2n+ 1)1 —4J |’

Thus we have shown that X, Xy, X3, X4 are 4 Williamson type mattices
of order 2n 4 1.
Hence there is a Williamson type Hadamard matrix of order 4(2n+1). 0
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Corollary 27 Letg=1 (mod 4) be a prime power then there are syminetric
Williamson type matrices of order q + 2 whenever $(g -+ 1) is 2 prime power or
3(g + 3) is the order of a symmetric conference matrix. Also there exists an
Hadamard maltrix of Williamson type of order 4(q + 2).

Proof: (i) Let B be the skew-symmetric core of order 3(g + 1) formed via the
quadratic residues (see Remark 14(i}) and R the back-diagonal matrix so that
BR is back circulant or type2 and symmetric;

(ii) Let X be the symmetric core of order 3(g + 1) of the conference matrix
(see Remark 14(ii));

(ili} Let M, N be the two circulant symmetric matrices of order 3(q + 1},
M with zero diagonal satisfying MM7T + NNT = ¢I (see Remark 15).

Then in Lemma 26 use

(la}) Ty =1, U, =0,Us=Uys = BR,
(iia}) V=M, Vo=N, Va=V; =R,
(ib) Uy =1, U =0,Ua=U4=X,
by i=M,Va=N,Va=V, =1,
to obtain the result. o

Remark 28 Some of the results in Corollary 27 are also due to A.L. Whiteman
{35). This gives symmetric Williamson-type matrices of orders

7 11 15 19 27 39 51 55 63 75

83 91 99 123 159 195 243 279 315 339

363 399 423 451 459 543 579 615 62T 663

675 735 758 843 879 883 999 1095 1155 1203

1215 1239 1251 1323 1383 1455 1623 1659 1683 1755
1875 1935 1995

(since Mathon found conference matrices of orders 46 and 442). Almost all
these, with symimetry, are new though Miyamoto {12] has found Williamson-
type matrices for these orders and hence Hadamard matrices for four times
these orders.

Koukouvinos and Kounijas [10] have shown there are no circulant symmet-
ric Williamson matrices of order 39 but here a symmetric but not circulant
Wiiliamson matrix of order 39 is given.
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Corollary 29 Let =1 (mod 4) be a prime power. Then

(1) if there are Williamson type matrices of order (g — 1)/4 or an Hadamard
matrix of order %(q — 1) there exist Williamson type matrices of order q;

(if) if there exist symmetric conference matrices of order %(q — 1) or 2 sym-
metric Hadamard matrix of order %(q — 1} then there exist symmetric
Williamson type matrices of order q.

Hence there exists an Hadamard matrix of Williamson type of order 4q.

Proof: {i) Use Yamada’s matrices A and C = BR of order 3(g — 1) (see Re-
mark 19) as

U1=A, U2=C, U3=U4=0, and V1=I, VQZO,

and for

Ve = W, W Vi = Wa W,y
Tiwa o -w ) T - w2

where W, { = 1,2, 3,4 are Williamson-type matrices, or V3 = Vy = H |, where
H is an Hadamard matrix of order %(q —1), and

(3i) with NV the appropriate symmetric conference matrix and H the appropriate
Hadamard matrix use

Va=N+I, Vi=N-I, o VB=V,=H,
as indicated in Lemimna 28 to obtain Willizmson-type matrices. O

Remark 30 Part (i) of Corcllary 29 for Williamson matrices of order {g—1)/4
was found by Miyamoto {12]. Part (i) with Hadamard matrices of order §(g—1)
is new. Part (i) with symmetry is new.

