# On the products of Hadamard matrices, Williamson matrices and other orthogonal matrices using M-structures 

Jennifer Seberry<br>University of Wollongong, jennie@uow.edu.au

Mieko Yamada

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

## Recommended Citation

Seberry, Jennifer and Yamada, Mieko: On the products of Hadamard matrices, Williamson matrices and other orthogonal matrices using M-structures 1990.
https://ro.uow.edu.au/infopapers/1101

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

# On the products of Hadamard matrices, Williamson matrices and other orthogonal matrices using M-structures 


#### Abstract

The new concept of $M$-structures is used to unify and generalize a number of concepts in Hadamard matrices including Williamson matrices, Goethals-Seidel matrices, Wallis-Whiteman matrices and generalized quaternion matrices. The concept is used to find many new symmetric Williamson-type matrices, both in sets of four and eight, and many new Hadamard matrices. We give as corollaries "that the existence of Hadamard matrices of orders 4 g and 4 h implies the existence of an Hadamard matrix of older 8gh" and "the existence of Williamson type matrices of orders $u$ and $v$ implies the existence of Williamson type matrices of order 2uv". This work generalizes and utilizes the work of Masahiko Miyamoto and Mieko Yamada.


## Disciplines

Physical Sciences and Mathematics

## Publication Details

Seberry, J and Yamada, M, On the products of Hadamard matrices, Williamson matrices and other orthogonal matrices using M-structures, JCMCC, 7, 1990, 97-137.

# On the Products of Hadamard Matrices, Williamson Matrices and <br> Other Orthogonal Matrices using M-Structures 

Jennifer Seberry* and Mieko Yamada $\dagger$


#### Abstract

The new concept of M-structures is used to unify and generalize a number of concepts in Hadamard matrices including Williamson matrices, Goethals-Seidel matrices, Wallis-Whiteman matrices and generalized quaternion matrices. The concept is used to find many new symmetric Williamson-type matrices, both in sets of four and eight, and many new Hadamard matrices. We give as corollaries "that the existence of Hadamard matrices of orders $4 g$ and $4 h$ implies the existence of an Hadamard matrix of order $8 \mathrm{~g} h^{x}$ "and "the existence of Williamson type matrices of orders $u$ and $v$ implies the existence of Williamson type matrices of order $2 u v^{\prime \prime}$. This work generalizes and utilizes the work of Masahiko Miyamoto and Mieko Yamada.


## 1 Definitions and Introduction

An orthogonal design of order $n$ and type $\left(s_{1}, \ldots, s_{y}\right), s_{i}$ positive integers, is an $n \times n$ matrix $X$, with entries $\left\{0, \pm x_{1}, \ldots, \pm x_{u}\right\}$ (the $x_{i}$ commuting indeterminates) satisfying

$$
\begin{equation*}
X X^{T}=\left(\sum_{i=1}^{u} s_{i} x_{i}^{2}\right) I_{n} \tag{1}
\end{equation*}
$$

We write this as $\operatorname{OD}\left(n ; s_{1}, s_{2}, \ldots, s_{u}\right)$.
Alternatively, each $X$ has $s_{i}$ entries of the type $\pm \boldsymbol{x}_{i}$ and the distinct rows are orthogonal under the Euclidean inner product. We may view $X$ as a matrix with entries in the field of fractions of the integral domain $Z\left[x_{1}, \ldots, x_{u}\right]$, ( $Z$ the rational integers), and then if we let $f=\left(\sum_{i=1}^{k} s_{i} x_{i}^{2}\right), X$ is an invertible matrix with inverse $\frac{1}{f} X^{T}$. Thus $X X^{T}=f I_{n}$, and so our alternative definition that the row vectors are orthogonal applies equally well to the column vectors of $X$.

JCMCC 7(1990), pp. 97-137

An orthogonal design with no zeros and in which each of the entries is replaced by +1 or -1 is called an Hadamard matrix. Alternatively an Hadamard matrix of order $n, H$ has entries +1 or -1 and the distinct row vectors orthogonal so

$$
H H^{T}=n I_{n} .
$$

Orthogonal designs, Hadamard matrices and other definitions not given here are extensively described in Geramita and Seberry [8] and Jennifer Seberry Wallis [22]

A special orthogonal design, the $\mathrm{OD}(4 t ; t, t, t, t)$, is especially useful in the construction of Hadamard matrices. An $\operatorname{OD}(12 ; 3,3,3,3)$ was first found by Baumert and M. Hall Jr [4] and an $\mathrm{OD}(20 ; 5,5,5,5)$ by Welch (see below). $\mathrm{OD}(4 t ; t, t, t, i)$ are sometimes called Baumert-Hall arrays.
$X$ and $Y$ are said to be amicable matrices if

$$
\begin{equation*}
X Y^{T}=Y X^{T} \tag{2}
\end{equation*}
$$

Williamson matrices of order $w$ are four circulant symmetric matrices, $A$, $B, C, D$ which have entries +1 or -1 and which satisfy

$$
\begin{equation*}
A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 w I_{w} \tag{3}
\end{equation*}
$$

(Symmetric) Williamson-type matrices of order $w$ are four pairwise amicable (that is paitwise satisfy (2)) (symmetric) matrices, $A, B, C, D$ which have entries +1 or -1 and which satisfy

$$
\begin{equation*}
A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 w I_{w} . \tag{4}
\end{equation*}
$$

(Symmetric) 8 Williamson-type matrices of order $w$ are eight pairwise amicable (that is pairwise satisfy (2)) (symmetric) matrices, $A_{i}, i=1, \ldots, 8$ which have entries +1 or -1 and which satisfy

$$
\begin{equation*}
\sum_{i=1}^{8} A_{i} A_{i}^{T}=8 w I_{w} . \tag{5}
\end{equation*}
$$

The appropriate theorem for the construction of Hadamard matrices (it is implied by Williamson, Baumert-Hall, Welch, Cooper-J. Wallis, Turyn) is:

Theorem I Suppose there exists an $O D(4 t ; t, t, t, t)$ and four suitable matrices $A, B, C, D$ of order $w$ which are pairwise amicable, have entries +1 or -1 , and which satisfy

$$
A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 w I_{w}
$$

Then there is an Hadamard matrix of order $4 w t$.

Suitable matrices of order $w$ for an $\operatorname{OD}\left(n ; s_{1}, s_{2}, \ldots, s_{u}\right)$ are $u$ pairwise amicable (that is pairwise satisfy (2)) matrices, $A_{i}, i=1, \ldots, u$ which have entries +1 or -1 and which satisfy

$$
\begin{equation*}
\sum_{i=1}^{u} s_{i} A_{i} A_{i}^{T}=\left(\Sigma s_{i}\right) w I_{w} . \tag{6}
\end{equation*}
$$

They are used in the following theorem.
Theorem 2 (Geramita-Seberry) Suppose there exists an $O D\left(\Sigma s_{i} ; s_{1}, \ldots, s_{u}\right)$ and $u$ suitable matrices of order $m$. Then there is an Hadamard matrix of order $\left(\Sigma u_{i}\right) m$.

If some of the suitable matrices have entries $0,+1,-1$, then weighing matrices rather than Hadamard matrices could have been constructed.

A set of 4 T-matrices, $T_{i}, i=1, \ldots, 4$ of order $t$ are four (4) circulant or type 1 matrices which have entries $0,+1$ or -1 and which satisfy
(i) $T_{i} * T_{j}=0, i \neq j$, ( $*$ the Hadamard product)
(ii) $\sum_{i=1}^{4} T_{i}$ is a $(1,-1)$ matrix,
(iii) $\sum_{i=1}^{4} T_{i} T_{i}^{T}=t I_{t}$,
(iv) $t=t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2}$ where $t_{i}$ is the row(column) sum of $T_{i}$.

T-matrices are known (see Cohen, Rubie, Koukouvinos, Kounias, Seberry, Yamada [7] for a recent survey) for many orders including:
$1, \ldots, 70,72,74, \ldots, 78,80, \ldots, 82,84, \ldots, 88,90, \ldots, 96,98, \ldots, 102,104$, $\ldots, 106,108,110, \ldots, 112,114, \ldots, 126,128, \ldots, 130,132,136,138,140, \ldots$, $148,150,152, \ldots, 156,158, \ldots, 162,164, \ldots, 166,168, \ldots ; 172,174, \ldots, 178$, $180,182,184, \ldots, 190,192,194, \ldots, 196,198,200, \ldots, 210, \ldots$

The following result, in a slightly different form, was also discovered by R.J. Turyn.

Theorem 3 (Cooper-J. Wallis) Suppose there exist T-matrices (T-sequences) $X_{i}, i=1, \ldots, 4$ of order $n$. Let $a, b, c, d$ be commuting variables. Then

$$
\begin{aligned}
& A=a X_{1}+b X_{2}+c X_{3}+d X_{4} \\
& B=-b X_{1}+a X_{2}+d X_{3}-c X_{4} \\
& C=-c X_{1}-d X_{2}+a X_{3}+b X_{4} \\
& D=-d X_{1}+c X_{2}-b X_{3}+a X_{4}
\end{aligned}
$$

can be used in the Goethal-Seidel (or J. Wallis-Whiteman) array to obtain an $O D(4 n ; n, n, n, n)$.

Example: Let

$$
X_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad X_{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \quad X_{3}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad X_{4}=0
$$

Then $X_{1}, X_{2}, X_{3}, X_{4}$, are T-matrices of order 3 , and the $\operatorname{OD}(12 ; 3,3,3,3)$ is:

| a | b | c | -b | a | d | -c | -d | a | -d | c | -b |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| c | a | b | a | d | -b | -d | a | -c | c | -b | -d |
| b | c | a | d | -b | a | a | -c | -d | -b | -d | c |
| b | -a | -d | a | b | c | -d | -b | c | c | -a | d |
| -a | -d | b | c | a | b | -b | c | -d | -a | d | c |
| -d | b | -a | b | c | a | c | -d | -b | d | c | -a |
| c | d | -a | d | b | -c | a | b | c | -b | d | a |
| d | -a | c | b | -c | d | c | a | b | d | a | -b |
| -a | c | d | -c | d | b | b | c | a | a | -b | d |
| d | -c | b | -c | a | -d | b | -d | -a | a | b | c |
| -c | b | d | a | -d | -c | -d | -a | b | c | a | b |
| b | d | -c | -d | -c | a | -a | b | -d | b | c | a |

We will not give the proof here which can be found in J. Wallis [22, p. 360] bat will just quote the results given there. Cyclotomy may be used in constructing these arrays including the orders $t=13,19,25,31,37,41,61$.

Such structures are not limited to constructing $O D(4 t ; t, t, t, t)$. For example it was shown in Geramita and Seberry [8] that the following matrices

$$
\begin{gathered}
A=\left[\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right], \quad B=\left[\begin{array}{rrr}
a & -b & c \\
c & a & -b \\
-b & c & a
\end{array}\right], \\
C=\left[\begin{array}{rrr}
a & b & -c \\
-c & a & b \\
b & -c & a
\end{array}\right], \quad D=\left[\begin{array}{rrr}
-a & b & c \\
c & -a & b \\
b & c & -a
\end{array}\right],
\end{gathered}
$$

can be used as follows to give an $\operatorname{OD}(12 ; 4,4,4)$

| a c b | b a c | c <br> b <br> a | a $-b$ c | $\begin{array}{r} -b \\ c \\ a \end{array}$ | c a $-b$ | a b -c | b $-c$ $a$ | $-c$ $\mathbf{a}$ $\mathbf{b}$ | -a b c | b c -a | c -a b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -a | b | -c | a | b | c | -a | $c$ | b | -a | c | -b |
| b | -c | -a | c | a | b | $c$ | b | -a | c | -b | -a |
| -c | -a | b | b | c | a | b | -a | c | -b | -a | c |
| -a | -b | c | a | -c | -b | a | b |  | a | c | -b |
| -b | c | -a | -c | -b | a | $c$ | a | b | c | -b | a |
| c | -a | -b | -b | a | -c | b | c | $a$ | -b | a | c |
| a | -b | -c | a | -c | b | -a | -C | b | a | b | c |
| -b | -C | a |  | b |  | -c | b | -a |  | a | b |
| -c | a | -b | b | a | -c | b | -a | -c | b | c | a |

We now introduce some new terminology to unify some previous ideas.

## 2 M-structures

An orthogonal matrix of order $4 t$ can be divided into sixteen (16) $t \times t$ blocks $M_{i j}$. This partitioned matrix is said to be an M -structure. If the orthogonal matrix can be partitioned into sixty-four (64) $s \times s$ blocks $M_{i j}$ it will be called a 64 block M-structure.

An Hadamard matrix made from (symmetric) Williamson matrices $W_{1}, W_{2}$, $W_{3}, W_{4}$ is an M-structure with

$$
\begin{gathered}
W_{1}=M_{12}=M_{22}=M_{33}=M_{44}, \\
W_{2}=M_{12}=-M_{21}=M_{34}=-M_{43}, \\
W_{3}=M_{13}=-M_{31}=-M_{24}=M_{42}, \text { and } \\
W_{4}=M_{14}=-M_{41}=M_{23}=-M_{32} .
\end{gathered}
$$

An Hadamard matrix made from four (4) circulant (or type 1) matrices $A_{1}, A_{2}$, $A_{3}, A_{4}$ of order $n$, where $R$ is the matrix which makes all the $A_{i} R$ back-circulant (or type 2), is an M-structure with

$$
\begin{gathered}
A_{1}=M_{11}=M_{22}=M_{33}=M_{44}, \\
A_{2}=M_{12} R=-M_{21} R=R M_{34}^{T}=-R M_{43}^{T}, \\
A_{3}=M_{13} R=-M_{31} R=-R M_{24}^{T}=R M_{42}^{T}, \text { and } \\
A_{4}=M_{14} R=-M_{41} R=R M_{23}^{T}=-R M_{32}^{T} .
\end{gathered}
$$

In this paper we will mostly not be concerned with the structure of the $M_{i j}$ but two interesting cases should first be mentioned.

