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On the Products of Hadamard Matrices, 
Williamson Matrices 

and 
Other Orthogonal Matrices using 

M-Structures 

Jennifer Seberry* and Mieko Yamadat 

Abstract 

The new concept of M_structures is used to unify a.nd generalize a. 
number of concepts in Hadamard ma.trices inclnding Williamson ma.tri~ 
Ce5, Goethals-Seidel ma.trices, Wallis-Whiteman matrices and general_ 
ized quaternion matrices. The concept is used to find many new sym_ 
metric Williamson_type matrices, both in sets of four and eight, and 
many new Hadamard matrices. We give all corollaries "that the exis­
tence of Hadamard matrices of orders 4g and 4h implies the existence 
of an Hadamard matrix of oldex 8gh" and "the existence of Williamson 
type matrkes of orders 11 and v implies the existence of Williamson type 
matrices of order 2u,,", This work generalizes and utilizes the work of 
Masahlko Miyamoto and Mieka Yamada. 

1 Definitions and Introduction 

An orthogonal design of order n and type (Sl)"') s .. ), Si positive integers, is an 
n x n matrix X, with entries {O,±XI, ... , ±x .. } (the Xi commuting indetermi­
nates) satisfying 

(1) 

We write this as OD(n; SI, S2," ., s .. ). 
Alternatively, each X has Sj entries of the type ±x; and the distinct rows 

are orthogonal under the Euclidean inner product. We may view X as a matrix 
with entries in the field of fractions of the integral domain Z[Xl, ... , xu], (Z the 
rational integers), and then if we let f = (Ei':ISjxl), X is an invertible matrix 
with inverse tXT. Thus X XT = fIn, and so our alternative definition that the 
row vectors are orthogonal applies equally well to the column vectors of X. 
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An orthogonal design with no zeros and in which each of the entries is re­
placed by +1 or -1 is called an Hadamard matrix. Alternatively an Hadamard 
matrix of order n, H has entries +1 or -1 and the distinct row vectors orthog­
onal so 

HHT=nl". 

Orthogonal designs, Hadamard matrices and other definitions not given here 
are extensively described in Geramita and Seberry [8] and Jennifer Seberry 
Wallis [22]. 

A special orthogonal design, the OD(4t;t,t,t,t), is especially useful in the 
construction of Hadamard matrices. An OD(12; 3, 3, 3, 3) was first found by 
Baumert and M. Hall Jr [4] and an OD(20;5,5,5,5) by Welch (see below). 
OD(4t;t, t, t, t) are sometimes called Baumert-Hall arrays. 

X and Y are said to be amicable matrices if 

(2) 

Williamson matrices of order ware four circulant symmetric matrices, A, 
B, C, D which have entries +1 or -1 and which satisfy 

(3) 

(Symmetric) Williamson. type matrices of order ware four pairwise amicable 
(that is pairwise satisfy (2)) (symmetric) matrices, A, B, C, D which have 
entries + 1 or -1 and which satisfy 

(4) 

(Symmetric) '8 Williamson-type matrices of order ware eight pairwise ami­
cable (that is pairwise satisfy (2)) (symmetric) matrices, Ai, i:::: 1, ... ,8 which 
have entries + 1 or -1 and which satisfy 

• 
:L::AiAr = 8wl",. (5) 
,,,,j 

The appropriate theorem for the construction of Hadamard matrices (it is 
implied by Williamson, Baumert-Hall, Welch, Cooper-J. Wallis, Turyn) is: 

Theorem 1 Suppose there exists an OD(4t; t, t, t, t) and four SUItable matrices 
A, B, C, D of order w which are pairwise amicable, have entries +1 or -1, and 
which satisfy 

AAT + BBT + CCT + DDT = 4wi",. 

TheIl there is an Hadamard matrix of order 4wt. 
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Suitable matrices of order w for an OD(n; SI, S2, .. . , su} are u pairwise ami­
cable (that is pairwise satisfy (2)) matrices, Ai, i :::: I, ... , u which have entries 
+ I or -1 and which satisfy 

• 
Ls,A,AT = (Esi)w1w. (6) 
,=1 

They are used in the following theorem. 

Theorem 2 (Geramita-Seberry) Suppose there exists an OD(Esi ; SI, ..• , su) 
and u suitable matrices of order m. Then there is an Hadamard matrix of order 
(Eu,)m. 

If some of the suitable matrices have entries 0, +1, -1, then weighing ma_ 
trices rather than Hadamard matrices could have been constructed. 

A set of 4 T-matrices, T;, i = 1, ... ,4 of order t are four (4) circulant or 
type 1 matrices which have entries 0, +1 or -1 and which satisfy 

(i) T, * Tj = 0, i #- j, (* the Hadamard product) 

(ii) Et==l Ti is a (1, -1) matrix, 

(iii)"-' T. - I L...'=l O( = t t, 

(iv) t = t~ + t~ + t~ + tl where t, is the row(column) sum of Ti . 

(7) 

T-matrices are known (see Cohen, Rubie, Koukouvinos, Kounias, Seberry, 
Yamada [7J for a recent survey) for many orders including: 
1, ... , 70, 72, 74, ... ,78,80, ... , 82, 84, ... ,88,90, ... , 96, 98, . ." 102, 104, 
... ,106,108, no, ... ,112,114, ... ,126,128, ... ,130,132,136,138,140, ... , 
~1~,~,W,IY"m,~",I~~",;ln,I~,ln, 
180, 182, 184, ... , 190, 192, 194, ... , 196, 198, 200, ... , 210, 

The following result, in a slightly different form, was also discovered by 
R.J. Turyn. 

Theorem 3 (Cooper_J, Wallis) Suppose there exist T-matrices (T-sequences) 
X" i = 1, ... ,4 of order n. Let a, b, c, d be commuting variables. Then 

A = aX I + bX, + cXs + dX4 

B:::: -bX j + aX, + dXs - cX .. 
C:::: -cXI - dX2 + aXs + bX .. 
D:::: -dXI +cX, -bX3 + aX .. 

can be used in the Goethal-Seidel (or J. Wallis-Whiteman) array to obtain an 
OD(4n;n, n, n, n). 
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Example; Let 

[

10 
Xl= 0 1 

o 0 [ 
0 1 0 1 X, = 0 0 1 , 
1 0 0 [ 

0 OIl X3 = 1 0 0 , 
o 1 0 

X. = o. 

Then Xl ,X,,!, x3 , X., are T-matrices of order 3, and the OD(12; 3, 3, 3,3) is; 

& b 0 -b & d -0 -d a -d 0 -b 
0 a b a d -b -d a -0 0 -b -d 
b 0 & d -b a a -0 -d -b -d 0 

b -a _d a b 0 -d -b 0 0 _a d 
-a -d b 0 a b -b 0 -d -a d 0 

-d b -a b 0 a 0 -d -b d 0 -a 
0 d -a d b -0 a b 0 -b d a 
d -a 0 b -0 d 0 a b d a -b 

-a 0 d -0 d b b 0 a a ·-b d 
d -0 b -0 a -d b -d -& a b 0 

-0 b d a -d -0 -d -a b 0 a b 
b d -0 -d -0 & -a b -d b 0 a 

We will not give the proof here which can be found in J. Wallis [22, p. 360] but 
will just quote the results given there. Cyclotomy may be used in constructing 
these arrays including the orders t = 13, 19, 25, 31, 37, 41, 61. 

Such structures are not limited to constructing OD(4tit,t,t,t). For example 
it was shown in Geramita and Seherry [8] that the following matrices 

can be used as follows to give an OD(12; 4, 4, 4) 
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• b < • -b < • b -< -. b < 
< • b -b < • b -< • b < -a 
b < • < • -b -< • b < -. b -. b -< a b < -. < b -a < _b 
b -< -. < • b < b -. < -b -a 

-< -. b b < a b -. < -b -. < 
-a -b < • -< -b a b < • < -b 
-b < -a -< -b • < • b < -b • 
< -. -b -b • -< b < a -b • < 

• -b -< • -< b -a -< b • b < 
-b -< • -< b a -< b -. < • b 
-< a -b b a -< b -. -< b < • 

We now introduce some new terminology to unify some previous ideas. 

2 M-structures 

An orthogonal matrix of order 4t can be divided into sixteen (16) txt blocks 
Mij • This partitioned matrix is said to be an M~structure. If the orthogonal 
matrix can he partitioned into sL"(ty-foUI (64) s x s blocks Mij it will be called 
a 64 block M-strueture. 

An Hadamard matrix made from (symmetric) Williamson matrices Wl, W" 
Wa, W. is an M-structure with 

Wi = MIl = M22 = Msa = M 44 • 
W, = Mn = -Mn = M34 = -M43 • 

Wa = M13 = -Mal = -M24 = M 42 , and 
W. = M14 = -Mn = M'3 = -Mal' 

An Hadamard matrix made from four (4) circulant (or type 1) matrices Aj, A" 
As, ~ of order n, where R is the matrix which makes all the AiR back-circulant 
(or type 2), is an M-structure with 

Al ;;;; Mu = M22 = Mal;;;; M 44., 

A, = M12R = -M21R = RMJ... = -RMb, 
A3= M13R= -M31R= -RM~ = RM'j;, .and 

A4 = M14R = -M41R = RM~ = -RMI;. 