Corollary 28 part {ii) gives symmetric Williamson-type matrices of order g
when ¢ =1 (mod 4) is a prime power and 3{g — 1) is the order of a symmet.
tic conference matrix, This gives symmetric Williamson-type matrices for the
following orders:

13 29 37 53 61 101 109 125 149 181
197 229 277 317 349 389 397 461 541 557
677 701 709 797 821 1021 1661 1117 1229 1237

1549 1597 1621 1709 1861 1877 1997
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Corollary 29 will also give Williamson-type matrices of orders 203, 373, §13,
653, 733, 757, 853, 1013, 1069, 1213, 1277, 1373, 1381, 1453, 1493, 1669, 1692,
1733, 1901, 1933, or 1973 if symmetric conference matrices of orders 146, 186,
306, 328, 366, 378, 426, 506, 534, 606, 638, 686, 690, 726, 746, 834, 866, 850,
966 or 386 exist, respectively.

Corollary 29 part (ii) gives symmetric Williamson-type matrices of order ¢
when ¢ = ! (mod 4) is a prime power and }{g — 1) is the order of a sym-
metric Hadamard matrix. Rembering that symmetric Hadamard matrices exist
for orders p+ 1 when p = 3 (meod 4) is a prime power we have symmetric
Williamson-type matrices for the following orders:

5 9 17 25 41 49 73 81 89 97
113 121 169 193 241 257 281 289 337 353
361 401 409 433 449 457 520 569 577 593
601 617 625 641 673 729 761 769 841 881
929 937 961 977 1009 1033 1049 1097 1129 1153

1201 1217 1249 1289 1207 1321 1361 1369 1409 1481
1482 1553 1601 1609 1657 1681 1697 1721 1777 1801
1849 1873

Corollary 29 also gives symmetric Williamson-type matrices of orders 233,
313, 521, 809, 857, 953, 1193, 1433, 1753, 1889, 1913, and 1993 when symmetric
Hadamard matrices of orders 4.29, 4.39, 4.65, 4.101, 4107, 4.119, 4.149, 4.179,
4.219, 16.59, 4.239 and 4.249 are discovered.

Corollary 29 part (i) gives Williamson-type matrices of order ¢ when ¢ =1
(mod 4) is a prime power and 3(g — 1) is the order of an Hadamard matrix.
This gives Williamson-type matrices for the following orders not given above:

137 233 313 521 809 953 1193 1753 1889 1993

Corollary 29 part (i) gives Williamson-type matrices of order ¢ when g = 1
(mod 4) is & prime power and {g—1)/4 is the order of Williamson-type matrices.
This result is also due to Miyamoto [12]. This gives Williamson-type matrices
for the following otders:

157 173 203 373 613 757 767 7173 1109 1301
1453 1493 1637 1693 1733 1741

Corollary 29 will also gives Williamson-type matrices of orders 857, 1433 and
1913 when Hadamard matrices of orders 4.107, 4.179 and 4.239 are discovered.
Further it will give Williamson-type matrices of orders

260 421 509 653 661 733 829 833 877 941
1069 1093 1181 1213 1277 1373 1381 1429 1613 1669
1789 1901 1933 1949 1973
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when Williamson-type matrices of orders

67 105 127 163 1656 183 207 213 219 235
267 273 285 303 319 343 345 357 403 417
447 475 483 487 493

are discovered.

Corollary 31 Let ¢ = 1 (mod 4) be a prime power or g + 1 the order of a
symmettic conference matrix. Let 2¢ — 1 be a prime power. Then there exist
symmetric Williamson type matrices of order 2¢ + 1 and an Hadamard matrix
of Williamsen type of order 4(2¢ + 1).

Proof: Form the core § as in Remark 14(i). Thus we choose a symmetric @
of order g satisfying e@ = 0, QQT = ¢I — J. From Remark 15 there exist
symrmetric matrices M and N of order g satisfying

MMT + NNT = (2¢ - 1)1, M with zero diagonal.