Welch's $\operatorname{OD}(20 ; 5,5,5,5)$ composed of block circulant matrices is:

| - B B -C - - - |  |  |  |
| :---: | :---: | :---: | :---: |
| -B-D B -C-C | A C A | - $\mathrm{A}-\mathrm{B}-\mathrm{A} C-\mathrm{C}$ | - $\mathrm{A}-\mathrm{B}-\mathrm{D}$ D |
| -C-B -D B -C | -D -A C A -D | -C - A - $\mathrm{B}-\mathrm{A}$ | D-B A -B - ${ }^{\text {d }}$ |
| -C - $\mathrm{C}-\mathrm{B}-\mathrm{D}$ B | -D -D-A C A | C -C - $\mathrm{A}-\mathrm{B}-\mathrm{A}$ | -D D-B A -B |
| B - C - C-B-D | A -D-D-A C | - A C - $\mathrm{C}-\mathrm{A}-\mathrm{B}$ | -B-D D -B A |
| -C A D D -A | -D -B -C-C B | -A B-D D B | -B-A - C C -A |
| -A -C A D D | B -D -B-C-C | B -A B -D D | - $\mathrm{A}-\mathrm{B}-\mathrm{A}-\mathrm{C}$ C |
| D -A - C A D | -C B -D -B-C | D B -A B -D | C - $\mathrm{A}-\mathrm{B}-\mathrm{A}-\mathrm{C}$ |
| D D -A -C A | -C C C B - - ${ }^{\text {- }}$ | -D D B -A B | -C C - $\mathrm{A}-\mathrm{B}-\mathrm{A}$ |
| A D D -A -C | $-\mathrm{B}+\mathrm{C}-\mathrm{C}$ B -D | B -D D B -A | -A - C C - - - |
| B - A - C C-A | A B - D B | -D-B C C B | -C A - D-D -A |
| - A B - $\mathrm{A}-\mathrm{C}$ C | B A B -D D | B -D - $\mathrm{C}^{\text {C }}$ | - $\mathrm{A}-\mathrm{C}$ A -D - D |
| - A B -A -C | D $\quad$ B A B - D | C B-D-B C | -D -A -C A -D |
| -C C-A B - |  | C C B -D - | -D -D - -C A |
| - A - C C - A B | B-D D B A | $-\mathrm{B} C \cdot \mathrm{C} \cdot \mathrm{B}-\mathrm{D}$ | A -D -D - $\mathrm{A}-\mathrm{C}$ |
| -A -B -D D -B | B - A C-C - A | C A D D -A | -D B C C - ${ }^{\text {c }}$ |
| -B -A -B-D D | - A B - A C-C | -A C A D D | -B-D B C C |
| D -B - $-\mathrm{B}-\mathrm{D}$ | -C - $-1 \begin{array}{llll}\text { B } & \text { C }\end{array}$ | D -A C A D | C-B-D B C |
| -D D -B - - B | C -C - A B - A | D D-A C | C C-B-D B |
| B -D D -B -A | - $\mathrm{A} \mathrm{C} \cdot \mathrm{C}-\mathrm{A}$ - | A D D -A C | B C C |

Each $M_{i j}$ in its M-structure is circulant. In fact it can be constructed using sixteen (16) circulant matrices with first rows using:

| $M_{11}$ | $:$ | 1 | 1 | -1 | -1 | -1 | $M_{12}$ | $:$ | 1 | -1 | 1 | 1 | $1 ;$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| $M_{13}$ | $:$ | -1 | 1 | 1 | -1 | 1 | $M_{14}$ | $:$ | -1 | -1 | 1 | -1 | $-1 ;$ |
| $M_{21}$ | $:$ | -1 | -1 | -1 | -1 | 1 | $M_{22}$ | $:$ | 1 | -1 | -1 | -1 | $1 ;$ |
| $M_{23}$ | $:$ | 1 | 1 | 1 | -1 | 1 | $M_{24}$ | $:$ | -1 | 1 | -1 | 1 | $1 ;$ |
| $M_{31}$ | $:$ | 1 | 1 | -1 | 1 | 1 |  | $M_{32}$ | $:$ | -1 | 1 | 1 | -1 |
| $M_{33}$ | $:$ | 1 | -1 | 1 | 1 | 1 | $M_{34}$ | $:$ | -1 | -1 | 1 | 1 | $1 ;$ |
| $M_{41}$ | $:$ | 1 | -1 | 1 | -1 | -1 |  | $M_{42}$ | $:$ | 1 | 1 | 1 | -1 |
| $M_{43}$ | $:$ | 1 | -1 | -1 | -1 | 1 | $M_{44}$ | $:$ | 1 | 1 | 1 | 1 | $-1 ;$ |

K. Yamamoto's [38] restructuring of Ono and Sawade's $\operatorname{OD}(36 ; 9,9,9,9)$ [13] composed of blocks of type 1 (or block circulant) matrices. Each $M_{i j}$ in its M-structure is type 1 . In fact it can be constructed using sixteen (16) circulant
matrices with first rows:

$$
\begin{gathered}
A=\left[\begin{array}{lll}
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right], \quad I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \\
B=\left[\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right], \quad C=\left[\begin{array}{lll}
0 & c & d \\
d & 0 & c \\
c & d & 0
\end{array}\right], \quad D=\left[\begin{array}{rrr}
0 & c & -d \\
-d & 0 & c \\
c & -d & 0
\end{array}\right],
\end{gathered}
$$

viz

| $M_{11}=$ | $A$ | $b I+C$ | $-b I-C^{T}$ |
| :--- | :---: | :---: | :---: |
| $M_{12}=$ | $b I+a B^{T}$ | $b I+D^{T}$ | $b I-D^{T}$ |
| $M_{13}=$ | $c I+a B^{T}$ | $-b I+C$ | $b I+D^{T}$ |
| $M_{14}=$ | $d I+a B^{T}$ | $b I-D$ | $-b I+C^{T}$ |
| $M_{21}=$ | $-b I+a B$ | $-b I+D$ | $-b I-D^{T}$ |
| $M_{22}=$ | $A$ | $b I-C$ | $-b I+C^{T}$ |
| $M_{23}=$ | $-d I+a B^{T}$ | $b I+D$ | $-b I-C^{T}$ |
| $M_{24}=$ | $c I+a B$ | $b I+C$ | $-b I+D^{T}$ |
| $M_{31}=$ | $-c I+a B$ | $-b I-D$ | $b I-C^{T}$ |
| $M_{32}=$ | $d I+a B$ | $b I+C$ | $-b I-D^{T}$ |
| $M_{33}=$ | $A$ | $-b I+D$ | $b I-D^{T}$ |
| $M_{34}=$ | $-b I+a B^{T}$ | $-b I+C$ | $-b I-C^{T}$ |
|  |  |  |  |
| $M_{41}=$ | $-d I+a B$ | $b I-C$ | $-b I+D^{T}$ |
| $M_{42}=$ | $-c I+a B^{T}$ | $b I-D$ | $-b I+C^{T}$ |
| $M_{43}=$ | $b I+a B$ | $b I+C$ | $b I-C^{T}$ |
| $M_{44}=$ | $A$ | $-b I-D$ | $b I+D^{T}$ |

When written in full the Ono-Sawade-Yamamoto $\operatorname{OD}(36 ; 9,9,9,9)$ is as on the following page.

The following theorem shows the power of M-structures comprising wholly circulant or type 1 blocks. The original version with circulant matrices was due to Turyn.


Theorem 4 Suppose there are T-matrices of order $t$. Further suppose there is an $O D\left(4 s ; u_{1}, \ldots, u_{n}\right)$ constructed of sixteen circulant (or type 1) $s \times s$ blocks on the variables $x_{1}, \ldots, x_{n}$. Then there is an $O D\left(4 s t ; t u_{1}, \ldots, t u_{n}\right)$. In particular if there is an $O D(4 s ; s, s, s, s)$ constructed of sixteen circulant (or type 1) $s \times s$ blocks then there is an $O D(4 s t ; s t, s t, s t, s t)$.

Proof: We write the OD as $\left(N_{i j}\right), i, j=1,2,3,4$, where each $N_{i j}$ is circulant (or type 1). Hence we are considering the OD purely as an M-structure. Since we have an OD

$$
N_{i 1} N_{j 1}^{T}+N_{i 2} N_{j 2}^{T}+N_{i 3} N_{j 3}^{T}+N_{i 4} N_{j 4}^{T}= \begin{cases}\sum_{k=1}^{4} u_{k} x_{k}^{2} I_{s}, & i=j, \\ 0, & i \neq j .\end{cases}
$$

Suppose the $T$-matrices are $T_{1}, T_{2}, T_{3}, T_{4}$. Then form the matrices

$$
\begin{aligned}
& A=T_{1} \times N_{11}+T_{2} \times N_{21}+T_{3} \times N_{31}+T_{4} \times N_{41} \\
& B=T_{1} \times N_{12}+T_{2} \times N_{22}+T_{3} \times N_{32}+T_{4} \times N_{42} \\
& C=T_{1} \times N_{13}+T_{2} \times N_{23}+T_{3} \times N_{33}+T_{4} \times N_{43} \\
& D=T_{1} \times N_{14}+T_{2} \times N_{24}+T_{3} \times N_{34}+T_{4} \times N_{44} .
\end{aligned}
$$

Now

$$
A A^{T}+B B^{T}+C C^{T}+D D^{T}=t \sum_{k=1}^{4} u_{k} x_{k}^{2} I_{t t}
$$

and since $A, B, C, D$ are type 1 , they can be used in the J. Wallis-Whiteman generalization of the Goethals-Seidel array to obtain the result.

Corollary 5 Suppose the T-matrices are of order $t$. Then there are orthogonal designs $O D(20 t ; 5 t, 5 t, 5 t, 5 t)$ and $O D(36 t ; 9 t, 9 t, 9 t, 9 t)$.

Proof: We use the Weich array for the $\mathrm{OD}(20 t ; 5 t, 5 t, 5 t, 5 t)$ and the Yamamoto-Ono-Sawade array for the $\mathrm{OD}(38 t ; 9 t, 9 t, 9 t, 9 t)$.

Note that to prove the Hadamard conjecture "there is an Hadamard matrix of order $4 t$ for all $t>0$ " it would be sufficient to prove:

Conjecture 6 There exists an $O D(4 t ; t, t, t, t)$ for every positive integer $t$.
We also conjecture
Conjecture 7 There exists an M-structure $O D(4 t ; t, t, t, t)$ for every $t \equiv 1$ (mod 4) comprising sixteen circulant or type 1 blocks.

## 3 Some properties of certain amicable orthogonal matrices

Lemma 8 Suppose there exist two amicable $(0,+1,-1)$ matrices $U, V$ of order $u$ satisfying $U U^{T}+V V^{T}=(2 u-1) I$. Then there exist matrices $A, B, D$ of order u satisfying

$$
\begin{gathered}
A A^{T}+B B^{T}=B^{T} B+D^{T} D=(2 u-1) I \\
A^{T}=(-1)^{\frac{1}{2}(u-1)} A, D^{T}=(-1)^{\frac{1}{2}(u+1)} D
\end{gathered}
$$

where $A$ and $D$ have zero diagonal.
Proof: By the properties of $U$ and $V$ we have

$$
W=\left[\begin{array}{cc}
U & V \\
V & -U
\end{array}\right]
$$

is a $(0,+1,-1)$ matrix of order $2 u$ satisfying $W W^{T}=(2 u-1) I_{2 u}$.
Then by the Delsarte-Goethals-Seidel theorem (see [7] or [22, p. 306]) W is Hadamard equivalent (i.e. use the operations of multiplying rows or columns by -1 and rearranging rows or columns) to a ( $0,+1,-1$ ) matrix $C$ with zero diagonal satisfying

$$
C C^{T}=(2 u-1) I_{2 u}, \quad C^{T}=(-1)^{\frac{1}{2}(u-1)} C .
$$

Hence $C$ can be written

$$
C=\left[\begin{array}{cc}
A & B \\
\pm B^{T} & \pm D^{T}
\end{array}\right]
$$

where $A^{T}=(-1)^{\frac{1}{2}(u-1)} A, \quad D^{T}=(-1)^{\frac{1}{(t u-1)}} D$, and $A$ and $D$ have zero diagonal.

Lemma 9 Let $q+1$ be the order of a conference matrix. Then there exist four matrices $C_{1}, C_{2}, C_{3}, C_{4}$, of order $\frac{1}{2}(q-1)$ satisfying

$$
\begin{gathered}
C_{1} C_{1}^{T}+C_{2} C_{2}^{T}=C_{3} C_{3}^{T}+C_{4} C_{4}^{T}=q I-2 J, \\
e C_{1}^{T}=e C_{4}^{T}=e, e C_{2}^{T}=e C_{3}^{T}=0, \\
C_{1} C_{3}^{T}-C_{2} C_{4}^{T}=0, \quad C_{1}^{T}=C_{1}, \quad C_{4}^{T}=C_{4}, \quad C_{3}^{T}=C_{2},
\end{gathered}
$$

wheree is the $1 \times \frac{1}{2}(q-1)$ matrix of ones, $C_{1}$ and $C_{4}$ have zero diagonal elements $\pm 1, C_{2}$ and $C_{4}$ have elements $\pm 1$.

Proof: By the Delsarte-Goethals-Seidel theorem (see [7] or [22, p. 306]) we can ensure the conference matrix is symmetric and of the form

$$
C=\left[\begin{array}{cc}
0 & e_{q}^{T} \\
e_{q} & \mathrm{D}
\end{array}\right], \quad D^{T}=D
$$

where $D$ has zero diagonal. We now simultaneonsly permute the rows and columns of $D$ (so if row $i$ and $j$ are interchanged then column $i$ and column $j$ are also interchanged) to keep symmetry and obtain

$$
E=\left[\begin{array}{cccc}
0 & 1 & e & e \\
1 & 0 & e & -e \\
e_{q}^{T} & e_{q}^{T} & -C_{1} & C_{2} \\
e_{q}^{T} & -e_{q}^{T} & C_{3} & C_{4}
\end{array}\right] .
$$

Since $E$ is or thogonal $e-e C_{1}^{T}-e C_{2}^{T}=0=e-e C_{1}^{T}+e C_{2}^{T}$ so $e C_{1}^{T}=e, e C_{2}^{T}=0$ and

$$
\begin{gathered}
C_{1} C_{1}^{T}+C_{2} C_{2}^{T}=C_{3} C_{3}^{T}+C_{4} C_{4}^{T}=q I-2 J, \\
e C_{1}^{T}=e C_{4}^{T}=e, e C_{2}^{T}=e C_{3}^{T}=0, \\
C_{1} C_{3}^{T}-C_{2} C_{4}^{T}=0, \quad C_{1}^{T}=C_{1}, \quad C_{4}^{T}=C_{4}, \quad C_{3}^{T}=C_{2}
\end{gathered}
$$

Lemma 10 Suppose there exist two amicable $(0,+1,-1)$ matrices $U, V$ of order $u$ satisfying $U U^{T}+V V^{T}=(2 u-1) I$. Further suppose $U$ has zero diagonal and $U, V$ have other elements +1 or -1 . Then there exist matrices $A$, $B$ of order $u-1$ satisfying

$$
\begin{aligned}
& A A^{T}+B B^{T}=(2 u-1) I_{u-1}-2 J_{u-1}, \\
& e A^{T}=e, \quad e B^{T}=0, \quad A B^{T}=B A^{T}
\end{aligned}
$$

where $A$ has one zero element per row and column and the other entries of $A$ and $B$ are $\pm 1$. Further if $U$ and $V$ are symmetric (or skew-type respectively) then $A$ and $B$ are symmetric (or skew-type respectively).

Furthermore if $U$ and $V$ satisfy $U U^{T}+V V^{T}=2 u I(U, V$ are $(1,-1)$ matrices), $u$ even, then there exist matrices $A, B$ of order $u-1$, with entries $\pm 1$, satisfying

$$
\begin{gathered}
A A^{T}+B B^{T}=2 u I_{u-1}-2 J_{u-1} \\
e A^{T}=e, \quad e B^{T}=e, \quad A B^{T}=B A^{T}
\end{gathered}
$$

and if $U$ and $V$ are symmetric (or skew-type respectively) then $A$ and $B$ are symmetric (or skew-type respectively).

Proof: Without loss of generality assume $V$ has its $(1,1)$ entry +1 , otherwise replace it by $-V$. If $U$ has no zeros and non zero $(1,1)$ entry assume it is -1 (the outcome is identical up to equivalence of the desired properties).