In this paper we will mostly not be concerned with the structure of the Mi ; 

but two interesting cases should first be mentioned. 
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Welch's OD(20; 5, 5, 5, 5) composed of block circulant matrices is: 

-0 B -C -c -B C A -0 -O-A -B -A C -C-A A -B -0 D -B 
-B -0 B -c -c -A C A -D-O -A -B-A C -c -B A -B -0 D 
-C -B -0 B -C -0 -A C A -D -C -A -B _A C D -B A -B -0 
-C -C -B -0 B -0 -O-A C A C -C -A _B_A -D D -B A -B 
B -C -C -B-D A -0 -D -A C -A C -C -A-B -B -D D-B A 
-C A 0 O-A -D -B -C -C B -A B -0 0 B -B -A -C C -A 
-A -C A 0 0 B -D -B -C -C B -A B -D D -A -B -A-C C 
D -A -C A 0 -C B -D -B-C 0 B -A B -0 C -A -B -A -C 
0 D -A-C A -c -C B -O-B -00 B _A B -C C -A-B -A 
A 0 D -A-C -B -C -C B -0 B -0 0 B -A -A -c C -A -B 
B -A -C C -A A B -D D B -D -B C C B -C A -D -D -A 
-A B -A -C C B A B -D D B -D-B C C -A -C A -D -D 
C -A B -A-C 0 B A B -0 C B -D-B C -D -A -C A -0 
-C C -A B -A -0 D B A B C C B _D_B -D-D -A-C A 
-A -C C -A B B -D D B A -B C C B -D A -D-O-A-C 
-A -B-D D -B B -A C -C-A C A D D -A -0 B C C -B 
-B -A -B -D D -A B -A C -C -A C A D D -B -D B C C 
D -B -A -8-D -C -A B -A C D _A C A D C -B-D B C 
-D D -B -A-8 C -C-A B -A D D -A C A C C -B-D B 
-8 -D D -B-A -A C -C-A B A D D _A C B C C -B-D 

Each M;j in its M-structure is circulant. In fact it can be constructed using 
sixteen (16) circulant matrices with first rows using: 

Mu 1 1 -1 -1 -1 M" 1 -1 1 1 1 ; 
M" -1 1 1 -1 1 M .. -1 -1 1 -1 -1; 

M" -1 -1 -1 -1 1 M" 1 -1 -1 -1 1-, 
M'l3 1 1 1 -1 1 M" -1 -1 1 1; 

M" 1 1 -1 1 1 M" -1 1 -1 1; 
Moo 1 -1 1 M,. -1 -1 1 1; 

M .. 1 -1 -1 -1 .'1-[42 1 1 1 -1 1; 
M" 1 -1 -1 -1 1 M44 1 1 1 -1 ; 

K. Yamamoto's (38] restructuring ofOno and Sawade's OD(36; 9, 9, 9, 9) [13] 
composed of blocks of type 1 (or block circulant) matrices. Each M;j in its 
M-structure is type 1. In fact it can be constructed using sixteen (16) circulant 
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matrices with first rows: 

[ : a J I ~ [ 
1 0 !j, A~ a 0 1 

a 0 0 

B ~ [ -; 

1 
-1 1 [ ~ 

, n, D~[ 0 , 
-d 1 0 1 , C~ 0 -d 0 , , 

-1 0 d , -d 0 

vi7; 

MIl = A 01 +C -bl- CT' 
M12 = bI + aBT bI+DT bI _ DT 

Ml3 :::: cl + aBT -01 +C bI+ DT 
M14 = dl + aBT bI-D -bl + (jI' 

Mn :::: -bI + aB -bI +D -01 _DT 

Mn = A bI-C -bl + c:r 
Mn = -dI + aBT bI+D _bl_CT 

MN = c! +aB bl+C -bl +DT 

M3l = -c! + aB -01 -D bI - cr 
Mn .= dI +aB bl+C -bJ- DT 
M33 :::: A -bI+D bI_DT 

M34 :::: -bl + aBT -bI+C -bI - cr 
M4l :::: -dI + aB bl-C -bJ +DT 
M42 :::: -cl + aBT bI-D -bJ + c:r 
M43 = bl +aB bI+C bI - cr 
M44 = A -bI -D bI+DT 

When written in full the Ono-Sa.wade~Yamamoto OD(36; 9, 9, 9, 9) is as on 
the following page. 

The following theorem shows the power of M-structures comprising wholly 
circulant or type 1 blocks. The original version with circulant matrices was due 
to Turyn. 
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Theorem 4 Suppose there are T-matrices of order t. Further suppose there is 
an OD(4s; Ul, ... , u,,) constructed of sixteen circulant (or type 1) s x s blocks on 
the variablesxl, ... ,x". Then there is an OD(4st;tuI, ... ,tun). In particular 
ifthere is an ODe 4s; s, s, s, s) constructed of sixteeJl circulant (or type 1) s x s 
blocks then there is an OD( 4sl; sf, st, st, st). 

Proof: We write the 00 as (Nij), i,j:::: 1,2,3,4, where each N ij is circulant 
(or type 1). Hence we are considering the 00 purely as an M~structure. Since 
we have an OD 

Suppose the T-matrices are T I, T" T3, T4. Then form the matrices 

Now 

A=TI X Nll +T2 x N21 +T3 X N3l +T4 X N41 
B=TI x N 12 +T2 x N n +T3 x N32+T4 x N42 
G=T1 x N 13 +T2 x N 23 +T3 x N33+T4 x N 43 
D=TI XN14 +T2 x N 24 +T3 x N 34 +T4 x N 44 . 

< 
AAT + BBT + CCT + DDT = t L ukx~I,j, 

.c=1 
and since A, B, C, D are type 1, they can be used in the J. Wallis-Whiteman 
generalization of the Goethals-Seidel array to obtain the result. 0 

Corollary 5 Suppose the T-matrices are of order t. Then there are orthogonal 
designs OD(20t; 5t, 5t, 5t, 5t) and OD(36t; 9t, 9t, 9i, 9t). 

Proof: We use the Welch array for the OD(20tj 5t, 5t, 5t, 5t) and the Yamamoto­
Ono-Sawade array for the OD(36t; 9t, 9t, 9t, 9i). 

Note that to prove the Hadamard conjecture "there is an Hadamard matri.x 
of order 4t for all t > 0" it would be sufficient to prove: 

Conjecture 6 There exists an OD(4tjt,t,t,t) for every positive integert. 

We also conjecture 

Conjecture 7 There exists an M-structure OD(4tjt,t,t,t) for every t = 1 
(mod 4) comprising sixteen circulant or type 1 blocks. 
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3 Some properties of certain amicable 
orthogonal matrices 

Lemma 8 Suppose there exist two amicable (0, +1, ~1) matrices U, V oEoIder 
u satisfying UUT + VVT = (2u - 1)1. Then there exist matrices A, E, D of 
order u sa.tisfying 

AAT +BBT =BTB+DTD= (2u-l)I 
AT:::: (_l)!Cu-llA,DT:::: (_1)1(,,-1)0, 

where A and D have zero diagonal. 

Proof: By the properties of U and V we have 

is a (0,+1, -I) matrix of order 2u satisfying WWT = (2u - l}hu. 
Then by the Delsarte·Goethals-Seidei theorem (see [7J or (22, p. 306]) W is 

Hadamard equivalent (i.e. use the operations of multiplying rows or colunms 
by -1 and rearranging rows or columns) to a (0, +1, -1) matrix C with zero 
diagonal satisfying 

Hence C can be written 

where AT = (_l)Hu-l)A, 
nal. 

DT = (_l)Hu-l)D, and A and D have zero diago­
o 

Lemma 9 Let q + 1 be the order of a conference matrix. Then there exist four 
matrices C l , C2 , C3 , C4 , of order !(q -1) satisfying 

where e is the 1 x !(q-l) matrix of ones, Cl and C4 have zero diagonal elements 
±l, C2 and C4 have elements ±l. 
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Proof: By the Delsarte-Goethals-Seidel theorem (see [7J or [22, p. 306]) we can 
ensure the conference matdx is symmetric and of the form 

where D has zero diagonal. We now simultaneously permute the rows and 
columns of D (so if row i and j are interchanged then column i and column j 
are also interchanged) to keep symmetry and obtain 

, 
, 

-C, 
C, 

i: 1 c, 

Since Eis orthogonal e-eC'[ -eC[ = 0= e-ec'[ +eC! soee'[ = e, eCf' = 0 
and 

Ctc'[ + C2c'f = C3c'[ + C4CJ = ql- 21, 
ec'[ = ecI = e, fc'f = ec[ = 0, 

c1cI - C2Cf = 0, cr = CIt Cf = C4, c[ = C2. 
o 

Lemma 10 Suppose there exist two amicable (0,+1,-1) matrices U, V of 
order u satisfying UUT + vvr = (2u - 1)1. Further suppose U has zero 
diagonal and U, V have otber elements + 1 or -1. Tben there exist matrices A, 
B of order u - 1 satisfying 

AAT + BBT = (2u -1)1 .. _1 - 21 .. _1, 

eAT = e, eST = 0, ABT = BAT, 

where A has one zero element per row and column and the other entries of A 
and B are ±l. Further if U and V are symmetric (or skew-type respecti\"ely) 
then A and B are symmetric (or skew-type respectively). 