Use
U1=I! U2=U3=Qs U‘!:Ov

and
MN=M Vi=Va=1I  WV,=N,

4 4
YuUl =Q@e+0I-2J, Y VW =(@¢+1L
=1 i=1
Hence by Lemma 26 we have four symmetric Willilamson type matrices of
order 2¢ + 1 and a Williamson type Hadamard matrix of order 4(2¢ +1). O

Remark 32 Cerollary 31 is satisfied for the appropriate primes or conference
matrix orders to give symmetric Williamson-type matrices for the following

orders:

11 19 27 5l T3 83 91 99 123 195
243 315 339 263 451 459 579 627 675 B43
883 1155 1203 1251 1323 1659 1683 1755 1875 1995

2019 2139 2403 2475 2595 2859 3043 3219 3315 3363
3483 3699 3723

Note this last corollary is a modified version of Miyamoto’s Corollary &
(original manuscript). A new proof of Miyamoto’s result, preserving symmetry,
1s:

122



Corollary 33 Let g =5 (mod 8} be a prime power. Further let (g — 3) be
a prime power or 3(q — 1) be the order of a symmetric conference matrix then
there exist symmetric Williamson type matrices of order g and an Hadamard
matrix of Williamson type of order 44.

Proof: Since ¢ =1 (mod 4) is a prime power, Yamada’s matrices A and C =
BR of order (g — 1) (see Remark 19) satisfy AT = A, eA=¢,eB=0,eC =0,
A has zero diagonal, B and C have elements +1 and ~1, and AAT + CCT =
gl - 2J, where R is the back diagonal matrix which makes C = BR symmetric.

From Remark 14, since %(q —3)is a prime power = 1 (mod 4), there exists
a symmetric conference matrix, N, of order %{q —1). Let

X=N+1I, and Y=N-1I,
then X, Y are symmetric and amicable of order %(q — 1) satisfying

XXT+yYYT ={¢g-1I.

Let
U1=A, Ug:C, U3=U4=9,
and i =1, V=0 W=X W=7,
then
_ 4 4
SN uul =gl -2J, 3 VVT =gl
i=l i=1
So the lermmma gives the result. (]

Theorem 34 {Miyamoto’s Theorem Reformulated) Let U, Vi;, i, =
1,2,3,4 be (0,41, -1) matrices of order n which satisfy _
(i) Uki, Usj, i # j are pairwise amicable, k = 1,2,3,4,
(1) Vi, Vij, i # § are pairwise amicable, k = 1,2,3,4,
(iii) Uy £ Vi, (+1, =1} matrices, i,k = 1,2,3,4,
(iv) the rowsumof U;; is 1, and the rowsum of U/;j is zero, i # j, 1,7 = 1,2,3,4,
(V) Tic UnUf = (@n+ DI -2J, $h ViVEi=(@n+11, §=1,2,34,
(vi) T UpU =0, o, Vil = 0,5 # b, j, k= 1,234,
If conditons (i) to (v} hold, there are four Williamson matrices type of order
2n + 1 and thus a Williamson type Hadarnard matrix of order 4(2n + 1). Fur-
thermore if the matrices Uy; and Vi; are symmetric for all ,7 = 1,2,3,4 the

Williamson matrices obtained of order 2n + 1 are also symumetric.
If conditons (iii) to (vi} hold, there is an M-struciure Hadamard matrix of

. order 4{2n 4+ 1).
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Proof: Let Si;, be 16 (+1, —1)-matrices of order 2n defined by

11

. 1 -1
S.'j:U,'j)([l 1]+V‘.'fx[—l 1]

Sotherowsumof Sy =2and of 5y =0, i#j,4,7=1,2,3,4. Now define

o]
o]
o]
o

-1 - 1 e | r = _| -1
-eT 5y ] Aiz= { T 5y ] Xia= [ eT 532 ] Xu= [ &7
1 ] -1 -e 1 é -1
T Su ] Xzz2= [ —eT S5, ] Xza= [ o7 Sa3 } quu[ T
1 e X e Kan = -1 —e Kooz | 1
T §5 32 e 33=| T 5. =] r
=1 e 1 e -1 & =1
T _S5a ] xcz*[ﬂr —542] Xta—b[ T __S“] Xu-[_£

]
14

&
524

L]
S34

—e
— 84

We note that the following always holds as it is just a case of Miyamotao’s
Lemma Reformulated:

4
Y 58T = 4(2n + 1) o — 4724
i=1

In all cases though assumption (vi) assures us that

4
Y SuSh=0, j#k

i=t

(9)

(10}

We separate the remainder of the proof into two parts: Case A where condi-

tions (i) to (v) of the enunciation hold and Case 2 where conditionis (iii) to (vi)
of the enunciation hold, :

Case A. We now note that, as in Miyamoto’s Lemma:
SusS}; = $5Si; (11)

if and only if Uyi, Uy;, £ £ j are pairwise amicable, £ = 1,2,3,4, and Wy, V3,
i # § are pairwise amicable, £ = 1,2,3,4. Thus

1-2n —e
T __ 2n _ vT I
X44X4J- = [ _eg'“ --J + S“S};‘. ] - X4,X44 J= 1,2,3
and
T _ ].+2ﬂ —€an _ T . .
xaxf= [0 o | XXk k44 sE=100
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Further we note -

; 1+2n 3e ‘ S [1+2m ez
xT 2 ] [ —egn ]
; Kaida [ 38%:: J+ S«S}:‘ + ZI: —e;ﬂ J+ 54;'53:-

[ 4@2r+1) 0
= 0 47 +4(2n + 1)1 —4J

4(27‘ + 1)I2n+1

It

Hence Xa41, X42, Xq3, Xaq are 4 Williamson type matrices of order 2n + 1
and thus a Williamson type Hadamard matrix of order 4(2n + 1) exists.

Case B. We now assume conditions (i) and (ii) do not hold but that condition
(vi) does hold. By straightforward checking we can assert that

4
Y Xix§=0 j#k, if and only if (10) bolds.

=1

4
Y X XE =420+ Dhayr §=1,2,3,4 as(9) holds.

i=1
Hence there is an M-structure Hadamard matrix of order 4(2n + 1). |

Note that if we write our M-structure from the theorem as

-1 1 1 -1 e e e e
1 -i 1 -1 e -2 e e
1 i -1 -1 e e -2 e
1 i i 1 -e -e -e e
—ET CT ET CT 511 Slg 513 Su
ET —eT eT eT 521 ng 523 524
eT e T T 83 S32 Saz Su
-ET —cT ——GT 8T 541 543 543 .544

and we can see Yamada’s matrix with trimming {46] or the J. Wallis-Whiteman
{30] matrix with a border embodied in the construction.

Corollary 35 Suppose there exists a symmetric conference matrix of order
g+ 1 =4t + 2 and ap Hadamard matrix of order 4¢ = ¢ — 1. Then there is
an Hadamard matrix with M-structure of order 4(4¢ + 1) = 4¢. Further if the
Hadarmard matrix is symmetric the Hadamard matrix of order 4¢ is of the form
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where X, Y are amicable and symmetric.

Proof: Use Lemma 9 to obtain four matrices C;, Oy, C3, Cy, of order %(q -1
satisfying :

CsCT + ¢,0T
= gI-J

efCT =eCT =e, eCT=eCT =0, CTC] -CICT =0,
Cf:cl, C:{:C.;, Cg:ce,

Write the Hadamard matrix with four blocks of size (g — 1) as
H, H
Hy Hy |~
If this matrix is symmetric then T #I + HTH] =0, HY = Hy, HT = Hy,

HY = H,.
Now write U = (Us;) and V = (V};) with 16 blocks of size $(g—1)x (¢ —1)

ot + o0t

C], Cz 0 0 I D Hl HZ
_ —Ca Cq 1] 0 _ 0 I HS H4
U=l 6 o a | V= -HT -HI I 0 |
¢t 0 -C3 Oy —HY -HT 0 I
and straightforward use of Miyamoto’s theorem gives the result. o

We note that compiex Hadamard matrices of order n = 2 (mod 4) do exist
when symmetric conference matrices cannot exist (see [22, Chapter VI]). These
complex Hadamard matrices may be written as K = X +{Y where K K» = kI}
(* the Hermitian conjugate).