Assume $U$ bas zero diagonal. Define $D=U+i V$, then with $D \dagger$ written for the Hermitian conjugate (transpose and complex conjugate), we have

$$
\begin{aligned}
D D \dagger & =(U+i V)\left(U^{T}-i V^{T}\right) \\
& =U U^{T}+V V^{T}+i\left(U V^{T}-V U^{T}\right) \\
& =U U^{T}+V V^{T} \quad(\text { by the amicability of } U \text { and } V) \\
& =(2 u-1) I_{u},
\end{aligned}
$$

an orthogonal matrix with diagonal entries $\pm i$ and other entries $\pm 1 \pm i$. We wish to normalize the first row and column to

$$
\begin{array}{r}
E=\left[\begin{array}{ccccc}
i & 1+i & 1+i & \cdots & 1+i \\
1+i & & & & \\
1+i & & & & \\
\vdots & & & F+i G & \\
1+i & & & &
\end{array}\right] \\
\text { or } E_{1}=\left[\begin{array}{ccccc}
i & 1+i & 1+i & \ldots & 1+i \\
-1-i & & & & \\
-1-i & & & F+i G & \\
\vdots & & &
\end{array}\right]
\end{array}
$$

if $U$ and $V$ are skew-type. If the first element of row/column $j$ of $D$ is $1+i$, $1-i,-1+i,-1-i$ we multiply the row/column by $1, i,-i,-1$ respectively, to form $E$. We only form $E_{1}$ if both $U$ and $V$ are skew type.

If $U$ and $V$ are symmetric (or skew-type respectively) the operation on row $j$ is also carried out on column $j$ preserving symmetry (skew-type respectively).

The operations performed have not affected the orthogonality so

$$
E E \dagger=(2 u-1) I_{u} .
$$

We now write $E$ or $E_{1}$ as

$$
E=\left[\begin{array}{cc}
0 & e \\
e^{T} & L
\end{array}\right]+i\left[\begin{array}{cc}
1 & e \\
e^{T} & N
\end{array}\right] .
$$

So

$$
\begin{aligned}
E E \ddagger= & {\left[\begin{array}{cc}
u-1 & e L^{T} \\
L e^{T} & J+L L^{T}
\end{array}\right]+\left[\begin{array}{cc}
u & e\left(1+N^{T}\right) \\
(1+N) e^{T} & J+N N^{T}
\end{array}\right] } \\
& -i\left(\left[\begin{array}{cc}
u-1 & e N^{T} \\
(1+L) e^{T} & J+L N^{T}
\end{array}\right]-\left[\begin{array}{cc}
u-1 & e\left(1+L^{T}\right) \\
N e^{T} & J+N L^{T}
\end{array}\right]\right) \\
= & {\left[\begin{array}{cc}
2 u-1 & e\left(L^{T}+N^{T}+1\right) \\
(1+L+N) e^{T} & 2 J+L L^{T}+N N^{T}
\end{array}\right] } \\
& -i\left[\begin{array}{cc}
0 & e\left(N^{T}-1-L^{T}\right) \\
(1+L-N) e^{T} & L N^{T}-N L^{T}
\end{array}\right] \\
= & (2 u-1) I .
\end{aligned}
$$

Hence $L N^{T}=N L^{T},(1+L+N) e^{T}=0=(1+L-N) e^{T}$, giving e $L^{T}=-e$, $e N^{T}=0$ and $L L^{T}+N N^{T}=(2 u-1) I-2 J$. Set $-L=M$ to get the result.

It remains to be shown that $M$ has zero diagonal. Now $M M^{T}+N N^{T}=$ $(2 u-1) I-2 J$. So there is only one zero per row of $[M: N]$. Also $u$ is odd so $M$ and $N$ have even order $u-1$. Hence $e N^{T}=0$ tells us $N$ has no zero entries and thus the one zero entry per row must be in $M$. Rearrange the columns of $M$ (if necessary) to ensure $M$ has zero diagonal.

If $U$ and $V$ were $(1,-1)$ matrices of even order then

$$
E=\left[\begin{array}{ll}
-1 & e \\
e^{T} & L
\end{array}\right]+i\left[\begin{array}{cc}
1 & e \\
e^{T} & N
\end{array}\right]
$$

and

$$
\begin{aligned}
E E \dagger= & {\left[\begin{array}{cc}
2 u & e\left(L^{T}+N^{T}\right) \\
(L+N) e^{T} & 2 J+L L^{T}+N N^{T}
\end{array}\right] } \\
& +i\left[\begin{array}{cc}
0 & e\left(L^{T}-N^{T}+2\right) \\
(N-L-2) e^{T} & L N^{T}-N L^{T}
\end{array}\right]
\end{aligned}
$$

$$
=2 u I
$$

Hence $L N^{T}=N L^{T},(L+N) e^{T}=0=(N-L-2) e^{T}$, giving $e L^{T}=-e$, $e N^{T}=e$ and $L L^{T}+N N^{T}=2 t I-2 J$. Set $-L=M$ to get the result.

Remark 11 This lemma is very similar to the beautiful Lemma 1 of Miyamoto [12].

Remark 12 Let $I+W$ and $V$ be normalized amicable Hadamard matrices of order $h$ (see Jennifer Seberry [16] for a list of their orders). Then there exist
two matrices $A, B$ of order $h-1$ satisfying

$$
\begin{array}{ll} 
& A A^{T}+B B^{T}=(2 h-1) I_{h-1}-2 J_{h-1}, \\
e A^{T}=0, & e B^{T}=e, \quad A B^{T}=B A^{T}, \quad A^{T}=-A, \quad B^{T}=B, \\
& A A^{T}=(h-1) I-J, \quad B B^{T}=h I-J,
\end{array}
$$

where $A$ has zero diagonal and the other entries of $A$ and $B$ are $\pm 1$.
Remark 13 Let $I+W$ and $V$ be amicable Hadamard matrices of order $h$ (see Jennifer Seberry [16] for a list of their orders). Then there exist two matrices $W, V$ of order $h$ satisfying

$$
W W^{T}+V V^{T}=(2 h-1) I, \quad W V^{T}=V W^{T}, \quad W^{T}=-W, \quad V^{T}=V
$$

Remark 14 From Jennifer Seberry Wallis' restatement [22, p. 291] of a theorem of R.E.A.C. Paley we have
(i) If $q \equiv 3(\bmod 4)$ is a prime power or there is a skew-Hadamard matrix of order $q+1$ then there is a skew symmetric matrix $W$ of order $q$ such that $W W^{T}=(q+1) I-J, W^{T}=-W$. Let $R$ be a symmetric permutation matrix such that $W R$ is symmetric (in the case of $q$ a prime power the back diagonal matrix has this property) then

$$
\begin{gathered}
(W R)(W R)^{T}=(q+1) I-J, \quad(W R)^{T}=(W R), \\
\text { and }(W R) I^{T}=I(W R)^{T} .
\end{gathered}
$$

(ii) If $q \equiv 1(\bmod 4)$ is a prime power or there is a symmetric conference matrix $C+I$ of order $q+1$ then there is a symmetric matrix $Q$ of order $q$ such that $Q Q^{T}=q I-J, Q^{T}=Q$ and so that

$$
(Q+I)(Q+I)^{T}+(Q-I)(Q-I)^{T}=2(q+1) I-2 J .
$$

Remark 15 From Geramita and Seberry's restatement [8, p. 92, Theorem 4.41] of a theorem of Goethals and Seidel we have

If $q \equiv 1(\bmod 4)$ is a prime power there are two circulant symmetric, amicable matrices $M$ and $N$ of order $\frac{1}{2}(q+1)$ satisfying

$$
M M^{T}+N N^{T}=q I_{\frac{1}{j}(q+1)} .
$$

Remark 16 From Seberry-Wallis's restatement [22, p. 321, Theorem 4.6] of a theorem of Szekeres for $q \equiv 5(\bmod 8)$ and by Yamada's theorem [45, Appendix] for $q=a^{2} \equiv 1(\bmod 8)$ we bave
(i) If $q \equiv 5(\bmod 8)$ is a prime power then there are two circulant or type 1 amicable matrices $U, V$ of order $q$ satisfying

$$
\begin{gathered}
U U^{T}+V V^{T}=2 q I-2 J \\
e U^{T}=0, \quad e V^{T}=0, \quad U V^{T}=V U^{T}, \quad U^{T}=-U, \quad V^{T}=-V .
\end{gathered}
$$

With $R$ the appropriate permutation matrix (as mentioned in Remark 14(i) above) set $W=I+V$; then

$$
\begin{gathered}
U U^{T}+(W R)(W R)^{T}=(2 q+1) I-2 J, \\
e U^{T}=0, \quad e(W R)^{T}=e, \\
U(W R)^{T}=(W R) U^{T}, \quad U^{T}=-U, \quad(W R)^{T}=(W R) .
\end{gathered}
$$

(ii) If $q=a^{2} \equiv 1(\bmod 8)$ is a prime power then there are two circulant or type 1 amicable matrices $U, V$ of order $q$ satisfying

$$
\begin{gathered}
U U^{T}+V V^{T}=2(q+1) I-2 J, \\
e U^{T}=e, \quad e V^{T}=e, \\
U V^{T}=V U^{T}, \quad U^{T}=U, \quad V^{T}=V .
\end{gathered}
$$

Remark 17 From Seberry-Wallis's restatement [22, p. 323, Theorem 4.7] of a theorem found independently by Szekeres and Whiteman, we have

If $q=p^{t} \equiv 1(\bmod 8)$ is a prime power, $p \equiv 5(\bmod 8)$, then there are two circulant or type 1 amicable matrices $U, V$ of order $q$ satisfying

$$
U U^{T}+V V^{T}=2 q I-2 J
$$

$$
e U^{T}=0, \quad e V^{T}=0, \quad U V^{T}=V U^{T}, \quad U^{T}=-U, \quad V^{T}=-V
$$

With $R$ the appropriate permutation matrix (as mentioned in Remark 14(i) above) set $W=I+V$ then

$$
\begin{gathered}
U U^{T}+(W R)(W R)^{T}=(2 q+1) I-2 J, \\
e U^{T}=0, \quad e(W R)^{T}=e, \\
U(W R)^{T}=(W R) U^{T}, \quad U^{T}=-U, \quad(W R)^{T}=(W R) .
\end{gathered}
$$

Remark 18 From Geramita and Seberry's restatement [8, p. 256, Theorem 5.80 ] of a theorem of Szekeres we have

If $q=4 m+3 \equiv 3(\bmod 4)$ is a prime power then there are two cyclic supplementary difference sets $2-\{2 m+1 ; m ; m-1\}, M$ and $N$, called Szekeres difference sets, such that $a \in M \Rightarrow-a \notin M$,
$B \in N \Rightarrow-b \in N$. Thus if $U-I, V$ are the $(1,-1)$ incidence matrices of $M, N$ respectively,

$$
\begin{aligned}
& U U^{T}+V V^{T}=q I-2 J, \\
& e U^{T}=0, \quad e V^{T}=-e, \quad U^{T}=-U, \quad V^{T}=V .
\end{aligned}
$$

Now let $R$ be the back diagonal matrix (as above) and set $W=-V R$ then $U$ and $W$ are amicable matrices of order $\frac{1}{2}(q-1), U$ with zero diagonal and $W$ symmetric such that

$$
\begin{gathered}
U U^{T}+W W^{T}=q I-2 J, \\
e U^{T}=0, \quad e W^{T}=e, \quad U^{T}=-U, \quad W^{T}=W .
\end{gathered}
$$

Indeed the process just described ensures that if there are Szekeres difference sets on an abelian group of order $q$ then the matrices $U$ and $W$, just mentioned, can be constructed of order $q$.

Remark 19 If $q \equiv 1(\bmod 4)$ is a prime power, Yamada [42] showed that there exist two circulant matrices $U, V$ of order $\frac{1}{2}(q-1)$ satisfying

$$
\begin{gathered}
U U^{T}+V V^{T}=q I-2 J \\
e U^{T}=e, \quad e V^{T}=0, \quad V^{T}=U,
\end{gathered}
$$

where $U$ has zero diagonal. With $R$ the appropriate permutation matrix (as mentioned in Remark 14(i) above) set $W=V R$ then

$$
\begin{gathered}
U U^{T}+W W^{T}=q I-2 J \\
e U^{T}=e, \quad e W^{T}=0, \quad U W^{T}=W U^{T}, \quad U^{T}=U, \quad W^{T}=W .
\end{gathered}
$$

Remark 20 If $q=s^{2}+4 \equiv 5(\bmod 8)$ is a prime power then J. Wallis [29] and independently Yamada [45] showed that there are two.circulant or type 1 matrices $U$ and $V$ of order $q$ where

$$
\begin{gathered}
U U^{T}+V V^{T}=(2 q+1) I-2 J \\
e U^{T}=0, \quad e V^{T}=e, \quad U^{T}=-U, \quad V^{T}=V,
\end{gathered}
$$

and where $U$ has zero diagonal. Now let $R$ be the back diagonal matrix (as above) and set $W=V R$ then $U$ and $W$ are amicable matrices of order $q, U$ with zero diagonal and $W$ symmetric with zero back diagonal such that

$$
\begin{gathered}
U U^{T}+W W^{T}=2 q I-2 J \\
e U^{T}=0, \quad e W^{T}=0, \quad U^{T}=-U, \quad W^{T}=W, \quad U W^{T}=W U^{T} .
\end{gathered}
$$

Note Yamada has observed that there are other suitable matrices for these orders.

## 4 A multiplication Theorem using M-structures

Theorem 21 Let $N=\left(N_{i j}\right), i, j=1,2,3,4$ be an Hadamard matrix of order $4 n$ of M-structure. Further let $T_{i j}, i, j=1,2,3,4$ be $16(0,+1,-1)$ type 1 or circulant matrices of order $t$ which satisfy
(i) $T_{i j} * T_{i k}=0, T_{j i} * T_{k i}=0, j \neq k$, ( $*$ the Hadamard product)
(ii) $\sum_{k=1}^{4} T_{i k}$ is a $(1,-1)$ matrix,
(iii) $\sum_{k=1}^{4} T_{i k} T_{i k}^{T}=t I_{t}=\sum_{k=1}^{4} T_{k i} T_{k i}^{T}$,
(iv) $\sum_{k=1}^{4} T_{i k} T_{j k}^{T}=0=\sum_{k=1}^{4} T_{k i} T_{k j}^{T}, i \neq j$.

Then there is an M-structure Hadamard matrix of order $4 n t$.
Proof: Define the matrix $X=\left(X_{i j}\right)$ as follows

$$
X_{i j}=\sum_{k=1}^{4} T_{i k} \times N_{j k}^{T}
$$

From the conditions of the T -matrices and from the M -structure, we have

$$
\begin{aligned}
\sum_{j=1}^{4} X_{i j} X_{i j}^{T} & =\sum_{j=1}^{4}\left(\sum_{k=1}^{4} T_{i k} \times N_{j k}^{T}\right)\left(\sum_{m=1}^{4} T_{i m} \times N_{j m}^{T}\right)^{T} \\
& =\sum_{j=1}^{4} \sum_{k=1}^{4} \sum_{m=1}^{4}\left(T_{i k} T_{i m}^{T} \times N_{j k}^{T} N_{j m}\right) \\
& =\sum_{k=1}^{4} \sum_{m=1}^{4} T_{i k} T_{i m}^{T} \times\left(\sum_{j=1}^{4} N_{j k}^{T} N_{j m}\right)
\end{aligned}
$$

If $k \neq m$, then $\sum_{j=1}^{4} N_{j k}^{T} N_{j m}=0$. Hence the above equation becomes

$$
\begin{aligned}
\sum_{j=1}^{4} X_{i j} X_{i j}^{T} & =\sum_{k=1}^{4} T_{i k} T_{i k}^{T} \times \sum_{j=1}^{4} N_{j k}^{T} N_{j k} \\
& =4 \operatorname{tn} I_{t n} .
\end{aligned}
$$

For $i \neq k$,

$$
\sum_{j=1}^{4} X_{i j} X_{k j}^{T}=\sum_{j=1}^{4}\left(\sum_{g=1}^{4} T_{i g} \times N_{j g}^{T}\right)\left(\sum_{m=1}^{4} T_{k m} \times N_{j m}^{T}\right)^{T}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{4} \sum_{g=1}^{4} \sum_{m=1}^{4} T_{i g} T_{k m}^{T} \times N_{j g}^{T} N_{j m} \\
& =\sum_{g=1}^{4} \sum_{m=1}^{4} T_{i g} T_{k m}^{T} \times\left(\sum_{j=1}^{4} N_{j g}^{T} N_{j m}\right) \\
& =\sum_{g=1}^{4} T_{i g} T_{k g}^{T} \times \sum_{j=1}^{4} N_{j g}^{T} N_{j g} \\
& =0
\end{aligned}
$$

Hence the matrix $X$ is an Hadamard matrix of order $4 n t$ of M-structure and the matrix $X^{\prime}=\left(X_{j i}\right)$ is also an Hadamard matrix of M -structure.