Furthermore if U and V satisfy UUT + VVT = 2ul (U, V are (1,-1) 
matrices), u even, then there exist matrices A, B of order 11 - 1, with entries 
±l, satisfying 

AAT + BST = 2uI"_1 - 2J .. _1, 
eAT = e, eBT = f, ABT = BAT, 

and if U and V are symmetric (or skew-type respectively) then A and Bare 
symmetric (or skew-type respectively). 
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Proof: Without loss of generality assume Y has its (1,1) entry +1, otherwise 
replace it by ~ V. If U has no zeros and non zero (1, 1) entry assume it is ~ 1 
(the outcome is identical up to equivalence of the desired properties). 

Assume U has zero diagonal. Define D = U + iY, then with Dt written for 
the Hermitian conjugate (transpose and complex conjugate), we have 

DDt (U + iY)(UT ~ iVT) 
UUT + yyT + i(UyT _ VUT) 

= UUT + VVT (by the amicability of U and V) 

(2'1.1 -1)1 .. , 

an orthogonal matrix with diagonal entries ±i and other entries ±I ± i. We 
wish to normalize the first row and column to 

[ 
, 

l+i 

E = 1 ~i 

1 + i 

l+i 

[ 

i 1+i 
-1 - i 

orE1 = -I;-i 

-1-i 

1 + i l+i 

F+iG 

1+1 

F+iG 

if U and V are skew-type. If the first element of row/column j of Dis 1 + i, 
1 - i, -1 + i, -1 - i we multiply the row/column by 1, i, -i, -1 respectively, 
to form E. We only form E1 if both U and V are skew type. 

If U and V are symmetric (or skew-type respectively) the operation on row 
j is also carried out on column i preserving symmetry (skew-type respectively). 

The operations performed have not affected the orthogonality so 

EEt = (2'1.1 -1)1 ... 

We now write E or El as 
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So 

~ [. - 1 ,LT ] [ • ,(1+ NT) ] 
EEt LeT J+LLT + (l+N)eT J+NNT 

-i([(l:~~eT J:~~T] - [~~i ~~+NL;)]) 
[ 

2u-l e(LT+NT+l) ] 
(l+L+N)eT 2J+LLT +NNT 

,[ 0 e(NT_I_LT)] 
-~ (l+L-N)eT LNT _NLT 

= (2u - 1)1. 

Hence LNT :::: N LT , (1 + L + N)eT :::: 0 :::: (1 + L - N)eT , giving eLT :::: -e, 
eNT = 0 and LLT + NNT :::: (2u -1)1 - 2J. Set -L:::: M to get the result. 

It remains to be shown that M has zero diagonaL Now M MT + N NT :::: 
(2u - 1)1 - 2J. So there is only one zero per row of [M : NJ. Also u is odd so 
M and N have even order tI. - L Hence eJVT = 0 tells us N has no zero entries 
and thus the one zero entry per row must be in M. Rearrange the columns of 
M (if necessary) to ensure M has zero diagonal. 

If U and V were (1,-1) matrices of even order then 

[ 
-1 ,] ,[ 1 ,] 

E:::: eT L + 1 eT N 

EEj ~ [2. ,(LT +NT
) ] 

(L + N)eT 21 + LLT + N NT 

,[ 0 e(LT _NT +2)] 
+1 (N_L_2)eT LNT_NLT 

:::: 2uI. 

Hence LNT = NLT, (L+N)eT = 0:::: (N_L_2)eT , givingeLT = -e, 
eNT' = e and LLT + N NT = 2uI _ 21. Set -L = M to get the result. 0 

Remark 11 This lemma is very similar to the beautiful Lemma I of :\tiyamoto 
[12J, 

Remark 12 Let 1+ Wand V be normalized amicable Hadamard matrices of 
order h (see Jennifer Seberry [161 for a list of their orders). Then there exist 
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two matrices A, B of order h - 1 satisfying 

AAT + BBT = (2h - l)h_l - 2],._1, 
eAT = 0, eBT = e, ABT = BAT, AT = -A, BT = B, 

AAT = (h - 1)1 - J, BBT = hI - J 

where A has zero diagonal and the other entries of A and Bare ±1. 

Remark 13 Let 1+ W and V be amicable Hadamard matrices of order h (see 
Jennifer Seberry [16] for a list of their orders). Then there exist two matrices 
W, V of order h satisfying 

WWT + VVT = (2h _ 1)1, WVT = VWT, WT = -W, VT = V. 

Remark 14 From Jennifer Seberry Wallis' restatement [22, p. 291] of a theo­
rem of RE.A.C. Paley we have 

(i) If q == 3 (mod 4) is a prime power or there is a skew-Hadamard matrl.'( of 
order q + 1 then there is a skew symmetric matrix W of order q such that 
wwT = (q + 1)1 - J, wT = -W. Let R be a symmetric permutation 
matrix such that W R is symmetric (in the case of q a prime power the 
back diagonal matrix has this property) then 

(WR)(WRl' = (q+ 1)1 - J, (WR)T = (WR), 
and (WRW = I(WR)T. 

(ii) If q == 1 (mod 4) is a prime power or there is a symmetric conference 
matrix C + I of order q + 1 then there is a symmetric matrix Q of order 
q such that QQT = ql _ J, QT = Q and so that 

(Q + I)(Q + I)T + (Q - I)(O - I)' = 2(q + 1)1 - 2J. 

Remark 15 From Geramita and Seberry's restatement [8, p. 92, Theorem 4.41] 
of a theorem of Goethals and Seidel we have 

If q == 1 (mod 4) is a prime power there are two circulant symmet­
ric, amicable matrices M and N of order !(q + 1) satisfying 

MMT + NNT == qI-Hq+l}. 

Remark 16 From Seberry-Wallis's restatement [22, p. 321, Theorem 4.6] of 
a theorem of Szekeres for q == 5 (mod 8) and by Yamada's theorem [45, Ap­
pendix] for q == a2 == 1 (mod 8) we have 
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(i) If q == 5 (mod 8) is a prime power then there are two circulant or type 1 
amicable matrices U, V of order q satisfying 

UUT + VVT = 2ql - 2J, 
eUT = 0, eVT = 0, UVT = VUT , ur = -U, VT =-V, 

With R the appropriate permutation matrix (as mentioned in Remark 14(i) 
above) set W = 1+ Vj then 

uuT + (W R)(W R)T ~ (2q+ 1)1 - 2J, 
eUT = 0, e(W R)T = e, 

U(W R)T ~ (W R)UT, uT ~ -U, (W R)' ~ (W R). 

(ii) If q = (12 == 1 (mod 8) is a prime power then there are two circulant or 
type 1 amicable matrices U, V of order q satisfying 

UuT + VVT = 2(q + 1)1 - 21, 
eUT=e, eVT=e, 

uvT = VUT, UT=U, VT=V. 

Remark 17 From Seberry- Wallis's restatement [22, p. 323, Theorem 4.ij of a 
theorem found independently by Szekeres and Whiteman, we have 

If q = pi == 1 (mod 8) is a. prime power, p == 5 (mod 8), then 
there are two circulant or type 1 amicable matrices U, V of order q 
satisfying 

UUT + VVT = 2qI - 2J, 
eUT = 0, eVT = 0, UVT = VUT, uT = -U, VT = -V. 

With R the appropriate permutation matrix (as mentioned in Remark 14(i) 
above) set W = I + V then 

UUT + (W R)(W R)T = (2q + 1)1 - 2J, 
eUT = 0, e(WRf = e, 

U(WR)T ~ (WR)UT, UT ~ -U, (WR)T ~ (WR). 

Remark 18 From Geramita and Seberry's restatement [8, p. 256, Theorem 
5.80] of a theorem of Szekeres we have 

If q = 4m + 3 == 3 (mod 4) is a prime power then there are two 
cyclic supplementary difference sets 2 - {2m + 1; mj m - I}, M and 
N, called Szekeres difference sets, such that (l E M ~ -(I ~ M, 
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BEN::;. -b E N. Thus if U - I, V are the (1, -1) incidence 
matrices of M, N respectively, 

UUT + VVT = ql - 21, 
eUT = 0, eVT = -e, UT = -U, V T = V. 

Now let R be the back diagonal matrix (as above) and set W = - V R 
then U and Ware amicable matrices of order ~(q -1), U with zero 
diagonal and W symmetric such that 

UuT + WWT = ql - 21, 
eUT=O, ewT=e, UT=_U, WT::;;:W. 

Indeed the process just described ensures that if there are Szekeres 
difference sets on an abelian group of order q then the matrices U 
and W, just mentioned, can be constructed of order q. 

Remark 19 If q == 1 (mod 4) is a prime power, Yamada (42] showed that 
there exist two circulant matrices U, V of order l(q - 1) satisfying 

uuT +VVT =ql-2J, 
eUT = e, eVT = 0, efT = u, 

where U has zero diagonal. With R the appropriate permutation matrbc (as 
mentioned in Remark 14(i) above) set W = V R then 

UUT + WWT = ql - 21, 
eUT =e, eWT =0, UWT = WUT , UT = U, wT = W. 