Hence we have

Corollary 36 Let ¢ = 4f + 1 be a prime power. Suppose there js a complex
Hadamard matrix of order 2f. Then there is an Hadamard matrix of order
4(4F+ 1).
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Proof: Use Yamada’s construction (see the method of Rernark 19) to make
A with zerc diagonal and =1 elsewhere, AT = A, and back-circulant B with
elements +1 of order $(g — 1) = 2f satisfying AAT + BBT '=¢I - 2J.

Let C= X +iY be a complex Hadamard matrix of order 2f. Chaose

A B 0 O
-B A 0 0
U= 0 0 A B and
6 0 -B A
I 0 X+Y X-Y
V= 0 I -X+Y X+Y
T =XT-yT XT_¥yT I B
~XT4+y? _XxT_y7T ] I
Then the theorem gives us an Hadamard matrix of order 4(4f + 1). O

Note complex Hadamard matrices exist for orders 22, 34, 58, 86, 306, 650,
870, 1046, 2450, 3782, ..., for which either a symmetric conference matrix
cannot exist or is not known. None of these orders give new Hadamard matrices.

6 Using 64 Block M-structures

In a similar fashion, we consider the following lemma so symmetric 8 Williamson-
type matrices can be obtained.

Lemma 37 Let U;, V;, 4,7 =1,...,8 be (0,+1,~1) matrices of order n which
satisfy

(1) U, U;, i # j are pairwise amicable,

{ii) V;, V;, i # § are pairwise amicable,

(i) Ui £ V;, (+1,-1) matrices, i = 1,...,8,

(iv) the row(column} sums of Uy and Uy are both 1, and the row sum of U;,

1=23,...,8 is zero,

(v) T UUT =2@n+ )1 - 47, T8, ViVF = 2(2n + 1)1
Then there are 8-Williamson type matrices of order 2n+ 1. Furthermore, if the
U; and Vi are symmetrie, i = 1,...,8, then the 8-Wiiliamson type matrices are
symmetric. Hence there is a block sype Hadamard matrix of order 8(2n + 1).
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Proof: Let 5y,..., 5z be 8 (+1, —~1)-matrices of order 2n defined by
1 1 1 -1
Sj=ij[1 l]+¥{,‘x[_1 1]-.

So the row sums of S; and S; are both 2 and of 5, = 0,4 = 3,...,8. Now
define

— 1 —€2n L o 1 g P
X’._[—e’{n g ], i=1,2 and X,—[egﬁ s ], i=3,...,8

First note that since Us, U;, ¥ 7 and V;, V}, 1 # j are pairwise amicable,

R A B G ERI N )

i 3 oot 3]

1i

SiSF

-2 2
= 587

{Note this relationship is valid if and enly if conditions (i) and (ii) of the
theorem are valid.)

8 8 3
T 2 2 T 2 -2
;S EU.U“x[z 2]+EV;V} x[_2 2]

i=1 f=1 3

g
n
4
il

=l

- 2 4(2n + 1)1 - 4J -4

= —aJ 42n+ 1) — 4T
8(2n + 1) Iap — 8J2n.

Next we observe

142n —3e
T _ n _ T
X X3 —[-3.:;",, J+315§]—X=X1'
X xT=| 132" €2n =X X7, k=1,2,andi=3,...,8
£ e'{n —J+SkS'T AL E 1 -y ) PR
and
r_[itn €2n v owT s osi_
XiX; _{ eg',, J+S,-S;r =X; X i£j 4,7j=3,...,8
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Further

8 8
xT — 1+2n  —3ean 1420 €2n
;X'X' = 2[-3.3'{,‘ J+ 55T ]*E[ e, J+S5F
o[ 82n+1) 0
0 8J +8(2n+ 1)1 -8J |’
Thus we have shown that X, ..., X are 8- Williamson type matrices of order
2n+1.

Hence there is a block type Hadamard matrix of order 8(2n + 1) obtained
by replacing the variables of an orthogonal design OD(8;1,1,1,1,1,1,1,1) by
the 8 Williamson type matrices.