We further note that if $\sum_{k=1}^{4} T_{k i}$ is a $(1,-1)$ matrix and define the matrices $Y=\left(Y_{i j}\right), Z=\left(Z_{i j}\right)$, and $W=\left(W_{i j}\right)$ as follows:

$$
\begin{gathered}
Y_{i j}=\sum_{k=1}^{4} T_{k i} \times N_{k j}^{T}, \\
Z_{i j}=\sum_{k=1}^{4} T_{k i} \times N_{j k}^{T} \text { and } \\
W_{i j}=\sum_{k=1}^{4} T_{i k} \times N_{k j}^{T} .
\end{gathered}
$$

Then, as in the case for $X$, we see all three matrices $Y, Z$ and $W$ are Hadamard matrices of order $4 n t$ of M-structure. Furthermore $Y^{\prime}=\left(Y_{j i}\right), Z^{\prime}=\left(Z_{j i}\right)$, and $W^{\prime}=\left(W_{j i}\right)$ are also Hadamard matrices of M-structure.

Corollary 22 If there exists an Hadamard matrix of order $4 h$ and an orthogonal design $O D\left(4 u ; u_{1}, u_{2}, u_{3}, u_{4}\right)$, then an $O D\left(8 h u ; 2 h u_{1}, 2 h u_{2}, 2 h u_{3}, 2 h u_{4}\right) e x-$ ists.

Proof: Let $H=\left(H_{i j}\right), i, j=1,2,3,4$ be an Hadamard matrix of order $4 h$. Put $P_{i}=\frac{1}{2}\left(H_{i 1}+H_{i 2}\right), \quad Q_{i}=\frac{1}{2}\left(H_{i 1}-H_{i 2}\right), \quad R_{i}=\frac{1}{2}\left(H_{i 3}+H_{i 4}\right), \quad S_{i}=\frac{1}{2}\left(H_{i 3}-H_{i 4}\right)$, and the required T-matrices of order $2 h$ for the theorem are
$T_{i 1}=\left[\begin{array}{ll}P_{\mathrm{i}} & \\ & P_{i}\end{array}\right], T_{i 2}=\left[\begin{array}{ll}Q_{\mathrm{i}} & \\ & Q_{i}\end{array}\right], \quad T_{i 3}=\left[\begin{array}{ll}R_{i} \\ R_{i}\end{array}\right], \quad T_{i 4}=\left[\begin{array}{ll}S_{i} & S_{i}\end{array}\right]$,
for $i=1,2,3,4$. Since

$$
\sum_{j=1}^{4} T_{i j} T_{i j}^{T}=\sum_{i=1}^{4}\left(P_{i} P_{i}^{T}+Q_{i} Q_{i}^{T}+R_{i} R_{i}^{T}+S_{i} S_{i}^{T}\right) \times I_{2}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(\sum_{j=1}^{4} H_{i j} H_{i j}^{T}\right) \times I_{2} \\
& =2 h I_{2 h}
\end{aligned}
$$

and

$$
\begin{gathered}
\sum_{k=1}^{4} T_{i k} T_{j k}^{T}=0, \quad \sum_{k=1}^{4} T_{k i} T_{k j}^{T}=0, \text { for } i \neq j, \text { and } \\
\sum_{k=1}^{4} T_{k i}, \quad i=1,2,3,4 \text { is a }(1,-1) \text { matrix. }
\end{gathered}
$$

Now let the $\mathrm{OD}\left(4 u ; u_{1}, u_{2}, u_{3}, u_{4}\right)=D=\left(D_{i j}\right), i, j=1,2,3,4$ defined on the commuting variables $x_{1} ; x_{2}, x_{3}, x_{4}$. Then we have

$$
D D^{T}=\left(u_{1} x_{1}^{2}+u_{2} x_{2}^{2}+u_{3} x_{3}^{2}+u_{4} x_{4}^{2}\right) I_{4 u},
$$

that is

$$
\begin{gathered}
\sum_{j=1}^{4} D_{i j} D_{i j}^{T}=\sum_{j=1}^{4} D_{i j}^{T} D_{i j} \\
= \\
=\left(u_{1} x_{1}^{2}+u_{2} x_{2}^{2}+u_{3} x_{3}^{2}+u_{4} x_{4}^{2}\right) I_{u}, \\
\sum_{k=1}^{4} D_{i k} D_{j k}^{T}=0, \quad \sum_{k=1}^{4} D_{k i} D_{k j}^{T}=0, \quad i, j=1,2,3,4, \quad i \neq j .
\end{gathered}
$$

We now define the matrix $X=\left(X_{i j}\right)$ as follows

$$
X_{i j}=\sum_{k=1}^{4} T_{i k} \times D_{j k}^{T}
$$

Then, as in the theorem, we have

$$
\sum_{j=1}^{4} X_{i j} X_{i j}^{T}=2 h\left(u_{1} x_{1}^{2}+u_{2} x_{2}^{2}+u_{3} x_{3}^{2}+u_{4} x_{4}^{2}\right) I_{2 h u},
$$

and for $i \neq k$,

$$
\sum_{k=1}^{4} X_{i j} X_{k j}^{T}=0
$$

Thus $X=\left(X_{i j}\right)$ and $X^{\prime}=\left(X_{j i}\right)$ are $\mathrm{OD}\left(8 h u ; 2 h u_{1}, 2 h u_{2}, 2 h u_{3}, 2 h u_{4}\right)$ of Mstructure and $Y=\left(Y_{i j}\right)=\left(\sum_{k=1}^{4} T_{k i} \times D_{k j}^{T}\right), Z=\left(Z_{i j}\right)=\left(\sum_{k=1}^{4} T_{k i} \times D_{j k}^{T}\right)$ and $W=\left(W_{i j}\right)=\left(\sum_{k=1}^{4} T_{i k} \times N_{k j}^{T}\right), Y^{\prime}=\left(Y_{j i}\right), Z^{\prime}=\left(Z_{j i}\right)$ and $W^{\prime}=\left(W_{j i}\right)$, are also $\mathrm{OD}\left(8 h u ; 2 h u_{1}, 2 h u_{2}, 2 h u_{3}, 2 h u_{4}\right)$ of M-structure.

Corollary 23 If there exists an Hadamard matrix of order $4 h$ and an orthogonal design $O D(4 u ; u, u, u, u)$, then there exists an $O D(8 h u ; 2 h u, 2 h u, 2 h u, 2 h u)$.

This gives the theorem of Agayan and Sarukhanyan [2] as a corollary by setting all variables equal to one:
Corollary 24 If there exists Hadamard matrices of orders $4 h$ and $4 u$ then there exists an Hadamard matrix of order 8 hu .

We now give as a corollary a result, motivated by, and a little stronger than that of Agayan and Sarukhanyan [2]:
Corollary 25 Suppose there are Williamson or Williamson type matrices of orders $u$ and $v$. Then there are Williamson type matrices of order $2 u v$.

If the matrices of orders $u$ and $v$ are symmetric the matrices of order $2 u v$ are also symmetric.

If the matrices of orders $u$ and $v$ are circulant and/or type 1 the matrices of order $2 u v$ are type 1 .

Proof: Suppose $A, B, C, D$ are (symmetric) Williamson or Williamson type matrices of order $u$ then they are pairwise amicable and satisfy

$$
A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 u I_{u}
$$

Define

$$
E=\frac{1}{2}(A+B), \quad F=\frac{1}{2}(A-B), \quad G=\frac{1}{2}(C+D), \quad H=\frac{1}{2}(C-D),
$$

then E, F, G, H are pairwise amicable (and symmetric) and satisfy

$$
E E^{T}+F F^{T}+G G^{T}+H H^{r}=2 u I_{u}
$$

Now define

$$
T_{1}=\left[\begin{array}{cc}
E & 0 \\
0 & E
\end{array}\right], \quad T_{2}=\left[\begin{array}{cc}
F & 0 \\
0 & F
\end{array}\right], \quad T_{3}=\left[\begin{array}{cc}
0 & G \\
G & 0
\end{array}\right], \quad \text { and } \quad T_{4}=\left[\begin{array}{cc}
0 & H \\
H & 0
\end{array}\right],
$$

so that

$$
\begin{gathered}
T_{1}=T_{1} 1=T_{2} 2=T_{3} 3=T_{4} 4, \\
T_{2}=T_{1} 2=-T_{2} 1=T_{3} 4=-T_{4} 3, \\
T_{3}=T_{1} 3=-T_{3} 1=-T_{2} 4=T_{4} 2 \text { and } \\
T_{4}=T_{1} 4=-T_{4} \mathrm{I}=T_{2} 3=-T_{3} 2,
\end{gathered}
$$

in the theorem. Note $T_{1}, T_{2}, T_{3}, T_{4}$ are pairwise amicable. If $A, B, C, D$ were circulant (or type 1) they would be type 1 of order $2 u$.

Let $X, Y, Z, W$ be the Willianson or Williamson type (symmetric) matrices of order $v$. Then $X, Y, Z, W$ are pairwise amicable and

$$
X X^{T}+Y Y^{T}+Z Z^{T}+W W^{T}=4 v I_{v} .
$$

Then

$$
\begin{aligned}
L & =T_{1} \times X+T_{2} \times Y+T_{3} \times Z+T_{4} \times W \\
M & =-T_{1} \times Y+T_{2} \times X+T_{3} \times W-T_{4} \times Z \\
N & =-T_{1} \times Z-T_{2} \times W+T_{3} \times X+T_{4} \times Y \\
P & =-T_{1} \times W+T_{2} \times Z-T_{3} \times Y+T_{4} \times X .
\end{aligned}
$$

are 4 Williamson type (symmetric) matrices of order $2 u v$. If the matrices of orders $u$ and $v$ were circulant or type 1 these matrices are type 1 .

## 5 Miyamoto's Theorem and Corollaries via M-structures

We reformulate Miyamoto's results so that symmetric Williamson-type matrices can be obtained.

Lemma 26 (Miyamoto's Lemma Reformulated) Let $U_{i}, V_{j}, i, j=1,2,3,4$ be $(0,+1,-1)$ matrices of order $n$ which satisfy
(i) $U_{i}, U_{j}, i \neq j$ are pairwise amicable,
(ii) $V_{i}, V_{j}, i \neq j$ are pairwise amicable,
(iii) $U_{i} \pm V_{i},(+1,-1)$ matrices, $i=1,2,3,4$,
(iv) the row sum of $U_{1}$ is 1 , and the row sum of $U_{j}, i=2,3,4$ is zero,
(v) $\sum_{i=1}^{4} U_{i} U_{i}^{T}=(2 n+1) I-2 J, \sum_{i=1}^{4} V_{i} V_{i}^{T}=(2 n+1) I$.

Then there are 4 Williamson type matrices of order $2 n+1$. If $U_{i}$ and $V_{i}$ are symmetric, $i=1,2,3,4$ then the Williamson-type matrices are symmetric. Hence there is a Williamson type Hadamard matrix of order $4(2 n+1)$.

Proof: Let $S_{1}, S_{2}, S_{3}, S_{4}$ be $4(+1,-1)$-matrices of order $2 \pi$ defined by

$$
S_{j}=U_{j} \times\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+V_{j} \times\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] .
$$

So the row sum of $S_{1}=2$ and of $S_{i}=0, i=2,3,4$. Now define

$$
X_{1}=\left[\begin{array}{cc}
1 & -e_{2 n} \\
-e_{2 n}^{T} & S_{1}
\end{array}\right] \quad \text { and } \quad X_{i}=\left[\begin{array}{cc}
1 & e_{2 n} \\
e_{2 n}^{T} & S_{i}
\end{array}\right], \quad i=2,3,4 .
$$

First note that since $U_{i}, U_{j}, i \neq j$ and $V_{i}, V_{j}, i \neq j$ are pairwise amicable,

$$
\begin{aligned}
S_{i} S_{j}^{T} & =\left(U_{i} \times\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+V_{i} \times\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\right)\left(U_{j}^{T} \times\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+V_{j}^{T} \times\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\right) \\
& =U_{i} U_{j}^{T} \times\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]+V_{i} V_{j}^{T} \times\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right] \\
& =S_{j} S_{i}^{T}
\end{aligned}
$$

(Note this relationship is valid if and only if conditions (i) and (ii) of the theorem are valid.)

$$
\begin{aligned}
\sum_{i=1}^{4} S_{i} S_{i}^{T} & =\sum_{i=1}^{4} U_{i} U_{i}^{T} \times\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]+\sum_{i=1}^{4} V_{i} V_{i}^{T} \times\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right] \\
& =2\left[\begin{array}{cc}
2(2 n+1) I-2 J & -2 J \\
-2 J & 2(2 n+1) I-2 J
\end{array}\right] \\
& =4(2 n+1) I_{2 n}-4 J_{2 n}
\end{aligned}
$$

Next we observe

$$
X_{1} X_{i}^{T}=\left[\begin{array}{cc}
1-2 n & e_{2 n} \\
e_{2 n}^{T} & -J+S_{1} S_{i}^{T}
\end{array}\right]=X_{i} X_{1}^{T} \quad i=2,3,4
$$

and

$$
X_{i} X_{j}^{T}=\left[\begin{array}{cc}
1+2 n & e_{2 n} \\
e_{2 n}^{T} & J+S_{i} S_{j}^{T}
\end{array}\right]=X_{j} X_{i}^{T} \quad i \neq j, \quad i, j=2,3,4
$$

Further

$$
\begin{aligned}
\sum_{i=1}^{4} X_{i} X_{i}^{T} & =\left[\begin{array}{cc}
1+2 n & -3 e_{2 n} \\
-3 e_{2 n}^{T} & J+S_{1} S_{1}^{T}
\end{array}\right]+\sum_{i=2}^{4}\left[\begin{array}{cc}
1+2 n & e_{2 n} \\
e_{2 n}^{T} & J+S_{i} S_{i}^{T}
\end{array}\right] \\
& =\left[\begin{array}{cc}
4(2 n+1) & 0 \\
0 & 4 J+4(2 n+1) I-4 J
\end{array}\right] .
\end{aligned}
$$

Thus we have shown that $X_{1}, X_{2}, X_{3}, X_{4}$ are 4 Williamson type matrices of order $2 n+1$.

Hence there is a Williamson type Hadamard matrix of order $4(2 n+1)$.