Remark 20 If q = s2 + 4 == 5 (mod 8) is a prime power then J. Wallis [29] 
and independently Yamada [45] showed that there are two. circulant or type 1 
matrices U and V of order q where 

UUT + VVT = (2q + 1)1 - 2J, 
eUT = 0, eVT = e, UT = -U, VT = V, 

and where U has zero diagonal. Now let R be the back diagonal matrix (as 
above) and set W = V R then U and Ware arrucable matrices of order q, U 
with zero diagonal and W symmetric with zero back diagonal such that 

UUT + wwr = 2ql - 2J, 
eUT = O. eWT = 0, UT = -U, WT = W, uwT = WUT . 

Note Yamada has observed that there are other suitable matrices for these 
orders. 
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4 A multiplication Theorem using M-structures 

Theorem 21 Let N :::: (Hij), i,j :::: 1,2,3,4 be an Hadamard matrix of order 
4n oEM-structure. Further let 11j, i,j:::: 1,2,3,4 be 16(0,+1,-1) type 1 or 
circulant matrices of order t which satisfy 

(i) Tij .. Tit:::: 0, Tji * ni = 0, j,# k, (* the Hadamard product) 

(ii) L~=l Tik is a (1, -1) matrix, (8) 

(iii) L!=l TikT;1 :::: tll = 1:1=1 T~iTl:, 
(iv) 2:::1 TilT[,. :::: 0:::: L:!::l TdIZ, i::j:. j. 

Then there is an M-structure Hadamard matrix of order 4nt. 

Proof: Define the matrix X = (Xij ) as follows 

• 
". T Xij :::: L.J Tit X N jt . 

1=1 

From the conditions of the T-matrices and from the M-structure, we have 

t, X" X,; = t, (t, T" x NS) (t, T'm x NTm r 
• • • 

= L L L (T"T,'!:, x NSN,m) 
j=Il::1",=1 

If k f. m, then L:;=l NTtN]m :::: O. Hence the above equation becomes 

• . , 
L: XijXTj L: Til:Ti~ X L Nj),Njk 

j:l "=1 j=1 

:::: 4tnltn . 

For ii k, 

• 
LX;jXJ, 
j=1 
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• • • 
== L:L E T;gTlm x Nl~Njm 

j=1 g=1 m",l 

~ ~t,T,.7Tm x (~NJ.Njm) 
• • 

L:T;gT[, x L Ni~Njg 
g=1 j=1 

O. 

Hence the matrix X is an Hadamard matrix of order 4nt of M-structure and 
the matrix X' = (Xj;) is also an Hadamard matrix of M-structure. 

We further note that if 2:1=1 Tko is a (1, -1) matrix and define the matrices 
Y = (¥;j), Z = (Z;j), and W::: (Wij ) as follows: 

Yi; = E:=1 Tto x N'f;, 
Zij ::: 2::=\ Tij x NJ", and 

Wij = L!=l 7h x Ni;. 
Then, as in the case for X, we see all three matrices Y, Z and Ware Hadamard 
matrices of order 4nt of M-structure. Furthermore Y' = (¥j;), z' = (Zj')' and 
W' = (Wi;) are also Hadamard matrices of M-structure. 0 

Corollary 22 If there erists an Hadamard matrix of order 4h and an orthog­
onal design OD(4u; tel, tel, tc3, u .. J, then an OD{Bhu; 2hul, 2hu2, 2hu3, 2hu4) ex­
ists. 

Proof: Let H = (Hi}), i,j = 1,2,3,4 be an Hadamard matrix of order 4h. Put 

1 1 1 1 
Pi = 2(Hil +Ht2), Qi = 2(Hil-Hi2), R;. = 2(Hi3+ Hi4), 5i = 2(Hi3 -Hi4 ), 

and the required T-matrices of order 2h for the theorem are 

[P,] [Q,] [11,] [S,] 
Til = Pi' 1h= Qi' 'Ih= R; , Ti4= 5i ' 

for i= 1,2,3,4. Since 

• • 
L':Ti/T;} = E (PiPr + QiQ; + R;R[ + 51ST) x 12 
j=l ;=1 
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.nd 

= ~ (tH';H~) x I, 
1=1 

= 2h1uh 

Et=l T'kTf" = 0, L:1:=1 Tlt.iTf; = 0, for i #- j, and 
EZ=IT,h, 1=1,2,3,4 is a,(l,-l) matrix. 

Now let the OD(4u;u}'U"U3,Uoj) = D:::: (Do}), i,j = 1,2,3,4 defined on the 
commuting variables Xl. Z2, X3, x". Then we have 

DDT == (uixi +U2X~ + U3X~ + u4X~)l4. .. , 

that is 

• 
'EDiiDf; 
j=l 

E!=lDiJ:DTIt.=O, Zk=lDIt.,Dfj=o, i,j=1,2,3,4, i::j:.j. 

We now define the matrix X = (Xi}) as follows 

• 
Xi} = LT;I< x DrJ:· 

l .. l 

Then, as in the theorem, we have 

andfori#-k, 

• 
LX;iX~ = 2h(U1X~ + U2X~ + U3X~ + U4X~)IzII'" 
j:l 

• 
L:X;jX~ = O. 
1=1 

Thus X = (Xii) and X, = (Xi;) are OD(8hu; 2hUi> 2hu2, 2hu3, 2hu4) of M­

structure and Y:::: (Xi) = ('E:=l no x Dl,.), Z = (2;.,) = (L:t=l T", X nIl:) 
and W=(W;j)= (E!=l T;.&: x N~), Y'=(Yj ;), Z'=(Zji) and W'=(Wji), are 
also OD(8huj 2hul, 2hu2, 2hu3, 2hu4) of M·structure. 0 
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Corollary 23 If there exists an Hadamard matrix of order 4h and an orthogo­
nal design OD(4u; u, u, u, u), then there exists an OD(8huj 2hu, 2hu, 2hu, 2hu). 

This gives the theorem of Agayan and Sarukhanyan (2) as a corollary by 
setting all variables equal to one: 

Corollary 24 If there exists Hadamard matrices of orders 4h and 4u then there 
exists an Hadamard matrix of order Shu. 

We now give as a corollary a result, motivated by, and a little stronger than 
that of Agayan and Sarukhanyan [2): 

Corollary 25 Suppose there are Williamson or Willi.a.mson type matrices of 
orders tI and v. Then there are Williamson type matrices of order 2uv. 

If the matrices of orders u and v are symmetric the matrices of order 2uv 
are also symmetric. 

If the matrices of orders u and v are circulant and/or type 1 the matrices of 
order 2uv are type 1. 

Proof: Suppose A, B, C, D are (symmetric) Williamson or Williamson type 
matrices of order u then they are pairwise amicable and satisfy 

Define 

1 
F= ,(A- B), 

1 
H = ,(C - D), 

then E, F, G, H are pairwise amicable (and symmetric) and satisfy 

EET +FFT +GGT + HHT = 2uI ... 

Now define 

so that 
Tl = Ttl = T:z2 = Ta3 = T44, 

T2 = TJ2 = -T21 = Ts4 = -T43, 
Ta = Tt 3 = -T31 = -T24 = T,,2 and 

T4 = T14 = -T"l = T 13 = -Ts2, 

in the theorem. Note Tb T:z, Ta, T4 are pairwise amicable. If A, B, C, D were 
circulant (or type 1) they would be type 1 of order 2u. 
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Let X, Y, Z, W be the Williamson or Williamson type (symmetric) matrices 
of order tI. Then X, Y, Z, W are pairwise amicable and 

Then 

XXT + yyT + ZZT + WWT = 4vl~. 

L = Tt xX+Tz xY+T3 xZ+T4 xW 

M = -TIXY+TzxX+T3XW-T4XZ 

N -Tl X Z - Tz x W + T3 X X + T4 X Y 

P -TIXW+TzxZ-T3XY+T4XX. 

are 4 Williamson type (symmetric) matrices of order 2uv. If the matrices of 
orders u and v were circulant or type 1 these matrices are type 1. 0 

5 Miyamoto's Theorem and Corollaries 
via M·structures 

We reformulate Miyamoto's results so that symmetric \Villiamson-type matrices 
can be obtained. 

Le=a 26 (Miyamoto's Lemma Reformulated) Let Vi, V;, i,j = 1,2,3,4 
be (0, +1, -1) matrices of order n which satisfy 

(i) Vi, Vj, i ::j:. j are pairwise ;urucabJe, 

(ii) \1;, V;, i of; j are pairwise ;urucable, 

(iii) Ui ± Vi, (+ 1, -1) matrices, i = 1,2,3,4, 

(iv) the row sum of UI is 1, iUld the row sum of Uj, i = 2,3,4 is zero, 

(v) r:,:=l U,Ur = (2n + 1)1 - 2J, r:,:=1 V; v,T = (2n + 1)1. 