Corollary 38 Let ¢+ 1 be the order of amicable Hadamard matrices I + 5
and P. Suppose there exist 4 Williamson type matrices of order g. Then there
exist Williamson type matrices of order 2¢ + 1. Furthermore there exists an
Hadamard matrix of block type of order 8(2q + 1).

Proof: Now {I + SYPT = P(I + 8)T and write ¢ for the 1 x ¢ matrix of ones.
From Rermark 12 we have matrices A, B of order ¢ satisfying:

ABT = BAT, BT =-B, AT =—A, ed=—e, eB=0,

T=(q+1)I-J, BBY =ql~J.
Thus we choose
Uyz=Us=—A, a=Uy=B, Us=Us=U,=U3=0,

and i =Va=0, Ww=V,=I WV+4=W,,

where W; are Williamson type matrices. Hence

a 8
STUUT =22+ DI -4d, Y VT =220+ DI

i= i=1
These are then used in the Lemma 37 to obtair the result. a

Using the amicable Hadamard matrices given in [22] and {16, Table 1] we
get 8 Williamson type matrices for the following orders for which 4 Williamson
matrices are not known:

47, 111, 127, 167, 319, 487, 655, 831, ...

This gives new constructions for Hadamard matrices of orders 8.167 and

8.487,
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Corollary 39 Let ¢ be a prime power and (g — 1}/2 be the order of four (sym-
metric) Williamson type matrices. Then there exist (symmetric) 8-Williamson
type matrices of order ¢ and an Hadamard matrix of block structure of order

8¢.

Proof: f g=1 (mod 4), by Remark 19, Yamada has found circulant matrices
A, B of order (g — 1)/2 where

AAT + BBT = ¢l -2}, eA=¢, eB=0,

where A has zero diagenal. Let R be the back-diagonal matrix so C = BR is
syminetric; ther A and C are amicable. Choose

U1=U2=A, Ua:U.;:C, U5=U6=U7=U3:0,
V].:V?:I) %=V4=0, V;+4=an

i=1,2,3,4, where
8 8
S UUT =2l -4, Y ViV =21,
i=1 =1

and W; are {(symmetric) Williamson type matrices. The result now follows from

Lemma 37.
If =3 (mod 4), by Remark 18, Szekeres has found circulant matrices A,

B of order (g — 1) where
AAT + BBT =gl - 2], ¢A=0, ¢B=—e,

and A has zero diagonal. Let R be the back-diagonal matrix so C = —BR is
symmetric; then A and C are amicable and eC = e. Choose

Uy=zlh=C, UVaals=A4A, Us=Us=U;=Uz=090,
so the U; are pairwise amicable of order 1{g — 1) and
i=Vo=0, Va=V,=1I, V,+4=W, i=122134,

where

8 a
SuUT =27-47, > ViV =24/,

i=1 =1
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and W; are (symmetric) Williamson type matrices. Since Williamson type ma-
trices are by definition amicable, the ¥; are all pairwise amicable {and sym-
metric) and thus we have the conditions of the lemma. satisfied and hence the
coroilary follows. c

In particular we have 8-Williamson matrices for the following orders for
which no Williamson type matrices are known:
5%, 67, 103, 107, 151, 163, 179, 227, 251, 283, 347, 463, 467, 523, 561, 571, 587,
631, 643, 823, 859, 919, 947, ...

This gives new Hadamard matrices or new constructions for Hadamard ma-
trices of orders 8.107, 8.163, 8.179, 8.251, §.283, 8.347, 8.463, 8.523, 8.571, 8.631,
8.643, 8.823, 8.859, 8.919, 8.947, ...