Corollary 27 Let $q \equiv 1(\bmod 4)$ be a prime power then there are symmetric Williamson type matrices of order $q+2$ whenever $\frac{1}{2}(q+1)$ is a prime power or $\frac{1}{2}(q+3)$ is the order of a symmetric conference matrix. Also there exists an Hadamard matrix of Williamson type of order $4(q+2)$.

Proof; (i) Let $B$ be the skew-symmetric core of order $\frac{1}{2}(q+1)$ formed via the quadratic residues (see Remark 14(i)) and $R$ the back-diagonal matrix so that $B R$ is back circulant or type 2 and symmetric;
(ii) Let $X$ be the symmetric core of order $\frac{1}{2}(q+1)$ of the conference matrix (see Remark 14(ii));
(iii) Let $M, N$ be the two circulant symmetric matrices of order $\frac{1}{2}(q+1)$, $M$ with zero diagonal satisfying $M M^{T}+N N^{T}=q I$ (see Remark 15).

Then in Lemma 26 use
(ia) $U_{1}=I, U_{2}=0, U_{3}=U_{4}=B R$,
(iia) $V_{1}=M, V_{2}=N_{1} V_{3}=V_{4}=R$,
(ib) $U_{1}=I, U_{2}=0, U_{3}=U_{4}=X$,
(iib) $V_{1}=M, V_{2}=N, V_{3}=V_{4}=I$,
to obtain the result.
Remark 28 Some of the results in Corollary 27 are also due to A.L. Whiteman [35]. This gives symmetric Williamson-type matrices of orders

| 7 | 11 | 15 | 19 | 27 | 39 | 51 | 55 | 63 | 75 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 83 | 91 | 99 | 123 | 159 | 195 | 243 | 279 | 315 | 339 |
| 363 | 399 | 423 | 451 | 459 | 543 | 579 | 615 | 627 | 663 |
| 675 | 735 | 759 | 843 | 879 | 883 | 999 | 1095 | 1155 | 1203 |
| 1215 | 1239 | 1251 | 1323 | 1383 | 1455 | 1623 | 1659 | 1683 | 1755 |
| 1875 | 1935 | 1995 |  |  |  |  |  |  |  |

(since Mathon found conference matrices of orders 46 and 442). Almost all these, with symmetry, are new though Miyamoto [12] has found Williamsontype matrices for these orders and hence Hadamard matrices for four times these orders.

Koukouvinos and Kounias [10] have shown there are no circulant symmetric Williamson matrices of order 39 but here a symmetric but not circulant Williamson matrix of order 39 is given.

Corollary 29 Let $q \equiv 1(\bmod 4)$ be a prime power. Then
(i) if there are Williamson type matrices of order $(q-1) / 4$ or an Hadamard matrix of order $\frac{1}{2}(q-1)$ there exist Willianson type matrices of order $q$;
(ii) if there exist symmetric conference matrices of order $\frac{1}{2}(q-1)$ or a symmetric Hadamard matrix of order $\frac{1}{2}(q-1)$ then there exist symmetric Williamson type matrices of order $q$.

Hence there exists an Hadamard matrix of Williamson type of order $4 q$.
Proof: (i) Use Yamada's matrices $A$ and $C=B R$ of order $\frac{1}{2}(q-1)$ (see Remark 19) as

$$
U_{1}=A, \quad U_{2}=C, \quad U_{3}=U_{4}=0, \quad \text { and } \quad V_{1}=I, \quad V_{2}=0,
$$

and for

$$
V_{3}=\left[\begin{array}{cc}
W_{1} & W_{2} \\
W_{2} & -W_{2}
\end{array}\right], \quad V_{4}=\left[\begin{array}{cc}
W_{3} & W_{4} \\
-W_{4} & W_{3}
\end{array}\right],
$$

where $W_{i}, i=1,2,3,4$ are Williamson-type matrices, or $V_{3}=V_{4}=H$, where $H$ is an Hadamard matrix of order $\frac{1}{2}(q-1)$, and
(ii) with $N$ the appropriate symmetric conference matrix and $H$ the appropriate Hadamard matrix use

$$
V_{3}=N+I, \quad V_{4}=N-I, \quad \text { or } \quad V_{3}=V_{4}=H,
$$

as indicated in Lemma 26 to obtain Williamson-type matrices.
Remark 30 Part (i) of Corollary 29 for Willianson matrices of order ( $q-1$ )/4 was found by Miyamoto [12]. Part (i) with Hadamard matrices of order $\frac{1}{2}(q-1)$ is new. Part (ii) with symmetry is new.

Corollary 29 part (ii) gives symmetric Williamson-type matrices of order $q$ when $q \equiv 1 \quad(\bmod 4)$ is a prime power and $\frac{1}{2}(q-1)$ is the order of a symmet. ric conference matrix. This gives symmetric Williamson-type matrices for the following orders

| 13 | 29 | 37 | 53 | 61 | 101 | 109 | 125 | 149 | 181 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 197 | 229 | 277 | 317 | 349 | 389 | 397 | 461 | 541 | 557 |
| 677 | 701 | 709 | 797 | 821 | 1021 | 1061 | 1117 | 1229 | 1237 |
| 1549 | 1597 | 1621 | 1709 | 1861 | 1877 | 1997 |  |  |  |

Corollary 29 will aiso give Williamson-type matrices of orders $293,373,613$, $653,733,757,853,1013,1069,1213,1277,1373,1381,1453,1493,1669,1693$, $1733,1901,1933$, or 1973 if symmetric conference matrices of orders 146,186 , $306,326,366,378,426,506,534,606,638,686,690,726,746,834,866,950$, 966 or 986 exist, respectively.

Corollary 29 part (ii) gives symmetric Williamson-type matrices of order $q$ when $q \equiv 1(\bmod 4)$ is a prime power and $\frac{1}{2}(q-1)$ is the order of a symmetric Hadamard matrix. Rembering that symmetric Hadamard matrices exist for orders $p+1$ when $p \equiv 3(\bmod 4)$ is a prime power we have symmetric Williamson-type matrices for the following orders:

| 5 | 9 | 17 | 25 | 41 | 49 | 73 | 81 | 89 | 97 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 113 | 121 | 169 | 193 | 241 | 257 | 281 | 289 | 337 | 353 |
| 361 | 401 | 409 | 433 | 449 | 457 | 529 | 569 | 577 | 593 |
| 601 | 617 | 625 | 641 | 673 | 729 | 761 | 769 | 841 | 881 |
| 929 | 937 | 961 | 977 | 1009 | 1033 | 1049 | 1097 | 1129 | 1153 |
| 1201 | 1217 | 1249 | 1289 | 1297 | 1321 | 1361 | 1369 | 1409 | $\mathbf{1 4 8 1}$ |
| 1489 | 1553 | 1601 | 1609 | 1657 | 1681 | 1697 | 1721 | 1777 | $\mathbf{1 8 0 1}$ |
| 1849 | 1873 |  |  |  |  |  |  |  |  |

Corollary 29 also gives symmetric Williamson-type matrices of orders 233, $313,521,809,857,953,1193,1433,1753,1889,1913$, and 1993 when symmetric Hadamard matrices of orders $4.29,4.39,4.65,4.101,4.107,4.119,4.149,4.179$, $4.219,16.59,4.239$ and 4.249 are discovered.

Corollary 29 part (i) gives Williamson-type matrices of order $q$ when $q \equiv 1$ (mod 4) is a prime power and $\frac{1}{2}(q-1)$ is the order of an Hadamard matrix. This gives Williamson-type matrices for the following orders not given above:

$$
\begin{array}{llllllllll}
137 & 233 & 313 & 521 & 809 & 953 & 1193 & 1753 & 1889 & 1993
\end{array}
$$

Corollary 29 part (i) gives Williamson-type matrices of order $q$ when $q \equiv 1$ (mod 4) is a prime power and $(q-1) / 4$ is the order of Williamson-type matrices. This result is also due to Miyamoto [12]. This gives Williamson-type matrices for the following orders:

| 157 | 173 | 293 | 373 | 613 | 757 | 757 | 773 | 1109 | 1301 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1453 | 1493 | 1637 | 1693 | 1733 | 1741 |  |  |  |  |

Corollary 29 will also gives Williamson-type matrices of orders 857, 1433 and 1913 when Hadamard matrices of orders $4.107,4.179$ and 4.239 are discovered. Further it will give Williamson-type matrices of orders

| 269 | 421 | 509 | 653 | 661 | 733 | 829 | 853 | 877 | 941 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1069 | 1093 | 1181 | 1213 | 1277 | 1373 | 1381 | 1429 | 1613 | 1669 |
| 1789 | 1901 | 1933 | 1949 | 1973 |  |  |  |  |  |

when Williamson-type matrices of orders

| 67 | 105 | 127 | 163 | 165 | 183 | 207 | 213 | 219 | 235 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 267 | 273 | 295 | 303 | 319 | 343 | 345 | 357 | 403 | 417 |
| 447 | 475 | 483 | 487 | 493 |  |  |  |  |  |

are discovered.
Corollary 31 Let $q \equiv 1(\bmod 4)$ be a prime power or $q+1$ the order of a symmetric conference matrix. Let $2 q-1$ be a prime power. Then there exist symmetric Williamson type matrices of order $2 q+1$ and an Hadamard matrix of Williamson type of order $4(2 q+1)$.

Proof: Form the core $Q$ as in Remark 14(i). Thus we choose a symmetric $Q$ of order $q$ satisfying $e Q=0, Q Q^{T}=q I-J$. From Remark 15 there exist symmetric matrices $M$ and $N$ of order $q$ satisfying

$$
M M^{T}+N N^{T}=(2 q-1) I, \quad M \text { with zero diagonal. }
$$

Use

$$
U_{1}=I, \quad U_{2}=U_{3}=Q, \quad U_{4}=0,
$$

and

$$
\begin{gathered}
V_{1}=M, \quad V_{2}=V_{3}=I, \quad V_{4}=N, \\
\sum_{i=1}^{4} U_{i} U_{i}^{T}=(2 q+1) I-2 J, \quad \sum_{i=1}^{4} V_{i} V_{i}^{T}=(2 q+1) I .
\end{gathered}
$$

Hence by Lemma 26 we have four symmetric Willianson type matrices of order $2 q+1$ and a Williamson type Hadamard matrix of order $4(2 q+1)$.

Remark 32 Corollary 31 is satisfied for the appropriate primes or conference matrix orders to give symmetric Williamson-type matrices for the following orders:

| 11 | 19 | 27 | 51 | 75 | 83 | 91 | 99 | 123 | 195 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 243 | 315 | 339 | 363 | 451 | 459 | 579 | 627 | 675 | 843 |
| 883 | 1155 | 1203 | 1251 | 1323 | 1659 | 1683 | 1755 | 1875 | 1995 |
| 2019 | 2139 | 2403 | 2475 | 2595 | 2859 | 3043 | 3219 | 3315 | 3363 |
| 3483 | 3699 | 3723 |  |  |  |  |  |  |  |

Note this last corollary is a modified version of Miyamoto's Corollary 5 (original manuscript). A new proof of Miyamoto's result, preserving symmetry, is:

Corollary 33 Let $q \equiv 5(\bmod 8)$ be a prime power. Further let $\frac{1}{2}(q-3)$ be a prime power or $\frac{1}{2}(q-1)$ be the order of a symmetric conference matrix then there exist symmetric Williamson type matrices of order $q$ and an Hadamard matrix of Williamson type of order $4 q$.
Proof: Since $q=1(\bmod 4)$ is a prime power, Yamada's matrices $A$ and $C=$ $B R$ of order $\frac{1}{2}(q-1)$ (see Remark 19) satisfy $A^{T}=A, e A=e, e B=0, e C=0$, $A$ has zero diagonal, $B$ and $C$ have elements +1 and -1 , and $A A^{T}+C C^{T}=$ $q I-2 J_{1}$ where $R$ is the back diagonal matrix which makes $C=B R$ symmetric.

From Remark 14, since $\frac{1}{2}(q-3)$ is a prime power $\equiv 1(\bmod 4)$, there exists a symmetric conference matrix, $N$, of order $\frac{1}{2}(q-1)$. Let

$$
X=N+I, \quad \text { and } \quad Y=N-I,
$$

then $X, Y$ are symmetric and amicable of order $\frac{1}{2}(q-1)$ satisfying

$$
X X^{T}+Y Y^{T}=(q-1) I
$$

Let

$$
\begin{aligned}
U_{1}=A, & U_{2}=C, \quad U_{3}=U_{4}=0, \\
\text { and } \quad V_{1}=I, & V_{2}=0, \quad V_{3}=X, \quad V_{4}=Y,
\end{aligned}
$$

then

$$
\sum_{i=1}^{4} U_{i} U_{i}^{T}=q I-2 J, \quad \sum_{i=1}^{4} V_{i} V_{i}^{T}=q I
$$

So the lemma gives the result.
Theorem 34 (Miyamoto's Theorem Reformulated) Let $U_{i j}, V_{i j}, i, j=$ $1,2,3,4$ be $(0,+1,-1)$ matrices of order $n$ which satisfy
(i) $U_{k i}, U_{k j}, i \neq j$ are pairwise anicable, $k=1,2,3,4$,
(ii) $V_{k i}, V_{k j}, i \neq j$ are pairwise amicable, $k=1,2,3,4$,
(iii) $U_{k i} \pm V_{k i},(+1,-1)$ matrices, $i, k=1,2,3,4$,
(iv) the row sum of $U_{i i}$ is 1 , and the row sum of $U_{i j}$ is zero, $i \neq j, i, j=1,2,3,4$,
(v) $\sum_{i=1}^{4} U_{j i} U_{j i}^{T}=(2 n+1) I-2 J, \quad \sum_{i=1}^{4} V_{j i} V_{j i}^{T}=(2 n+1) I, \quad j=1,2,3,4$,
(vi) $\sum_{i=1}^{4} U_{j i} U_{k i}^{T}=0, \quad \sum_{i=1}^{4} V_{j i} V_{k i}^{T}=0, j \neq k, j, k=1,2,3,4$.

If conditons (i) to (v) hold, there are four Williamson matrices type of order $2 n+1$ and thus a Willianson type Hadamard matrix of order $4(2 n+1)$. Furthermore if the matrices $U_{k i}$ and $V_{k i}$ are symmetric for all $i, j=1,2,3,4$ the Williamson matrices obtained of order $2 n+1$ are also symmetric.

If conditons (iii) to (vi) hold, there is an M-structure Hadamard matrix of order $4(2 n+1)$.