Then there are 4 Williamson type matrices of order 2n + 1. If Uj iUld V; 
are symmetric, i = 1,2,3,4 then the WilliiUJlSOn-type matrices are symmetric. 
Hence there is a H71liarnson type Hadamard matrix of order 4(2n + 1). 

Proof: Let SI, S2, S3, $4 be 4 (+ 1, -I)-matrices of order 2n defined by 

-1 1 1 . 
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So the row sum of S1 = 2 and of S, = 0, i = 2,3,4. Now define 

andXi=[~ 
"" 

"" ] S, ' 
i=2,3,4. 

First note that since Ui, Uj, i #- j and V;, Vi, i #- j are pairwise amicable, 

s,sJ (U;X [: :] +V; x [~, ~']) (UJ x [: :] + 'iT X [~, ~1]) 
= UiUJ xU ;J +v;lf X(!2 -;2J 
= Sjs'[. 

(Note this relationship is valid if and only if conditions (i) and (ii) of the theorem 
are valid.) 

• T [' '] • T [' ~U,Ui X 2 2 + t;v;v; x -2 -;'] 
= ,[2(2n+l)I-2J -21 ] 

-2J 2(2n+ 1)1-21 

= 4(2n + 1)12" - 4h" 

Next we observe 

XXT _[1-2n 
1 i - T 

"" 
"" ] XxT -J + slsT = , 1 

i=2,3,4, 

and 

XiX! = [ 

Further 

• 
LX,X; 
.=1 

1+2n 
eIn ',. ] XxT 

J+SiSJ = j ; 
i #- j, i,j = 2,3,4. 

[ 
1 +;'n -3e2n] + t [ 1 +T 2n 
-3e 2" J + Sls'[ . e2n .=2 

[
4(2n+l) 0 ] 

o 4J+4(2n+l)I-4J· 

Thus we have shown that Xl, X 2, X 3, X4 are 4 Williamson type matrices 
of order 2n + 1. 

Hence there is a Williamson type Hadamard matrix of order 4(2n + 1). 0 
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Corollary 27 Let q == 1 (mod 4) be a prime power then there are symmetric 
Williamson type matrices of order q + 2 w:henever ~(q + 1) is a prime power or 
~(q + 3) is the order of a symmetric conference matrix. Also there exists an 
Hadamard matrix of Williamson type of order 4(q + 2). 

Proof: (i) Let B be the skew-symmetric core of order ~(q + 1) formed via the 
quadratic residues (see Remark 14(i)) and R the back-diagonal matrix so that 
BR is back circulant or type2 and symmetric; 

(ii) Let X be the symmetric core of order Hq + 1) of the conference matrix 
(see Remark 14(ii))j 

(iii) Let M, N be the two circulant symmetric matrices of order ~(q + 1), 
M with zero diagonal satisfying M MT + N NT = q1 (see Remark 15). 

Then in Lemma 26 use 

(ia) UI = I, U, = 0, U3 = U4 = BR, 

(iia) VI=M, V'J=N, V3=V4=R, 

(ib) Ut =1, U2 =0, U3 = U4 =X, 

(iib) VI =M, V2=N, V3= V4 =1, 

to obtain the result. o 

Remark 28 Some of the results in Corollary 27 are also due to A.L. Whiteman 
[35]. This gives symmetric Williamson. type matrices of orders 

7 11 15 19 27 39 51 55 63 75 
83 91 99 123 159 195 243 279 315 339 

363 399 423 451 459 543 579 615 627 663 
675 735 759 843 879 883 999 1095 1155 1203 

1215 1239 1251 1323 1383 1455 1623 1659 1683 1755 
1875 1935 1995 

(since Mathon found conference matrices of orders 46 and 442). Almost all 
these, with symmetry, are new though Miyamoto [12] has found Williamson· 
type matrices for these orders and hence Hadamard matrices for four times 
these orders. 

Koukouvinos and Kounias [lOJ have shown there are no circulant symmet­
ric Williamson matrices of order 39 but here a symmetric but not circulant 
Williamson matrix of order 39 is given. 
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Corollary 29 Let q == 1 (mod 4) be a prime power. Then 

(i) jf there are Williamson type matrices of order (q - 1)/4 or an Hadamard 
matrix of order ~(q - 1) there exist Williamson type matrices of order qi 

(ii) if there exist symmetric collference matrices of order !(q - 1) or a sym­
metric Hadamard matrix of order !(q - 1) then there exist symmetric 
Williamsoll type matrices of order q. 

Hence there exists an Hadamard matrix ofWilliamsoll type of order 4q. 

Proof; (i) Use Yamada's matrices A and C = BR of order i(q - 1) (see Re­
mark 19) as 

and for 

Va=[W' W, 
w, 1 

-Wl ' 

where Wi, i = 1,2,3,4 are Williamson-type matrices, or V3 = V4 = H ,where 
H is an Hadamard matrix of order !(q - 1), and 
(ii) with N the appropriate symmetric conference matrix and H the appropriate 
Hadamard matrix use 

V3 =N+I, V4=N-I, or V3 =V4 ='H, 

as indicated in Lemma 26 to obtain Williamson-type matrices. o 

Remark 30 Part (i) of Corollary 29 for Williamson matrices of order (q -1)/4 
was found by Miyamoto [12J. Part (i) with Hadamard matrices of order !(q-l) 
is new. Part (ii) with symmetry is new. 

Corollary 29 part (il) gives symmetric Williamson-type matrices of order q 
when q == 1 (mod 4) is a prime power and !(q - 1) is the order of a symmet­
ric conference matrix. This gives symmetric Williamson-type' matrices for the 
following orders: 

13 29 
197 229 
677 701 

1549 1597 

37 
277 
709 

1621 

53 
317 
797 

1709 

61 
349 
821 

1861 

101 
389 

1021 
1877 

120 

109 
397 

1061 
1997 

125 
461 

1117 

149 
541 

1229 

181 
557 

1237 



Corollary 29 will also give Williamson-type matrices of orders 293, 373, 613, 
653,733,757,853,1013,1069,1213,1277,1373,1381, 1453, 1493, 1669, 1693, 
1733, 1901, 1933, or 1973 if symmetric cortCerence matrices of orders 146, 186, 
306, 326, 366, 378, 426, 506, 534, 606, 638, 686, 690, 726, 746, 834, 866, 950, 
966 or 986 exist, respectively. 

Corollary 29 part (ii) gives symmetric Williamson-type matrices of order q 
when q == 1 (mod 4) is a prime power and !(q - 1) is the order of a sym­
metric Hadamard matrix. Rembering that symmetric Hadamard matrices exist 
Cor orders p + 1 when p == 3 (mod 4) is a prime power we have symmetric 
Williamson-type matrices for the following orders: 

5 9 17 25 41 49 73 81 89 97 
113 121 169 193 241 257 281 289 337 353 
361 401 409 433 449 457 529 569 577 593 
601 617 625 641 673 729 761 769 841 881 
929 937 961 977 1009 1033 1049 1097 1129 1153 

1201 1217 1249 1289 1297 1321 1361 1369 1409 1481 
1489 1553 1601 1609 1657 1681 1697 1721 1777 1801 
1849 1873 

Corollary 29 also gives symmetric Williamson-type matrices of orders 233, 
313,521,809,857,953,1193,1433,1753,1889,1913, and 1993 when symmetric 
Hadamard matrices of orders 4.29, 4.39, 4.65, 4.101, 4.107, 4.119, 4.149, 4.179, 
4.219, 16.59, 4.239 and 4.249 are discovered. 

Corollary 29 part (i) gives Williamson-type matrices of order q when q == 1 
(mod 4) is a prime power and !(q - 1) is the order of an Hadamard matrix. 
This gives Williamson-type matrices for the following orders not given above: 

137 233 313 521 809 953 1193 1753 1889 1993 

Corollary 29 part (i) gives Williamson-type matrices of order q when q == 1 
(mod 4) is a prime power and {q-l)j4 is the order of Williamson-type matrices. 
This result is also due to Miyamoto [12]. This gives Williamson-type matrices 
for the following orders: 

157 173 293 
1453 1493 1637 

373 
1693 

613 
1733 

757 
1741 

757 773 1109 1301 

Corollary 29 will also gives Williamson-type matrices of orders 857, 1433 and 
1913 when Hadamard matrices of orders 4.107, 4.179 and 4.239 are discovered. 
Further it will give Williamson-type matrices of orders 

269 421 
1069 1093 
1789 1901 

509 
1181 
1933 

653 661 
1213 1277 
1949 1973 

733 
1373 

121 

829 
1381 

853 
1429 

877 941 
1613 1669 



when Williamson-type matrices of orders 

67 105 127 163 165 183 207 213 219 235 
267 273 295 303 319 343 345 357 403 417 
447 475 483 487 493 

are discovered. 

Corollary 31 Let q == 1 (mod 4) be a prime power or q + 1 the order of a 
symmetric conference matrix. Let 2q - 1 be a prime power. Then there exist 
symmetric Williamson type matrices of order 2q + 1 and an Hadamard matrix 
of Williamson type of order 4(2q + 1). 