Corollary 40 Let ¢ = 1 (mod 4) be a prime power or ¢ + 1 the order of a
symmetric conference matrix. Suppose there exist four {symmetric) Williamson
type matrices of order q. Then there exist (symmetric) 8&-Williamson type ma-
trices of order 2¢ + 1 and an Hadamard mairix of block structure of order

8(2g+1).
Proof: Form the core { as in Remark 14(ii). Thus we choose
Ui=1+4Q, Upy=I-Q, Us=Us=Q, Us=Us=Usr=Usg=0
and Vi =Voa=0, WVy=Vy=1I V=W,

i=1,2,3,4, where W; are (symmetric) Williamson type matrices. Then

8 &8
STUUT =220+ DI -4J, S ViVT =202+ 1)1

i=1 i=1

These U; and V; are then used in Lemma 37 to obtain the (symmetric)
8-Williamson type matrices. O

This corollary gives § Williamson type matrices for the following new orders:
219, 275, 299, 395, 483, 515, 579, 635, 699, 707, 723, 779, 795, 803, 869, 915,
923, ...

It does not give new Hadamard matrices for these orders,

Corollary 41 Let ¢ = 9%, t > 0. Now there exist four (symmetric) Williamson
type matrices of order 9%, t > (0. Hence there exist {symmetric) 8 Williamson
type matrices of order 2-9* + 1, ¢ > 0, and an Hadamard matrix of block
structure of order 8(2-9' + 1).

131



This gives symumetric 8-Williamson type-matrices for the new order 163,

13123, ... .
Also we have the following theorem:

Theorem 43 Let Uj;, Vij, 4,5 = 1,...,8 be (0,41, —1) matrices of order n
which satisfy .

(1) Uk, Usj, 1 # J are pairwise amicable, k=1,...,8,

{(ii) Vii, Vij, t # J are pairwise amicable, k =1,...,8,

(iii) Ui & Ve, (+1,—1) matrices, i,k =1,...,8,

(iv) the row{column) sum of U,y is 1 for (a,8)e{(f, i}, (3,4 + 1),(i + 1,9)},
i=1,3,5,7, the row(column) sum of U,, is -1 for (4,a) = 2,4,6,8 and
otherwise, and the row(column} sum of Uiy, i # j is zero,

(v) T UplUf =2n+ ) - 47, 50 ViV =22+ D)L, j=1,...,8,
(vi) Do UnUT =0, 0 ViVE =0,5 #k,5,k=1,....8.

If (i) to (vi) hold, there is a 64 block M-structure Hadamard matrix of
order 8(2n + 1).

Proof: Let Si; be 64 (+1, —1)-matrices of order 2n defined by
—_— L 1 1 . I —’1
S,,_U.,x[l 1}+V,J,><[__l 1 ]
So the row( columnn) sum of S;;, S; i41, Sigr4 %= 1,3,5,718 2, the row(column)

sum of Sy is —2 for (1,4), { = 2,4,6,8 and otherwise, the row{column) sum of
S = 0,1 # j. Now define

-1 —¢
X11=[_er S14 ]- Xyg=
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-1 -t
_eT 5621: Xgz=

1 -
T Sap ], Xza=

1 -
T Sy ] Xop=

-1 e
r Xpga= ' Xpa=
52 [ I Sez ] B3

Xas = ( __:r ;a: ] . Xae= [ :1§ S:u ], Xar=
Then provided conditions (i} to (v) hold and S% = Sy, # = 1,...,8 are
symmetric, Xp;, § = 1,...,8 are symmetric 8-Williarnson type matrices. Other-
wise Xr;, i = 1,...,8 are 8 Williamson type matrices. This can be verified by
straightforward checking. Hence there is an Hadamard matrix of block structure
of order 8(2n + 1). :
If conditions {iii) to (vi) hold then straightforward verification shows the 64
block M-structure X;; is an Hadamard matrix of order 8(2n + 1}. n]

Corollary 43 Let ¢ be an odd prime power and suppose there exist Williamson-
type matrices of order §(g —1). Then there exists an M-structure Hadamard

matrix of order 84.