Proof: Let $S_{i j}$, be $16(+1,-1)$-matrices of order $2 n$ defined by

$$
S_{i j}=U_{i j} \times\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+V_{i j} \times\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

So the row sum of $S_{i i}=2$ and of $S_{i j}=0, i \neq j, i, j=1,2,3,4$. Now define

$$
\begin{array}{llll}
X_{11}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & S_{11}
\end{array}\right] & X_{12}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{32}
\end{array}\right] & X_{13}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{33}
\end{array}\right] & X_{14}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & S_{14}
\end{array}\right] \\
X_{21}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{21}
\end{array}\right] & X_{22}=\left[\begin{array}{cc}
-\frac{1}{-1} & -e \\
-e^{T} & S_{22}
\end{array}\right] & X_{23}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{23}
\end{array}\right] & X_{24}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & S_{24}
\end{array}\right] \\
X_{31}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{31}
\end{array}\right] & X_{32}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{32}
\end{array}\right] & X_{33}=\left[\begin{array}{cc}
-\frac{1}{-T} & -e \\
-e^{T} & S_{33}
\end{array}\right] & X_{34}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & S_{34}
\end{array}\right] \\
X_{41}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & -S_{41}
\end{array}\right] & X_{42}=\left[\begin{array}{cc}
\frac{1}{1} & e \\
e^{T} & -S_{42}
\end{array}\right] & X_{43}=\left[\begin{array}{ll}
-\frac{1}{-1} & e \\
e^{T} & -S_{43}
\end{array}\right] & X_{44}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & -S_{44}
\end{array}\right]
\end{array}
$$

We note that the following always holds as it is just a case of Miyamoto's Lemma Reformulated:

$$
\begin{equation*}
\sum_{i=1}^{4} S_{j i} S_{j i}^{T}=4(2 n+1) I_{2 n}-4 J_{2 n} \tag{9}
\end{equation*}
$$

In all cases though assumption (vi) assures us that

$$
\begin{equation*}
\sum_{i=1}^{4} S_{k i} S_{j i}^{T}=0, \quad j \neq k \tag{10}
\end{equation*}
$$

We separate the remainder of the proof into two parts: Case A where conditions (i) to (v) of the enunciation hold and Case 2 where conditions (iii) to (vi) of the enunciation hold.
Case A. We now note that, as in Miyamoto's Lemma:

$$
\begin{equation*}
S_{k i} S_{j i}^{T}=S_{j i} S_{k i}^{T} \tag{11}
\end{equation*}
$$

if and only if $U_{k i}, U_{k j}, i \neq j$ are pairwise amicable, $k=1,2,3,4$, and $V_{k i}, V_{k j}$, $i \neq j$ are pairwise amicable, $k=1,2,3,4$. Thus

$$
X_{44} X_{4 j}^{T}=\left[\begin{array}{cc}
1-2 n & -e_{2 n} \\
-e_{2 n}^{T} & -J+S_{44} S_{4 j}^{T}
\end{array}\right]=X_{4 j} X_{44}^{T} \quad j=1,2,3
$$

and

$$
X_{4 k} X_{4 j}^{T}=\left[\begin{array}{cc}
1+2 n & -e_{2 n} \\
-e_{2 n}^{T} & J+S_{4 k} S_{4 j}^{T}
\end{array}\right]=X_{4 j} X_{4 k}^{T} \quad k \neq j, \quad j, k=1,2,3 .
$$

Further we note

$$
\begin{aligned}
\sum_{i=1}^{4} X_{4 i} X_{4 i}^{T} & =\left[\begin{array}{cc}
1+2 n & 3 e_{2 n} \\
3 e_{2 n}^{T} & J+S_{44} S_{44}^{T}
\end{array}\right]+\sum_{i=1}^{3}\left[\begin{array}{cc}
1+2 n & -e_{2 n} \\
-e_{2 n}^{T} & J+S_{4 i} S_{4 i}^{T}
\end{array}\right] \\
& =\left[\begin{array}{cc}
4(2 n+1) & 0 \\
0 & 4 J+4(2 n+1) I-4 J
\end{array}\right] \\
& =4(2 n+1) I_{2 n+1}
\end{aligned}
$$

Hence $X_{41}, X_{42}, X_{43}, X_{44}$ are 4 Williamson type matrices of order $2 n+1$ and thus a Williamson type Hadamard matrix of order $4(2 n+1)$ exists.
Case B. We now assume conditions (i) and (ii) do not hold but that condition (vi) does hold. By straightforward checking we can assert that

$$
\begin{gathered}
\sum_{i=1}^{4} X_{j i} X_{k i}^{T}=0 \quad j \neq k, \text { if and only if (10) holds. } \\
\sum_{i=1}^{4} X_{j i} X_{j i}^{T}=4(2 n+1) I_{2 n+1} \quad j=1,2,3,4 \text { as (9) holds. }
\end{gathered}
$$

Hence there is an M-structure Hadamard matrix of order $4(2 n+1)$.
Note that if we write our M-structure from the theorem as

| -1 | 1 | 1 | -1 | -e | e | e | e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | 1 | -1 | e | e | e | e |
| 1 | 1 | -1 | -1 | e | e | e | e |
| 1 | 1 | 1 | 1 | -e | -e | e | e |
| $-e^{T}$ | $e^{T}$ | $e^{T}$ | $e^{T}$ | $S_{11}$ | $S_{12}$ | $S_{13}$ | $S_{14}$ |
| $e^{T}$ | $-e^{T}$ | $e^{T}$ | $e^{T}$ | $S_{21}$ | $S_{22}$ | $S_{23}$ | $S_{24}$ |
| $e^{T}$ | $e^{T}$ | $-e^{T}$ | $e^{T}$ | $S_{31}$ | $S_{32}$ | $S_{33}$ | $S_{34}$ |
| $-e^{T}$ | $-e^{T}$ | $-e^{T}$ | $e^{T}$ | $S_{41}$ | $S_{42}$ | $S_{43}$ | $S_{44}$ |

and we can see Yamada's matrix with trimming [46] or the J. Wallis-Whiteman [30] matrix with a border embodied in the construction.

Corollary 35 Suppose there exists a symmetric conference matrix of order $q+1=4 t+2$ and an Hadamard matrix of order $4 t=q-1$. Then there is an Hadamard matrix with $M$-structure of order $4(4 t+1)=4 q$. Further if the Hadamard matrix is symmetric the Hadamard matrix of order $4 q$ is of the form

$$
\left[\begin{array}{cc}
X & Y \\
-Y & X
\end{array}\right]
$$

where $X, Y$ are amicable and symmetric.
Proof: Use Lemma 9 to obtain four matrices $C_{1}, C_{2}, C_{3}, C_{4}$, of order $\frac{1}{2}(q-1)$ satisfying

$$
\begin{aligned}
C_{1} C_{1}^{T}+C_{2} C_{2}^{T} & =C_{3} C_{3}^{T}+C_{4} C_{4}^{T} \\
& =q I-J
\end{aligned}
$$

$$
\begin{gathered}
e C_{1}^{T}=e C_{4}^{T}=e, \quad e C_{2}^{T}=e C_{3}^{T}=0, \quad C_{1}^{T} C_{3}^{T}-C_{3}^{T} C_{4}^{T}=0 \\
C_{1}^{T}=C_{1}, \quad C_{4}^{T}=C_{4}, \quad C_{3}^{T}=C_{2} .
\end{gathered}
$$

$$
C_{1}^{T}=C_{1}, \quad C_{4}^{T}=C_{4}, \quad C_{3}^{T}=C_{2}
$$

Write the Hadamard matrix with four blocks of size $\frac{1}{2}(q-1)$ as

$$
\left[\begin{array}{ll}
H_{1} & H_{2} \\
H_{3} & H_{4}
\end{array}\right] .
$$

If this matrix is symmetric then $H_{1}^{T} H_{3}^{T}+H_{3}^{T} H_{4}^{T}=0, H_{1}^{T}=H_{1}, H_{4}^{T}=H_{4}$, $H_{3}^{T}=H_{2}$.

Now write $U=\left(U_{i j}\right)$ and $V=\left(V_{i j}\right)$ with 16 blocks of size $\frac{1}{2}(q-1) \times \frac{1}{2}(q-1)$

$$
U=\left[\begin{array}{cccc}
C_{1} & C_{2} & 0 & 0 \\
-C_{3} & C_{4} & 0 & 0 \\
0 & 0 & C_{1} & C_{2} \\
0 & 0 & -C_{3} & C_{4}
\end{array}\right], \quad \text { and } V=\left[\begin{array}{cccc}
I & 0 & H_{1} & H_{2} \\
0 & I & H_{3} & H_{4} \\
-H_{1}^{T} & -H_{3}^{T} & I & 0 \\
-H_{2}^{T} & -H_{4}^{T} & 0 & I
\end{array}\right]
$$

and straightforward use of Miyamoto's theorem gives the result.
We note that complex Hadamard matrices of order $n \equiv 2(\bmod 4)$ do exist when symmetric conference matrices cannot exist (see [22, Chapter VI]). These complex Hadamard matrices may be written as $K=X+i Y$ where $K K *=k I_{k}$ (* the Hermitian conjugate).

Hence we have
Corollary 36 Let $q \equiv 4 f+1$ be a prime power. Suppose there is a complex Hadamard matrix of order $2 f$. Then there is an Hadamard matrix of order $4(4 f+1)$.

Proof: Use Yamada's construction (see the method of Remark 19) to make $A$ with zero diagonal and $\pm 1$ eisewhere, $A^{T}=A$, and back-circulant $B$ with elements $\pm 1$ of order $\frac{1}{2}(q-1)=2 f$ satisfying $A A^{T}+B B^{T}=q I-2 J$.

Let $C=X+i Y$ be a complex Hadamard matrix of order $2 f$. Choose

$$
\begin{gathered}
U=\left[\begin{array}{cccc}
A & B & 0 & 0 \\
-B & A & 0 & 0 \\
0 & 0 & A & B \\
0 & 0 & -B & A
\end{array}\right] \text { and } \\
V=\left[\begin{array}{cccc}
I & 0 & X+Y & X-Y \\
0 & I & -X+Y & X+Y \\
-X^{T}-Y^{T} & X^{T}-Y^{T} & I & 0 \\
-X^{T}+Y^{T} & -X^{T}-Y^{T} & 0 & I
\end{array}\right] .
\end{gathered}
$$

Then the theorem gives us an Hadamard matrix of order $4(4 f+1)$.
Note complex Hadamard matrices exist for orders $22,34,58,86,306,650$ $870,1046,2450,3782, \ldots$, for which either a symmetric conference matrix cannot exist or is not known. None of these orders give new Hadamard matrices.

## 6 Using 64 Block M-structures

In a similar fashion, we consider the following lemma so symmetric 8-Williamsontype matrices can be obtained.

Lemma 37 Let $U_{i}, V_{j}, i, j=1, \ldots, 8$ be $(0,+1,-1)$ matrices of order $n$ which satisfy
(i) $U_{i}, U_{j}, i \neq j$ are pairwise amicable,
(ii) $V_{i}, V_{j}, i \neq j$ are pairwise amicable,
(iii) $U_{i} \pm V_{i},(+1,-1)$ matrices, $i=1, \ldots, 8$,
(iv) the row(column) sums of $U_{1}$ and $U_{2}$ are both 1 , and the row sum of $U_{i}$, $i=3, \ldots, 8$ is zero,
(v) $\sum_{i=1}^{8} U_{i} U_{i}^{T}=2(2 n+1) I-4 J, \sum_{i=1}^{8} V_{i} V_{i}^{T}=2(2 n+1) I$.

Then there are 8 -Williamson type matrices of order $2 n+1$. Furthermore, if the $U_{i}$ and $V_{i}$ are symmetric, $i=1, \ldots, 8$, then the 8 -Williamson type matrices are symmetric. Hence there is a block type Hadamard matrix of order $8(2 \pi+1)$.

Proof: Let $S_{1}, \ldots, S_{8}$ be $8(+1,-1)$-matrices of order $2 n$ defined by

$$
S_{j}=U_{j} \times\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+V_{j} \times\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

So the row sums of $S_{1}$ and $S_{2}$ are both 2 and of $S_{i}=0, i=3, \ldots, 8$. Now define

$$
X_{j}=\left[\begin{array}{cc}
1 & -e_{2 n} \\
-e_{2 n}^{T} & S_{j}
\end{array}\right], j=1,2 \text { and } X_{i}=\left[\begin{array}{cc}
1 & e_{2 n} \\
e_{2 n}^{T} & S_{i}
\end{array}\right], \quad i=3, \ldots, 8
$$

First note that since $U_{i}, U_{j}, i \neq j$ and $V_{i}, V_{j}, i \neq j$ are pairwise amicable,

$$
\begin{aligned}
S_{i} S_{j}^{T} & =\left(U_{i} \times\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+V_{i} \times\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\right)\left(U_{j}^{T} \times\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+V_{j}^{T} \times\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\right) \\
& =U_{i} U_{j}^{T} \times\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]+V_{i} V_{j}^{T} \times\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right] \\
& =S_{j} S_{i}^{T} .
\end{aligned}
$$

(Note this relationship is valid if and only if conditions (i) and (ii) of the theorem are valid.)

$$
\begin{aligned}
\sum_{i=1}^{8} S_{i} S_{i}^{T} & =\sum_{i=1}^{8} U_{i} U_{i}^{T} \times\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]+\sum_{i=1}^{8} V_{i} V_{i}^{T} \times\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right] \\
& =2\left[\begin{array}{cc}
4(2 n+1) I-4 J & -4 J \\
-4 J & 4(2 n+1) I-4 J
\end{array}\right] \\
& =8(2 n+1) I_{2 n}-8 J_{2 n} .
\end{aligned}
$$

## Next we observe

$$
\begin{gathered}
\qquad X_{1} X_{2}^{T}=\left[\begin{array}{cc}
1+2 n & -3 e_{2 n} \\
-3 e_{2 n}^{T} & J+S_{1} S_{2}^{T}
\end{array}\right]=X_{2} X_{1}^{T}, \\
\qquad X_{k} X_{i}^{T}=\left[\begin{array}{cc}
1-2 n & e_{2 n} \\
e_{2 n}^{T} & -J+S_{k} S_{i}^{T}
\end{array}\right]=X_{i} X_{k}^{T}, \quad k=1,2 \text {, and } i=3, \ldots, 8_{,} \\
\text {and } \\
\qquad X_{i} X_{j}^{T}=\left[\begin{array}{cc}
1+2 n & e_{2 n} \\
e_{2 n}^{T} & J+S_{i} S_{j}^{T}
\end{array}\right]=X_{j} X_{i}^{T}, \quad i \neq j \quad i, j=3, \ldots, 8 .
\end{gathered}
$$

Further

$$
\begin{aligned}
\sum_{i=1}^{8} X_{i} X_{i}^{T} & =2\left[\begin{array}{cc}
1+2 n & -3 e_{2 n} \\
-3 e_{2 n}^{T} & J+S_{1} S_{1}^{T}
\end{array}\right]+\sum_{i=3}^{8}\left[\begin{array}{cc}
1+2 n & e_{2 n} \\
e_{2 n}^{T} & J+S_{i} S_{i}^{T}
\end{array}\right] \\
& =2\left[\begin{array}{cc}
8(2 n+1) & 0 \\
0 & 8 J+8(2 n+1) I-8 J
\end{array}\right]
\end{aligned}
$$

Thus we have shown that $X_{1}, \ldots, X_{8}$ are 8-Wiliamson type matrices of order $2 n+1$.

Hence there is a block type Hadamard matrix of order $8(2 n+1)$ obtained by replacing the variables of an orthogonal design $\operatorname{OD}(8 ; 1,1,1,1,1,1,1,1)$ by the 8 -Williamson type matrices.
Corollary 38 Let $q+1$ be the order of amicable Hadamard matrices $I+S$ and P. Suppose there exist 4 Williamson type matrices of order $q$. Then there exist Williamson type matrices of order $2 q+1$. Furthermore there exists an Hadamard matrix of block type of order $8(2 q+1)$.