Proof; Form the core Q a.s in Remat"k 14(i). Thus we choose a symmetric Q 
of order q satisfying eQ = 0, QQT = qI - J. From Remark 15 there exist 
symmetric matrices M and N of order q satisfying 

M MT + N NT :::; (2q - l)I, M with zero diagonaL 

and 

• • 2:= u,u1 ~ (2, + 1)1 - 2J, 2:=v.v,T ~ (2q+ 1)1. 
i=1 .=1 

Hence by Lerruna 26 we have four symmetric Williamson type matrices of 
order 2q + 1 and a Williamson type Hadamard matrix of order 4(2q + 1). 0 

Remark 32 CoroHary 31 is satisfied for the appropriate primes or conference 
matrix orders to give symmetric Williamson-type matrices for the following 
orders: 

11 19 27 51 75 83 91 99 123 195 
243 315 339 363 451 459 579 627 675 843 
883 1155 1203 1251 1323 1659 1683 1755 1875 1995 

2019 2139 2403 2475 2595 2859 3043 3219 3315 3363 
3483 3699 3723 

Note this la.st corollary is a modified version of Miyamoto's Corollary 5 
(original manuscript). A new proof of Miyamoto's result, preserving symmetry, 
IS; 
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Corollary 33 Let q == 5 (mod 8) be a prime power. Further let !(q - 3) be 
a prime power or Hq - 1) be the order of a symmetric conference matrix then 
there exist symmetric Williamson type matrices of order q and an Hadamard 
matrix of Williamson type of order 4q. 

Proof: Since q:= 1 (mod 4) is a prime power, Yamada's matrices A and C = 
BR of order !(q -1) (see Remark 19) satisfy AT = A, eA = e, eB = 0, eC = 0, 
A has zero diagonal, B and C have elements +1 and -1, and AAT + CCT = 
ql - 2J, where R is the back diagonal matrix which makes C = BR symmetric. 

From Remark 14, since ~(q - 3) is a prime power == 1 (mod 4), there exists 
a symmetric conference matrix, N, of order ~(q - 1). Let 

X=N+I, and Y=N-I, 

then X, Y are symmetric and amicable of order !(q - 1) satisfying 

XXT + yyT = (q -1)1. 

Ld 
U1 = A, U2 = C, U3 = U4 = 0, 

and Vi=I, V2 =0, V3 =X, V4 =y, 

then • • I: U,U<, = ,1 - 2J, I: VoW = ,1. 
;=1 ;=1 

So the lemma gives the result. o 

Theorem 34 (Miyamoto's Theorem Reformulated) Let Uii' Vii' i,j = 
1,2,3,4 be (0, +1, -1) matrices of order n which satisfy 

(i) Uk;, Ukj, i #- j are pairwise amicable, k = 1,2,3,4, 

(ii) Vk " Ykj, i #- j are pairwise amicable, k = 1,2,3,4, 

(iii) Uk; ± Vk" (+1, -1) matrices, i, k = 1,2,3,4, 

(iv) the rowsumofU;; is 1, and the rowsum ofU;} is zero, i #- j, i,j = 1,2,3,4, 

(v) 'L:=1Uj;UJ';=(2n+I)I-2J, 'L:=lVj;~=(2n+l)l, j=1,2,3,4, 

(vi) "L,:=1 UjiUl. = 0, L:=1 Vji It;.~ = 0, j #- k, j, k = 1,2,3,4. 

If conditons (i) to (v) hold, there are four Williamson matrices type of order 
2n + 1 and thus a Williamson type Hadamard matrix of order 4(2n + 1). Fur­
thermore if the matrices Uk; and V~, are symmetric for all i,j = 1,2,3,4 tbe 
Williamson matrices obtained of order 2n + 1 are also symmetric. 

If conditons (iii) to (vi) hold, there is an M-structure Hadamard matrix of 
order 4(2n + 1). 
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Proof: Let Sij, be 16 (+1, -I)-matrices of order 2n defined by 

5ij = U,j X [~ ~ J + V;j x [~1 11]. 
So the row sum of 5 i , = 2 and of 5'j = 0, i =/:-i, i,i = 1,2,3,4. Now define 

[-' -'J Xl] = T 5 -e 11 XI2=[J S:2] Xl~=[ei. S:3 ] 
[ -, Xu= eT s:. ] 

X21=[J s:, ] [-' -. J X22 ", T 5 _e 22 X2J = [ei. 5:3 J 
[ -, XH", e T 5:. ] 

xn",["i. 5:1 1 XJ 2"" [ ,,~ 5:2 ] [-' -. J X33= T S 
-" 33 

[ -, XS.", .T 5:. J 
[ -, X'I = .T -;41 ] XU'" [J -;n] [ -, • J X'S'" T S e - n 

[ -, Xu= T -. -. J _s .. 
We note that the following always holds as it is just a case of Miyamoto's 

Lemma Reformulated: 

• L5j ,S;' = 4(2n + 1)12 .. - 4h ... 
,=1 

In all cases though assumption (vi) assures us that 

• L; S .. S;; ~ 0, N k. 
,=1 

(9) 

(10) 

We separate the remainder of the proof into two parts: Case A where condi­
tions (i) to (v) of the enunciation hold and Case 2 where conditions (iii) to (vi) 
of the enunciation hold. 

Case A. We now note that, as in Miyamoto's Lemma: 

(11) 

if and only if UJ:;, UJ:j, i =/:- j are pairwise amicable, k = 1,2,3,4, and Vki , Vii, 
i =/:- i are pairwise amicable, k = 1,2,3,4. ThuB 

.nd 

T [1-2n -el .. 1 T· 
X 44 X"; = T J + S sT. = X 4jX44 } = 1,2,3 

.. -e2.. - 44 4j 

XuxJj = [ 
1 +2n 
-ern ] = X4jxL, 
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Further we note 

• 
LX4iK:; 
i=! 

[\:In J +3~::sr4 ] + ~ [ l_:rnn 

~ [4(2n+l) 0 1 
o 4J+4(2n+l)I-4J 

= 4(2n + 1)I2n+! 

Hence X4 l> X42 , Xo , X44 are 4 Williamson type matrices of order 2n + 1 
and thus a Williamson type Hadamard matrix of order 4(2n + 1) exists. 

Case B. We now assume conditions (i) and (ii) do not hold but that condition 
(vi) does hold. By straightforward checking we can assert that 

• L: XjiX[; = 0 i ¢ k, if and only if (10) holds. 
;=1 

• L: XjiXJ; = 4(2n + 1)12"+1 i = 1,2,3,4 as (9) holds. 
;=1 

Hence there is an M-structure Hadamard matrix of order 4(2n + 1). 0 

Note that if we write our M-structure from the theorem as 

-I 1 1 -I -. • • • 
1 -I 1 -I • .. • • 
1 1 -I -I • • .. • 
1 1 1 1 -. .. .. • 

_,T ,T ,T • T Sa S" S" S" 
,T _.T .T .T S" S" So. S" 
.T .T _.T .T S" S" S" So. 

_.T _.T _.T .T S .. S., S" ,544 

and we can see Yamada's matrix with trimming [46] or the J. Wallis-Whitema.n 
(30] matrix with a border embodied in the construction. 

Corollary 35 Suppose there exists a symmetric conference matrix of order 
q + 1 = 4t + 2 and an Hadamard matrix of order 4t = q - 1, Theil there is 
an Hadamard matrix with M-structure of order 4( 4t + 1) = 4q. Further if the 
Hadamard matrix is symmetric the Hadamard matrix of order 4q is of the form 
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wbere X, Y are amicable and symmetric. 

Proof: Use Lemma 9 to obtain four matrices C1, C2, C3 , C4, of order !(q - 1) 
satisfying 

clcf + c2Ci C3c§' + C4Cr 
= qI - J 

ecT=eCI=e, eCf=ecI=O, cr = CI , C'.f = C4 , 

cTC1' - C1'CI = 0, cr = C2 _ 

Write the Hadamard matrix with four blocks of size !(q -1) as 

If this matrix is symmetric then Hr HI + HI Hr = 0, Hr = HI, H:[ = H4 , 

HI' =H2 • 

Now write U = (Uii) and V :::: (Vii) with 16 blocks ofsize Hq -1) x Hq -1) 

[ 

c, C, 
-C3 C4 

o 0 
o 0 

[ 

I 0 
o I 

and V= HT HT - tr - 3 

-H2 -Hr 

and straightforward use of Miyamoto's theorem gives the result. o 
We note that complex Ha.damard matrices of order n =- 2 (mod 4) do exist 

when symmetric conference matrices cannot exist (see [22, Chapter VI]). These 
complex Hadamard matrices may be written as K = X +iY where KK* = kIt 
(* the Hermitian conjugate). 

Hence we have 

Corollary 36 Let q == 4/ + 1 be a. prime power. Suppose there is a complex 
Hadamard matrix of order 2/. Then tbere is an Hadamard matrix of order 
4(4/ + 1). 
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Proof: Use Yamada's construction (see the method of Remark 19) to make 
A with zero diagonal and ±l elsewhere, AT =:: A, and back-circulant B with 
elements ±I of order i(q - 1) =:: 2/ satisfying AAT + BBT '=:: qI - 2J. 