Proof: Let U = {(Uy;) and V = (Vi;) be defined by the following M-structures
and write O for the matrix of zercs of order 3(¢ — 1). Let
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c ¢ A A 0 0 0 0
¢ - A -A 0 0 0 0
A 4 ¢ ¢ 0 0 0 O
U= A -4 C -C 0 0 0 0 and
(o 0 0 0 €C C A A
0 0 0 0 C -C A -A
¢c ¢ 0 & 4 A C (C
c 0 0 0 4 -A C -C|
[0 0 I I W, W, Wi W,
0 0 I - =W W -Ws W
-1 -I 0 0 -Wy Wy W -0
V= I I 0 0 ~Wy -Wa W2 W
Ty-wf o wi wl wl 0 0 - -r |’
-wf —wl -wi wf ¢ 0 -1 I
-wi wf -~wf -wl I I 0 0
R T S S I
where A, C are defined in the proof of Corollary 39 and W, W, Wi, and W,
are Williamson-type matrices. Then by Theorem 41 we have the result. (]

Remark 44 This corollary gives new Hadamard matrices of order 8¢ for ¢ =
179, 1087, 1283, 1327, 1615, 1907, 2099, 2459, 25679, 2647, ....

Corollary 45 Let g =2m+1=9 (mod 18) be a prime power. Suppose there
are Williamson-type matrices of order g. Then there is 2 M-structure Hadamard
matrix of order 8(2¢ + 1).

Proof: J. Wallis and A.L. Whiteman {22, Theorem 4.17, pp. 334-336] showed
thete are four circulant or type 1 matrices with entries £1, and row and column
sumn +1 at will.

We construct, using eyclotomny, the type 1 4 — {2m + 1, m;2(m — 1)} sup-
plementary difference sets X, Xz, X3 and Xy, where y € X; = —y & X|,
1= 1,2,3,4.

Let A be the back-circulant or type 2 matrix given by
A =(J —2X,)R s0o A has row sum +1.

Let B, € and D be the circulant or type 1 matrices given by
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B =J -~ 2X, 50 B has row sum +1,
C =J—=12X3—1I so C has row sum 0 and zero diagonal, and

D =J—-2X, ~ I so D has row sum 0 and zero diagonal.

Now we modify the Wallis-Whiteman core, noting that

AAT + BBT + CCT + DDT =2(g+ 1} — 4J.

We use V as in Corollary 43 and the following matrix for U to obtain the

resujt

[ A B C
B -4 -pT

-¢ DT A

p ¢t g7

U=l% o o

] 0 0

0 0 0

| o 0 0

The analogous Yamada-J. Wallis-Whiteman structure to Theorem 42 is:

-1 =1 1
-1 1 1
1 1 -1
1 -1 =1
1 1 1
1 =1 1
1 1 1
1 -1 1
_g‘.l" ‘-CT ST
~eT T T
eT eT o7
P —
T T LT
T T T
—eT a7 _,T
weT T T

1 1 1

1 -1 1
-l 1 1

1 1 -1

1 -1 -1
-1 -1 1

1 1 1
-1 1 -1
e LT LT
—eT T LT
T 1
T T T
T T T
—eT =T T
~aT el LT
T _eT T

-1

LB Y o N
N NN N Ny -

D
cT
BT
—-A

¢

¢

0

0

~1
1

I
-

I
-

«“..,3_-—-;—-

talalagt
£ ™
L ACL A

0
0
0
0
A
B
=

o]

—
-

0 0
0 0
0 0
0 0
B C
~-A -DT
~DT A
-cT BT

e
[
—-a
-—
]

]
-_—
—_—
513
523
Saa
S4a
Ssa
Sea
573
583

[

]

]

e
-t
-
-

2
S1s
Sys
Sas
Fas
Sey
Sas
Sz
Sgs

&
-~ &
]
-
-
]
—_
(]
Sie
Sze
Si6
S8
Sse
See
Ste
Sae

L T

-
517
Sa7
Sa7
47
Sy7
Ser
Se7
Ser

e
-
3
-_—
[
—
3
3
S1a
S3a
Sag
Syp
Sss
Ses
Sz
Sgs

I}

We can see Yamada's matrix with trimming [46] or the J. Wallis-Whiteman
{30] matrix with a border embodied in the construction.
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