Proof: Now $(I+S) P^{T}=P(I+S)^{T}$ and write $e$ for the $1 \times q$ matrix of ones. From Remark 12 we have matrices $A, B$ of order $q$ satisfying:

$$
\begin{gathered}
A B^{T}=B A^{T}, \quad B^{T}=-B, \quad A^{T}=-A, \quad e A=-e, \quad e B=0, \\
A A^{T}=(q+1) I-J, \quad B B^{T}=q I-J .
\end{gathered}
$$

Thus we choose

$$
\begin{gathered}
U_{1}=U_{2}=-A, \quad U_{3}=U_{4}=B, \quad U_{5}=U_{6}=U_{7}=U_{8}=0, \\
\text { and } V_{1}=V_{2}=0, \quad V_{3}=V_{4}=I, \quad V_{i}+4=W_{i},
\end{gathered}
$$

where $W_{i}$ are Williamson type matrices. Hence

$$
\sum_{i=1}^{8} U_{i} U_{i}^{T}=2(2 q+1) \eta-4 J, \quad \sum_{i=1}^{8} V_{i} V_{i}^{T}=2(2 q+1) I
$$

These are then used in the Lemma 37 to obtain the result.
Using the amicable Hadamard matrices given in [22] and [16, Table 1] we get 8 Williamson type matrices for the foilowing orders for which 4 Williamson matrices are not known:
$47,111,127,167,319,487,655,831, \ldots$
This gives new constructions for Hadamard matrices of orders 8.167 and 8.487.

Corollary 39 Let $q$ be a prime power and ( $q-1$ )/2 be the order of four (symmetric) Williamson type matrices. Then there exist (symmetric) 8-Williamson type matrices of order $q$ and an Hadamard matrix of block structure of order $8 q$.

Proof: If $q \equiv 1(\bmod 4)$, by Remark 19 , Yamada has found circulant matrices $A, B$ of order $(q-1) / 2$ where

$$
A A^{T}+B B^{T}=q I-2 J, \quad \varepsilon A=e, \quad e B=0
$$

where $A$ has zero diagonal. Let $R$ be the back-diagonal matrix so $C=B R$ is symmetric; then $A$ and $C$ are amicable. Choose

$$
\begin{gathered}
U_{1}=U_{2}=A, \quad U_{3}=U_{4}=C, \quad U_{5}=U_{6}=U_{7}=U_{8}=0, \\
V_{1}=V_{2}=I, \quad V_{3}=V_{4}=0, \quad V_{i}+4=W_{i},
\end{gathered}
$$

$i=1,2,3,4$, where

$$
\sum_{i=1}^{8} U_{i} U_{i}^{T}=2 q I-4 J, \quad \sum_{i=1}^{8} V_{i} V_{i}^{T}=2 q I
$$

and $W_{i}$ are (symmetric) Williamson type matrices. The result now follows from Lemma 37.

If $q \equiv 3(\bmod 4)$, by Remark 18, Szekeres has found circulant matrices $A$, $B$ of order $\frac{1}{2}(q-1)$ where

$$
A A^{T}+B B^{T}=q I-2 J, \quad e A=0, \quad e B=-e,
$$

and $A$ has zero diagonal. Let $R$ be the back-diagonal matrix so $C=-B R$ is symmetric; then $A$ and $C$ are amicable and $e C=e$. Choose

$$
U_{1}=U_{2}=C, \quad U_{3}=U_{4}=A, \quad U_{5}=U_{6}=U_{7}=U_{8}=0,
$$

so the $U_{i}$ are pairwise amicable of order $\frac{1}{2}(q-1)$ and

$$
V_{1}=V_{2}=0, \quad V_{3}=V_{4}=I, \quad V_{i}+4=W_{i}, \quad i=1,2,3,4,
$$

where

$$
\sum_{i=1}^{8} U_{i} U_{i}^{T}=2 q I-4 J, \quad \sum_{i=1}^{8} V_{i} V_{i}^{T}=2 q I
$$

and $W_{i}$ are (symmetric) Williamson type matrices. Since Williamson type matrices are by definition amicable, the $V_{i}$ are all pairwise amicable (and symmetric) and thus we have the conditions of the lemma satisfied and hence the corollary follows.

In particular we have 8-Williamson matrices for the following orders for which no Williamson type matrices are known:
$59,67,103,107,151,163,179,227,251,283,347,463,467,523,563,571,587$, $631,643,823,859,919,947, \ldots$

This gives new Hadamard matrices or new constructions for Hadamard matrices of orders $8.107,8.163,8.179,8.251,8.283,8.347,8.463,8.523,8.571,8.631$, $8.643,8.823,8.859,8.919,8.947, \ldots$

Corollary 40 Let $q \equiv 1(\bmod 4)$ be a prime power or $q+1$ the order of a symmetric conference matrix. Suppose there exist four (symmetric) Williamson type matrices of order $q$. Then there exist (symmetric) 8 -Williamson type matrices of order $2 q+1$ and an Hadamard matrix of block structure of order $8(2 q+1)$.

Proof: Form the core $Q$ as in Remark 14(ii). Thus we choose

$$
\begin{gathered}
U_{1}=I+Q, \quad U_{2}=I-Q, \quad U_{3}=U_{4}=Q, \quad U_{5}=U_{6}=U_{7}=U_{8}=0 \\
\text { and } \quad V_{1}=V_{2}=0, \quad V_{3}=V_{4}=I, \quad V_{i+4}=W_{i},
\end{gathered}
$$

$i=1,2,3,4$, where $W_{i}$ are (symmetric) Williamson type matrices. Then

$$
\sum_{i=1}^{8} U_{i} U_{i}^{T}=2(2 q+1) I-4 J, \quad \sum_{i=1}^{8} V_{i} V_{i}^{T}=2(2 \dot{q}+1) I .
$$

These $U_{i}$ and $V_{i}$ are then used in Lemma 37 to obtain the (symmetric) 8-Williamson type matrices.

This corollary gives 8 Williamson type matrices for the following new orders: $219,275,299,395,483,515,579,635,699,707,723,779,795,803,899,915$, 923, ...

It does not give new Hadamard matrices for these orders.
Corollary 41 Let $q=9^{t}, t>0$. Now there exist four (symmetric) Williamson type matrices of order $9^{t}, t>0$. Hence there exist (symmetric) 8-Williamson type matrices of order $2 \cdot 9^{\mathfrak{t}}+1, t>0$, and an Hadarnard matrix of block structure of order $8\left(2 \cdot 9^{t}+1\right)$.

This gives symmetric 8 -Williamson type matrices for the new order 163 , 13123,...

Also we have the following theorem:
Theorem 43 Let $U_{i j}, V_{i j}, i, j=1, \ldots, 8$ be $(0,+1,-1)$ matrices of order $n$ which satisfy
(i) $U_{k i}, U_{k j}, i \neq j$ are pairwise amicable, $k=1, \ldots, 8$,
(ii) $V_{k i}, V_{k j}, i \neq j$ are pairwise amicable, $k=1, \ldots, 8$,
(iii) $U_{k i} \pm V_{k i},(+1,-1)$ matrices, $i, k=1, \ldots, 8$,
(iv) the row(column) sum of $U_{a b}$ is 1 for $(a, b) \in\{(i, i),(i, i+1),(i+1, i)\}$, $i=1,3,5,7$, the row(column) sum of $U_{a a}$ is -1 for $(i, a)=2,4,6,8$ and otherwise, and the row(column) sum of $U_{i j}, i \neq j$ is zero,
(v) $\sum_{i=1}^{8} U_{j i} U_{j i}^{T}=2(2 n+1) I-4 J, \sum_{i=1}^{8} V_{j i} V_{j i}^{T}=2(2 n+1) I, j=1, \ldots, 8$,
(vi) $\sum_{i=1}^{8} U_{j i} U_{k i}^{T}=0, \sum_{i=1}^{8} V_{j i} V_{k i}^{T}=0, j \neq k, j, k=1, \ldots, 8$.

If (iii) to (vj) hold, there is a 64 block M-structure Hadamard matrix of order $8(2 n+1)$.

Proof: Let $S_{i j}$ be $64(+1,-1)$-matrices of order $2 n$ defined by

$$
S_{i j}=U_{i j} \times\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+V_{i j} \times\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] .
$$

So the row(column) sum of $S_{i \mathrm{i}}, S_{i, i+1}, S_{i+1, i} i=1,3,5,7$ is 2 , the row(column) sum of $S_{i i}$ is -2 for ( $i, i$ ), $i=2,4,6,8$ and otherwise, the row(column) sum of $S_{i j}=0, i \neq j$. Now define

$$
\begin{aligned}
& X_{11}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & S_{11}
\end{array}\right], \quad X_{12}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & S_{12}
\end{array}\right], \quad X_{13}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{13}
\end{array}\right], \quad X_{14}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{14}
\end{array}\right], \\
& X_{15}=\left[\begin{array}{cc}
\frac{1}{2} & e \\
e^{T} & S_{15}
\end{array}\right], \quad X_{16}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{16}
\end{array}\right], \quad X_{17}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & S_{17}
\end{array}\right], \quad X_{18}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & S_{15}
\end{array}\right], \\
& X_{21}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & s_{21}
\end{array}\right], \quad X_{22}=\left[\begin{array}{cc}
1 & 6 \\
e^{T} & s_{22}
\end{array}\right], \quad X_{23}=\left[\begin{array}{cc}
1 & e \\
e^{T} & s_{23}
\end{array}\right], \quad X_{24}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & S_{24}
\end{array}\right] \text {, } \\
& X_{25}^{*}=\left[\begin{array}{cc}
\frac{1}{T} & e \\
e^{T} & S_{23}
\end{array}\right], \quad X_{26}=\left[\begin{array}{cc}
-1 & -e^{2} \\
-e^{T} & S_{26}
\end{array}\right], \quad X_{27}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & S_{27}
\end{array}\right], \quad X_{28}=\left[\begin{array}{cc}
1 & -e \\
-e^{T} & S_{28}
\end{array}\right], \\
& X_{31}=\left[\begin{array}{cc}
\frac{1}{T} & e \\
e^{T} & S_{31}
\end{array}\right], \quad X_{32}=\left[\begin{array}{cc}
\frac{1}{c} & e \\
e^{T} & S_{32}
\end{array}\right], \quad X_{33}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & S_{33}
\end{array}\right], \quad X_{34}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & S_{34}
\end{array}\right], \\
& X_{35}=\left[\begin{array}{cc}
1 & e \\
e^{T} & s_{35}
\end{array}\right], \quad X_{36}=\left[\begin{array}{cc}
\frac{1}{T} & e \\
e^{T} & s_{36}
\end{array}\right], \quad X_{37}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & s_{37}
\end{array}\right], \quad X_{38}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & s_{38}
\end{array}\right],
\end{aligned}
$$

$$
\begin{aligned}
& X_{41}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{41}
\end{array}\right], \quad X_{42}=\left[\begin{array}{cc}
-1 & -6 \\
-e^{T} & S_{42}
\end{array}\right], \quad X_{43}=\left[\begin{array}{cc}
-1 & -e^{7} \\
-e^{T} & S_{43}
\end{array}\right], \quad X_{44}=\left[\begin{array}{cc}
2 & e^{4} \\
e^{T} & S_{44}
\end{array}\right] \text {, } \\
& X_{45}=\left[\begin{array}{cc}
I & e \\
e^{T} & S_{45}
\end{array}\right], \quad X_{46}=\left[\begin{array}{cc}
-1 & -\varepsilon \\
-e^{T} & S_{46}
\end{array}\right], \quad X_{47}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & S_{47}
\end{array}\right], \quad X_{48}=\left[\begin{array}{cc}
1 & -e \\
-e^{T} & S_{48}
\end{array}\right] \text {, } \\
& X_{51}=\left[\begin{array}{cc}
1 & e \\
e^{T} & s_{51}
\end{array}\right], \quad X_{52}=\left[\begin{array}{cc}
1 & e \\
e^{T} & s_{52}
\end{array}\right], \quad X_{53}=\left[\begin{array}{cc}
1 & e \\
e^{T} & s_{53}
\end{array}\right], \quad X_{54}=\left[\begin{array}{cc}
1 & e \\
e^{T} & s_{54}
\end{array}\right], \\
& X_{55}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & S_{55}
\end{array}\right], \quad X_{56}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & S_{54}
\end{array}\right], \quad X_{57}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & S_{57}
\end{array}\right], \quad X_{58}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & S_{58}
\end{array}\right], \\
& X_{81}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{61}
\end{array}\right], \quad X_{62}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & S_{62}
\end{array}\right], \quad X_{63}=\left[\begin{array}{cc}
\frac{1}{2} & e \\
e^{T} & S_{63}
\end{array}\right], \quad X_{64}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & S_{64}
\end{array}\right], \\
& X_{65}=\left[\begin{array}{cc}
-1 & -\mathrm{e} \\
-\mathrm{e}^{T} & S_{65}
\end{array}\right], \quad X_{66}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{66}
\end{array}\right], \quad X_{67}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & S_{67}
\end{array}\right], \quad X_{68}=\left[\begin{array}{cc}
1 & \bar{c}^{e} \\
-e^{T} & S_{68}
\end{array}\right], \\
& X_{71}=\left[\begin{array}{cc}
1 & -e \\
-e^{T} & S_{72}
\end{array}\right], X_{72}=\left[\begin{array}{cc}
1 & -e \\
-e^{T} & S_{72}
\end{array}\right], X_{73}=\left[\begin{array}{cc}
1 & -e \\
-e^{T} & S_{73}
\end{array}\right], \quad X_{74}=\left[\begin{array}{cc}
-1 & -e \\
-e^{T} & S_{74}
\end{array}\right] \text {, } \\
& X_{75}=\left[\begin{array}{cc}
1 & -e \\
-e^{T} & S_{75}
\end{array}\right], \quad X_{76}=\left[\begin{array}{cc}
1 & -e \\
-e^{T} & S_{76}
\end{array}\right], \quad X_{77}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{77}
\end{array}\right], \quad X_{78}=\left[\begin{array}{cc}
\frac{1}{T} & e \\
e^{T} & S_{78}
\end{array}\right], \\
& X_{81}=\left[\begin{array}{cc}
1 & -e \\
-e^{T} & S_{81}^{e}
\end{array}\right], \quad X_{82}=\left[\begin{array}{cc}
-1 & e \\
e^{r} & S_{82}
\end{array}\right], \quad X_{83}=\left[\begin{array}{cc}
1 & -e \\
-e^{T} & S_{83}
\end{array}\right], \quad X_{84}=\left[\begin{array}{cc}
-1 & e \\
e^{T} & S_{84}
\end{array}\right] \text {, } \\
& X_{85}=\left[\begin{array}{cc}
1 & -8 \\
-{ }_{6} r & S_{85}
\end{array}\right], \quad X_{86}=\left[\begin{array}{cc}
-\frac{1}{2} & 8 \\
e^{T} & S_{80}
\end{array}\right], \quad X_{87}=\left[\begin{array}{cc}
1 & e \\
e^{T} & S_{87}
\end{array}\right], \quad X_{88}=\left[\begin{array}{cc}
-1 & -6 \\
-e^{T} & S_{88}
\end{array}\right],
\end{aligned}
$$

Then provided conditions (i) to (v) hold and $S_{7 i}^{T}=S_{7 i}, i=1, \ldots, 8$ are symmetric, $X_{7 i}, i=1, \ldots, 8$ are symmetric 8 -Williarnson type matrices. Otherwise $X_{7 i}, i=1, \ldots, 8$ are 8 -Williarnson type matrices. This can be verified by straightforward checking. Hence there is an Hadamard matrix of block structure of order $8(2 n+1)$.

If conditions (iii) to (vi) hold then straightforward verification shows the 64 block M-structure $X_{i j}$ is an Hadamard matrix of order $8(2 n+1)$.

Corollary 43 Let $q$ be an odd prime power and suppose there exist Williansontype matrices of order $\frac{1}{2}(q-1)$. Then there exists an M-structure Hadamard matrix of order $8 q$.