Let C =:: X + iY be a complex Hadamard matrix of order 2/. Choose 

[ _AB 
B 0 

il A 0 
and U= 0 0 A 

0 0 -B 

V~ [ _)_YT 
0 X+Y X-Yl I -X+Y X+Y 

XX _yT I o . 
_XT +yT _XT _ yT 0 I 

Then the theorem gives us an Hadamard matrix of order 4(41 + 1). 0 

Note complex Hadamard matrices exist for ordene 22, 34, 58, 86, 306, 650, 
870, 1046, 2450, 3782, ... , for which either a symmetric conference matrix 
cannot exist or is not known. None of these orders give new Hadamard matrices. 

6 Using 64 Block M-structures 

In a similar fashion, we consider the following lemma so symmetric 8-Williamson_ 
type matrices can be obtained. 

Le:m.ID8 37 Let Ui , Vj, i,j = 1, ... ,8 be (0, +1, -1) matrices of order n which 
satisfy 

(i) Ui, Uj, i f. j are pairwise amicable, 

(ii) V;, l-j, i"# j are pairwise amicable, 

(iii) U; ± Vi, (+1, -1) matrices, i =:: 1, ... ,8, 

(iv) the row(column) sums ofUI and U, are both 1, and the row sum ofUj, 
i = 3, ... ,8 is zero, 

(v) L~;l u;ut = 2(2n + 1)1 - 4J, L~;l Viv?' = 2(2n + 1)1. 

Then there are 8-Williamson type matrices of order 2n + 1. Furthermore, if the 
U, and Vi are symmetric, i = 1, ... , 8, then the 8-Williamson type matrices are 
symmetric. Hence there is a block type Hadamard matrix of order 8(2n + 1). 

127 



Proof: Let Sl,"" Ss be 8 (+1, -I)-matrices of order 2n defined by 

[ 1 1] [1 -1] Sj=UjX 1 1 +Vjx -1 1 '. 

So the row sums of Sl and S2 are both 2 and of Si = 0, i = 3, ... ,8. Now 
define 

[ 1 -',oj . , dX [1,,"] . 3 8 Xi= T S. ,]=1, an ;= T S. ,l=, ... ,. 
-(2" J (2" I 

First note that since Ui , Uj , if::. j and Vi, lIj, i 0/; j are pairwise amicable, 

s,sJ ~ (U' x [; ;] + V; x [!1 ~1 ])(UJ x [; ;] + vl x [!1 ~1]) 
UiUf X [; 

SjST· 

(Note this relationship is valid if and only if conditions (i) and (ii) of the 
theorem are valid.) 

, , 
[ ; '] , T [' ,£s,sT ~ EUiUr x 2 + ?:ViV, x -2 

i=1 ;=1 .=1 

~ 
2 [ 4(2n+ 1)1 -4J 

-4J 
-4J ] 

4(2n+ 1)/ -4J 

~ 8(2n + 1)121> - 8J2". 

Next we observe 

X XT- [1+2n 
1 2 - -3eI" 

,'] 

X X T_ [1-2n 
1- ,- T 

'," 
"" ] xvT -J + S1-S[ = i"'~k, k = 1,2, and i = 3, ... ,8, 

and 

x.XT - [1+2n e2.. ]-X.XT . ..J. •.• 3 8 
• j - eI" J+SisJ - J ., It-J I,J= , ... ,. 
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Further 

• 
,£x,xT 
i=l 

= 2 [ 1 + 2n -3e2n 1 + t [ 1 + 2n 
-3eIn J + SlS'[ . eIn .=3 "" 1 J +S,:1[ 

[
8(2,+1) 0 1 

2 0 8J+8(2n+l)1-8J' 

Thus we have shown that Xl,"" Xs are s...Williamson type matrices of order 
2n + 1. 

Hence there is a. block type Hadamard matrix of order 8(2n + 1) obtained 
by replacing the variables of an orthogonal design OD(8; 1,1, 1, 1, 1, 1, 1, 1) by 
the s...Williamson type matrices. a 

Corollary 38 Let q + 1 be the order of amicable Hadamard matrices 1+ S 
and P. Suppose there exist 4 Williamson type matrices of order q. Then there 
exist Williamson type matrices of order 2q + 1. Furthermore there exists an 
Hadamard matrix of block type of order 8(2q + 1). 

Proof: Now (1 + S)pT = P(l + sf and write e for the 1 x q matrix of ones. 
From Remark 12 we have matrices A, B of order q satisfying: 

ABT = BAT, BT = -B, AT = -A, eA == -e, eB == 0, 

AAT = (q+ 1)1 - J, BBT == qI - J. 

Thus we choose 

Ul = U2 = -A, U3 = U4 = B, Us = Us = U7 = U8 = 0, 

where Wi are Williamson type matrices. Hence 

• • '£ u,uT = 2(2, + 1)1 - 4J, '£ voW = 2(2q+ 1)1. 
I,d i::1 

These are then used in the Lemma 37 to obtain the result. o 
Using the amicable Hadamard matrices given in [22J and {16, Table IJ we 

get 8 Williamson type matrices for the following orders for which 4 Williamson 
matrices are not known: 
47,111, 127, 167,319,487,655,831, ... 

This gives new constructions for Hadamard matrices of orders 8.167 and 
8.487. 
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Corollary 39 Let q be a prime power and (q - 1)/2 be the order of four (sym­
metric) Williamson type matrices. Then there exist (symmetric) 8-Williamson 
type matrices of order q and an Hadamard matrix of block structure of order 
8q. 

Proof: If q == 1 (mod 4), by Remark 19, Yamada has found circulant matrices 
A, B of order (q - 1)/2 where 

AAT + BBT :::: qI _ 2J, eA = e, eB:::: 0, 

where A has zero diagonal. Let R be the back-diagonal matrix so C = BR is 
symmetric; then A and C are amicable. Choose 

i:::: 1,2,3,4, where 

, , 
L U;U; = 2qI- 4J, LViVl ::::2qI, 
;",1 ;=1 

and W; are (symmetric) Williamson type matrices. The result now follows from 
Lemma 37. 

If q == 3 (mod 4), by Remark 18, Szekeres has found circulant matrices A, 
B of order ~(q -1) where 

AAT + BBT :::: qI - 2J, eA:::: 0, eB = -e, 

and A has zero diagonal. Let R be the back-diagonal matrix so C = -BR is 
symmetric; then A and C are amicable and eC = e. Choose 

so the U; are pairwise amicable oC order Hq - 1) and 

VI = V2 = 0, Va = V4 = I, V; +4 = Wi, i= 1,2,3,4, 

where , , 
L UiU; = 2qI - 4J, L V;v,r = 2qI, 
;=1 ;",1 
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and Wi are (symmetric) Williamson type matrices. Since Williamson type ma­
trices are by definition amicable, the Vi are all pairwise amicable (and sym­
metric) and thus we have the conditions of the lemma satisfied and hence the 
corollary follows. 0 

In particular we have 8-Williamson matrices for the following orders for 
which no Williamson type matrices are known: 
59,67,103, 107, 151, 163, 179, 227, 251, 283,347,463,467,523,563,571,587, 
631,643,823,859,919,947, ... 

This gives new Hadamard matrices or new constructions for Hadamard ma­
trices of orders 8.107, 8.163, 8.179, 8.251, 8.283, 8.347, 8,463, 8.523, 8.571, 8.631, 
8.643,8.823,8.859,8.919,8.947, . 

Corollary 40 Let q -= 1 (mod 4) be a prime power or q + 1 the order of a 
symmetric conference matrix. Suppose there exist four (symmetric) Williamson 
type matrices of order q. Then there exist (symmetric) 8-Williamson type ma­
trices of order 2q + 1 and an Hadamard matrix of block structure of order 
8(2,+1). 

Proof: Form the core Q as in Remark 14(ii). Thus we choose 

U1 =I+Q, U2 =I-Q, U3 =U4 =Q, U5 =U6=U7 =U8 =0 

i = 1,2,3,4, where Wi are (symmetric) Williamson type matrices. Then 

, , 
z= u;uT = 2(2, + l)l - 4J, z= V;V;' = 2(2, + l)l. 
i=\ .=1 

These Ui and Vi are then used in Lemma 37 to obtain the (symmetric) 
8-Williamson type matrices. 0 

This corollary gives 8 Williamson type matrices for the following new orders: 
219,275, 299, 395, 483, 515, 579, 635, 699, 707, 723, 779, 795,803,899, 915, 
923, . 

It does not give new Hadamard matrices for these orders. 

Corollary 41 Let q = 9t , t > O. Now there exist four (symmetric) Williamson 
type matrices of order 9\ t > O. Hence there exist (symmetric) s..Williamson 
type matrices of order 2· 9t + 1, t > 0, and an Hadamard matrix of bJock 
structure of order 8(2· 9t + 1). 
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This gives symmetric 8-Williamson type matrices for the new order 163, 
13123, ... 