Proof: Let $U=\left(U_{i j}\right)$ and $V=\left(V_{i j}\right)$ be defined by the following M-structures and write $O$ for the matrix of zeros of order $\frac{1}{2}(q-1)$. Let

$$
\begin{aligned}
& \\
& U=\left[\begin{array}{cccccccc}
C & C & A & A & 0 & 0 & 0 & 0 \\
C & -C & A & -A & 0 & 0 & 0 & 0 \\
A & A & C & C & 0 & 0 & 0 & 0 \\
A & -A & C & -C & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & C & C & A & A \\
0 & 0 & 0 & 0 & C & -C & A & -A \\
0 & 0 & 0 & 0 & A & A & C & C \\
0 & 0 & 0 & 0 & A & -A & C & -C
\end{array}\right] \text { and } \\
& V=\left[\begin{array}{cccccccc}
0 & 0 & I & I & W_{1} & W_{2} & W_{3} & W_{4} \\
0 & 0 & I & -I & -W_{2} & W_{1} & -W_{4} & W_{3} \\
-I & -I & 0 & 0 & -W_{3} & W_{4} & W_{1} & -W_{2} \\
-I & I & 0 & 0 & -W_{4} & -W_{3} & W_{2} & W_{1} \\
-W_{1}^{T} & W_{2}^{T} & W_{3}^{T} & W_{4}^{T} & 0 & 0 & -I & -I \\
-W_{2}^{T} & -W_{1}^{T} & -W_{4}^{T} & W_{3}^{T} & 0 & 0 & -I & I \\
-W_{3}^{T} & W_{4}^{T} & -W_{1}^{T} & -W_{2}^{T} & I & I & 0 & 0 \\
-W_{4}^{T} & -W_{3}^{T} & W_{2}^{T} & -W_{1}^{T} & I & -I & 0 & 0
\end{array}\right],
\end{aligned}
$$

where $A, C$ are defined in the proof of Corollary 39 and $W_{1}, W_{2}, W_{3}$, and $W_{4}$ are Williamson-type matrices. Then by Theorem 41 we have the result.

Remark 44 This corollary gives new Hadamard matrices of order $8 q$ for $q=$ 179, 1087, 1283, 1327, 1619, 1907, 2099, 2459, 2579, 2647, ....

Corollary 45 Let $q=2 m+1 \equiv 9$ (mod 16) be a prime power. Suppose there are Williamson-type matrices of order $q$. Then there is a $M$-structure Hadamard matrix of order $8(2 q+1)$.

Proof: J. Wallis and A.L. Whiteman [22, Theorem 4.17, pp. 334-336] showed there are four circulant or type 1 matrices with entries $\pm 1$, and row and column sum $\pm 1$ at will.

We construct, using cyclotomy, the type $14-\{2 m+1 ; m ; 2(m-1)\}$ supplementary difference sets $X_{1}, X_{2}, X_{3}$ and $X_{4}$, where $y \in X_{i} \Rightarrow-y \notin X_{i}$, $i=1,2,3,4$.

Let $A$ be the back-circulant or type 2 matrix given by

$$
A=\left(J-2 X_{1}\right) R \text { so } A \text { has row sum }+1
$$

Let $B, C$ and $D$ be the circulant or type 1 matrices given by
$B=J-2 X_{2}$ so $B$ has row sum +1 ,
$C=J-2 X_{3}-I$ so $C$ has row sum 0 and zero diagonal, and
$D=J-2 X_{4}-I$ so $D$ has row sum 0 and zero diagonal.
Now we modify the Wallis-Whiteman core, noting that

$$
A A^{T}+B B^{T}+C C^{T}+D D^{T}=2(q+1) I-4 J
$$

We use $V$ as in Corollary 43 and the following matrix for $U$ to obtain the result

$$
U=\left[\begin{array}{cccccccc}
A & B & C & D & 0 & 0 & 0 & 0 \\
B & -A & -D^{T} & C^{T} & 0 & 0 & 0 & 0 \\
-C & -D^{T} & A & B^{T} & 0 & 0 & 0 & 0 \\
D & -C^{T} & B^{T} & -A & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & A & B & C & D \\
0 & 0 & 0 & 0 & B & -A & -D^{T} & C^{T} \\
0 & 0 & 0 & 0 & -C & -D^{T} & A & B^{T} \\
0 & 0 & 0 & 0 & D & -C^{T} & B^{T} & -A
\end{array}\right] .
$$

The analogous Yamada-J. Wallis-Whiteman structure to Theorem 42 is:

| -1 | -1 | 1 | 1 | 1 | 1 | $-1$ | $-1$ | -e | -e | e | c | e | e | e | e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | - $\epsilon$ |  | c | - |  | $\rightarrow 6$ | e | - |
| 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | e |  | -8 | -e |  | $\varepsilon$ | e | e |
| 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 |  | - | -e | $e$ | e | - |  | -e |
| 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | e | $e$ | e | e | - | $\rightarrow 4$ | e | e |
| 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 |  | -0 | e | -6 | - | e | e | - |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -s | $-2$ | - | - | - | - | e |  |
| ${ }_{6}^{1}$ | $\sim^{-1}$ | $\frac{1}{2}$ | $\frac{-1}{8}$ | ${ }^{1}$ | $-\frac{1}{e^{2}}$ | $\frac{1}{7}$ | $\frac{-1}{e^{T}}$ |  | $\stackrel{e}{S_{12}}$ |  | $-e$ |  |  | $S_{17}^{e}$ | 18 |
| $-e^{T}$ |  | ${ }^{T}$ | $-8^{T}$ | $e^{T}$ | $-{ }^{T}$ | $e^{T}$ | $-e^{T}$ | $S_{21}$ | $S_{22}$ | $S_{23}$ | $S_{24}$ | $\mathrm{S}_{3}$ | $5_{26}$ | $S_{37}$ | $S_{28}$ |
| ${ }^{\text {F }}$ |  | $8^{T}$ | $-e^{T}$ | $e^{T}$ | $e^{T}$ | ${ }^{T}$ | $e^{T}$ | ${ }^{31}$ | $S_{32}$ | $S_{33}$ | $5_{34}$ | $S_{35}$ | $5_{36}$ | $S_{37}$ | $S_{38}$ |
| $\varepsilon$ | $-e^{T}$ | - |  |  |  | $e^{T}$ | $-e^{T}$ | $S_{41}$ | $5_{42}$ | $5_{43}$ | 54 | 545 | $5_{46}$ | 547 | $S_{48}$ |
| ${ }^{\text {c }}$ |  | $e^{T}$ |  | $-e^{T}$ | $-e^{T}$ | $e^{T}$ | $\mathrm{e}^{T}$ | $S_{51}$ | $S_{52}$ | $5_{53}$ | $S_{54}$ | 55 | 556 | $\$_{57}$ | $S_{58}$ |
| c |  |  |  | - ${ }^{\text {a }}$ |  | $e^{T}$ | $-c^{2}$ | 501 | $S_{62}$ | $S_{63}$ | $S_{64}$ | $S_{85}$ | $S_{68}$ | $S_{67}$ | $S_{\text {S }}$ |
| $-e^{T}$ |  | - |  | $-e^{T}$ | $-e^{5}$ | $\varepsilon^{T}$ |  | $5_{71}$ | $S_{72}$ | $S_{73}$ | $S_{74}$ | $S_{75}$ | $S_{78}$ | $5_{77}$ | $5_{78}$ |
| $\cdots e^{T}$ | $e^{T}$ | $-e^{T}$ | $6^{T}$ | $-e^{T}$ | $e^{T}$ | $e^{T}$ | $-e^{T}$ | $S_{81}$ | $S_{82}$ | $S_{83}$ | $S_{84}$ | $S_{55}$ | Sse | $S_{87}$ | $\mathrm{S}_{88}$ |

We can see Yamada's matrix with trimming [46] or the J. Wallis-Whiteman [30] matrix with a border embodied in the construction.

## References

[1] S.S. Agaian, Hadamard Matrices and their Apphcations, Lecture Notes in Mathematics, Vol 1168, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985.
[2] S.S. Agayan and A.G. Sarukhanyan, Recurrence formulas for the construction of Williamsontype matrices, translated from Matemacheskie Zametki, 30, (1981), 603-617 = Math Notes, 30, (1982), 796-804.
[3] L.D. Baumert and M. Hall, Jr., Hadamard matrices of Williamson type, Math. Comp. 19, (1965), 442-447.
[4] L.D. Haumert and M. Hall, Jr., A new construction for Hademard matrices, Bull. Amer. Math. Sac., 71, (1965), 169-170.
[5] Joan Cooper and Jennifer Wallis, A construction for Hadarnard arrayb, Bull. Aus. tral. Math. Soc., 7, (1972), 269-278.
[6] Gavin Cohen, David Rubie, Christo Koukouvinos, Stratis Kounian, Jennifer Seberry and Mieko Yamada, A survey of base sequences, disjoint complementary sequences and OD ( $41 ; t, t, t, t$ ), JCMCC, $5_{1}$ (1989), 69-104.
[7] P. Delsarte, J.M. Goethails and J.]. Seidel, Orthogonal matrices with zero diagonal, II, Canad. J. Math. 23. (1971), 816-832.
[8] A.V. Geramita and Jennifer Seberry, Orthogonal Designs: Quadratic forms and Hadamard matrices, Marcel Dekker, New York-Basel, 1979, viii, 460 pages.
[9] C. Koukouvinoa and S. Kounias, Hadamard matrices of the Williamson type of order 4 m , $m=\mathrm{pq}$. An exhaustive search for $m=33$, Discrste Math., 68, (1988), 45-57.
[10] C. Koukouvinos and S. Kounias, There are no circulant symmetric Williamson matrices of order 39, (to appear).
[11] C. Koukouvinos, S. Kounias and Jennifer Seberry, Further results on base sequences, disjoint complementary sequences, $\mathrm{OD}(4 t ; t, t, t, t)$ and the excess of Hadamard matrices, Ars Combinatoria, (to appear).
[12] Masahiko Miyamoto, A construction for Hadamard matrices, J. Combinatorial Th. Ser. A, (to appear).
[13] Tamio Onc and Kazue Sawade, The Baumert-Hall-Welch array of order 36, in Japaneae (tranalation by Mieko Yamads).
[14] R.E.A.C. Paley, On orthononal matrices, J. Math. Phys., 12, (1933), 311-320.
(15) Kazue Sawade, Hadamard matricet of order 100 and $108, B u l l$. Nagoya /ngt. Technol., 29, (1977), 147-152.
[16] Jennifer Seberty, On skew Hadamard matrices, Ars Combinataria, 6, (1978), 255-276.
[17] Jennifer Seberry, A new construction for Wiliamson-type matricen, Graphs and Combinatorics, 2, (1986), 81-87.
[18] Jennifer Seberry, Hadamard matrices of order $2^{\text {t }} \cdot \mathrm{pq}:$ I, Ars Combinatoria, 23B, (1987), 195-213.
[19] Jennifer Seberry Wallis, Some matricea of Williamson-type, Utilitas Math., 4, (1973), 147-154.
[20] Jennifer Seberry Wallis, Williamson matricea of even order, Combinatorial Mathematics, Proceedings of the Second Australian Conference, editor D.A. Holton, Lecture Notes in Mathe matica, Vol 403, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1974, 132-142.
[21] Jennifer Seberry Wailis, Construction of Williamson type matricea, Linear and Multilinear Alyebra, 3, (1975), 197-207.
[22] Jennifer Seberry Wallis, Hadamard matrices, in W.D. Wailis, Anne Penfold Street and Jennifer Seberry Wallis, Combinatorics: Aoom Squares, Sum-free Sets, Hadamardmatrices, Lecture Notes in Mathernatics, Vol 292, Springer-Verlag, Berlin-Heidelberg-New York, 1972, 508 pages.
[23] E. Spence, An infinite family of Williamson matrices, J. Austral. Math. Soc. Ser A, 24, (1977), 252-256.
[24] G. Szekeres, Tournaments and Hadamard matrices, Enseignment Math., 15, (1969), 269-278.
[25] G. Szekeres, Cyclotomy and complementary difference gets, Acta. Arith., 18, (1971), 349-353.
[26] Jennifer (Seberry) Wallis, A skew-Hadamard matrix of order 92, Bull. Austral. Math. Soc., 5, (1971), 203-204.
[27] Jennifer (Seberry) Walis, Amicable Hadamard matrices, J. Combinatorial Th., Ser. A., 31, (1971), 296-298
[28] Jennifer (Seberry) Walis, A note on amicable Hadamard matrices, Utilitas Math., 3, (1973), 119-125.

- [29] Jennifer (Seberry) Wallis, Some remarkn on supplementary difference sets, Colloq. Math. Soc. Janos Bolyai, 10, (1973), 1503-1526.
[ 30 ] Jennifer Wallis and Albert Leon Whiteman, Some classes of Hadamard matrices with constant diagonal, Bull. Austral. Math. Soc., 7, (1972), 233-249.
[31] Albert Leon Whiteman, An infinite family of skew-Hadamard matrices, Pacific J. Math., 38, (1971), 817-822.
[32] Albert Leon Whiteman, Skew-Hadamard matrices of Goethals-Seidel type, Discrete Math., 2, (1972), 397-405.
[33] Albert Leon Whiteman, An infinite family of Hadamard matrices of Williamson type, J. Combinatorial Th., Ser. A., 14, (1973), 334-340.
[34] Albert Leon Whiteman, Hadamerd matrices of Williamson type, J. Austral. Math. Soc., 21, (1976), 48i-486.
[35] Albert Leon Whiteman, Hadamard matricea of order $4(2 p+1)$, J. Numbsr Theory, 8, (1976), 1-11.
[36] John Wiliamson, Hadamand's determinant theorem and the sum of four squares, Duike Math. J., 11, (1944), 65-81.
[37] K. Yamamoto, Hadamard matrices of Williamson type and the maximal-length shift register tequences, Abstract, Symp. Combinatorics at Osaka City University, December 1978 (in Japanese)
[38] K. Yamamoto, On a generalized Williamson equation, Collog. Math. Janos Bolyas, 37, (1981), $839-850$.
[39] K. Yamamoto and Mieko Yamada, Williamson matrices of Turyn's type and Gansa sumb, J. Math. Soc. Japan, 37, (1985), 703-717.
[40] Mieko Yamada, On the Williamson type j matrices of orders 4.29, 4.41 and 4.37, J. Combinatorial Th., Ser. A., 27, (1979), 378-381.
[41] Mieko Yamada, On the Williamson matricen of Turyn's type and of zype j, Comment. Math. Univ. San Pauli, 31, (2982), 71-73.
[42] Mieko Yamada, Hadamard matrices generated by an adaption of the generalized quaternion type array, Graphs and Combinatorics, 2, (1986), 179-187.
[43] Mieko Yamada, Supplementary relative difference sets and their application to Hadamard matrices, Ars Combinatoria, 26A, (1989), 223-238.
[44] Mieko Yamada, Some new seriex of Hadamand matricen, J. Austral. Math. Soc., Ser. A, 46, (1989), 371-383.
[45] Mieko Yamada, Supplementary difference setz and Jacobi sums, Discrete Math., (to tppear).
[46] Mieko Yamada, Hadamard matrices of generalized quaternion type, Discrete Math., (to appear).
- Department of Computer Science
University College
University of New South Wales
ADFA
Canberra 2600
AUSTRALIA
$\dagger$ Department of Mathematic:
Tokyo Woman's Christian University Zempukuji
Suginami-Ku
Tokyo, 167
JAPAN