Also we have the following theorem: 

Theorem 43 Let Uij, Vii, i,j == 1, ... ,8 be (0, +1, -1) matrices of order n 
which satisfy 

OJ Uki, Ukj, i::f:. j are pairwise amicable, k == 1, ... ,8, 

(ii) VJ:i, Vki , i ::f:. j are pairwise amicable, k == 1, ... ,8, 

(lli) Uk; ± Vki, (+1,-1) matrices, i,k == 1, ... ,8, 

(iv) the row(column) sum of U"b is 1 for (a,h)e-{(i,i),(i,i + I),(i + l,i)}, 
i :::: 1,3,5,7, the row(column) sum of U"" is -1 for (d, a) :::: 2,4,6,8 and 
otberwise, and the row(calumn) sum ofU'j, i::f:. j is zero, 

(v) '£:=1 UiiU]"; :::: 2(2n + 1)1 - 4J, '£:=1 Vj;V;1 :::: 2(2n + 1)1, j :::: 1, ... ,8, 

(vi) '£:=1 UiiU£; = 0, '£:=1 "V;; Vk~ = 0, j ::f:. k, j, k = 1, ... ,8. 

rr (iii) to (vi) bold, there is a 64 block M-structure Hadamard matrix of 
order 8(2n + 1). 

Proof: Let 5;; he 64 (+ 1, -I)-matrices of order 2n defined by 

Sij :::: Uij X [i i] + v;; x [!1 ~1]. 
So the row(column) sum of Sii, S;,Hl> SHl,i i:::: 1,3,5,7 is 2, the row(column) 

sum of 5" is -2 for (i, i), i :::: 2,4,6,8 and otherwise, the row(column) sum of 
S'j :::: 0, i::f:. j. Now define 

I -, Xu = r -. -. I 
Sll ' 

I -, Xl~= T -. -. J Sa ' X13=[J. S;3 ] , Xu = [J s:, ], 
Xl~= (J 5;~ J ' X18= [J S:G 1 ' I -, X17= .r S;1 J . I -, XII'" .T 5;s j. 

I -, X21 = T -. -. ) 
5~1 . xn=[ J S:2 J . X~a= [.~ s~ J. X 2t '" T [ -, -. -. ) 52t ' 

X2~= [J 5:~ J ' [ -, X2S = T -. -. J S2G • 
[ -, X21= .r S:1 ) • Xn= [ IT -. -'J 5n . 

X31=[J 5:1 J . X32 = [.~ 5:2 ] . XJJ= r I -, -. $3: J . I -, Xat = T -. -. J 534 ' 

X3~= [e~ 5:~ J . x3s=(J S:e I ' I -, XJ1 ", .r 5:1 ]. I -, X n = .T 5:a ]. 
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Xu= [J 5:1 1 ' [ -, X 42 = T -. -.] 
Su ' x [-' 43= T -. s:: 1, xu'" (J 5:, ] , 

X45 '" [ e;' 5:S ] , 
[ -, X'8= T -. -. ] 

Su ' 
[ -, X H = eT 5:1 ] , Xu = [ iT -. -.] 

5" ' 

X~I= [}r 5:1 ] , X~2= [J 5:2 ] , X!,3 = [ e;' 5:3 ] , X~t= [.;. S:, ] , 

[ -, XSS= T -. -. ] 5 ss ' 
[ -, XSS= T -. -. ] 5u ' 

[ -, X n = eT 5:1 ] , 
[ -, X~= eT S:I ] , 

XU'" [J 5:1 J ' 
[ -, Xe2'" T -. -. ] 

S62 ' xeJ=[J S:3 ] , [ -, Xu= T -. -.] 
56t ' 

Xes = T [ -, -. -. ] 5 u ' Xee= [J 5:S ] , 
[ -, XS1 : eT 5:1 J, XSS= ( IT -. -.] 

568 ' 

Xn=( IT -. -. ] 
511 ' X12= [ 1T -. -.] 

572 ' XT3= [ 1T -. -. ] 513 ' 
[ -, XH= T -. -. ] 

S7t ' 

Xrs=[ iT -. -. ] 
515 ' Xr6=[ IT -. ;,: ] , Xn= [J 5:, ] , Xli = [ J 5:S ] , 

XS1 =[ IT -. -. ] 5 n ' 
[ -, X S2 = eT 5:'] , X13= [ IT -. i.: ], [ -, Xu= cT S:t ] , 

X u = [ IT -. -. ] 
SI5 ' 

[ -, X.I= cT S~] , X sr = (J S:1 1 ' [ -, Xu= T -. ;.: ] , 
Then provided conditions (i) to (v) hold and Sf; :: S7;, i = 1, ... ,8 are 

symmetric, X 7l , i:: 1, ... ,8 are symmetric 8-Williamson type matrices. Other-
wise Xu, i = 1, ... ,8 are 8-Williamson type matrices. This can be verified by 
straightforward checking. Hence there is an Hadamard matrix of block structure 
of order 8(2n + 1). 

If conditions (iii) to (vi) hold then straightforward verification shows the 64 
block M-structure Xii is an Hadamard matrix of order 8(2n + 1). D 

Corollary 43 Let q be an odd prime pOIV·er and suppose there exist Williamson­
type matrices of order i(q -1). Then there exists an M-structure Hadamard 
matrix of order 8q. 

Proof: Let U:: (Uij) and V = (V;j) be defined by the following M-structures 
and write a for the matrix of zeros of order t(q - 1). Let 
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c C A A 0 0 0 0 
c -c A -A 0 0 0 0 
A A C C 0 0 0 0 

u= 
A -A C -c 0 0 0 0 ,nd 
0 0 0 0 c C A A 
0 0 0 0 c -c A -A 
0 0 0 0 A A C C 
0 0 0 0 A -A C -c 

0 0 I I W, W, W, W, 
0 0 I -I -W, W, -W, W, 
-I -I 0 0 -W, W, W, -W, 

V= 
-I I 0 0 -W, -W, W, w, 

-We wi Wi wr 0 0 -I -I 
-wi -wr -wI Wi 0 0 -I I 
-Wi Wi -Wi -Wi I I 0 0 

-Wi -wI Wi -Wi I -I 0 0 

where A, C are defined in the proof of Corollary 39 and Wi, W',!, W3 , and W4 

are Williamson-type matrices. Then by Theorem 41 we have the result. 0 

Remark 44 This corollary gives new Hadamard matrices of order Sq for q = 
179,1087,1283,1327,1619, 1907,2099,2459,2579,2647, .... 

Corollary 45 Let q = 2m+ 1 =: 9 (mod 16) be a prime power. Suppose there 
are Wjlliamson-type matrices of order q. Then there is a M-structure Hadamard 
matrix of order 8(2q + 1). 

Proof: J. Wallis and A.t. Whiteman [22, Theorem 4.17, pp. 334-336] showed 
there are four circulant or type 1 matrices with entries ±1, and row and colunm 
sum ±1 at will. 

We construct, using cyclotomy, the type 1 4 - {2m + 1; mi 2( m - I)} sup­
plementary difference sets XI, x 2, Xl and X4, where y ~ Xi => -y f/- X" 
i = 1,2,3,4. 

Let A be the back-circulant or type 2 matrix given !:Jy 

A = (J - 2X1)R so A has row sum +1. 

Let B, C and D be the circulant or type 1 matrices given by 
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B = J ~ 2X2 SO B has row sum +1, 

C :::: J - 2X3 - I so C has row sum 0 and zero diagonal, and 

D :::: J - 2X4 - I so D bas row sum 0 and zero diagonal. 

Now we modify the Wallis-Whiteman core, noting that 

AAT + BBT + CCT + DDT:::: 2(q + l}I - 41. 

We use V as in Corollary 43 and the following matrix for U to obtain the 
result 

A B C D 0 0 0 0 
B -A _DT cT 0 0 0 0 
-c _DT A BT 0 0 0 0 

u= D -cT BT -A 0 0 0 0 
0 0 0 0 A B C D 
0 0 0 0 B -A _DT cT 
0 0 0 0 -c _DT A BT 

0 0 0 0 D -cT BT -A 

0 

The analogous Yamada.-J. Wallis-Whiteman structure to Theorem 42 is: 

-, -, , , , -, -, -. -. -, , , , -, -, , -. -. -. -. , , -, -, , -, -, • -. -. -, -, -, -, • -. -. • -. -. , , -, -, -, -, • • -. -. , -, , -, -, , -, , • -. -. -. -. , , , , , , , , -. -. -. -. -. -. , -, , -, , -, , -, -. • -. -. • • -. • -.' -.' .' .' .' .' .' . ' Su S" S" S" s" S" Su S" -.' .' .' -.' .' -.' .' -.' S" S" s" S" S" S" S" So. 
.' .' -.' -<' .' .' .' .' S" S" S" S" S" S" S" S" .' -.' -<' .' .' -.' .' -.' S" S" S" S .. s .. s .. s" s .. 
.' .' .' .' -.' -.' .' .' S" S" s" S .. S" S" s" S" .' -.' .' -.' -.' .' .' -.' S" S" s" s .. S .. S .. S" S .. 
-.' -.' -.' -.' -.' -.' .' . ' s" s" s" s" s" S" S" S" -.' .' -<' .' -.' .' .' -.' S" S" s" s .. S" S .. S" S .. 

We can see Yamada's matrix with trimming [46] or the J. Wallis-Whiteman 
[30] matrix with a border embodied in the construction. 
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