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1. Introduction. This paper is concerned with classical solutions of the initial-value

problem
ou 0 a ou
Erd a(a(ﬂc)u) = (b(x)%> (—00 < z < 00,t > 0), 0
u(z,0) = f(x) (—oo <z < 00)

for the Fokker-Planck equation.
It is supposed that the following hypotheses are in force:
(i) a(x) and b(z) are periodic, with period p, a(z) € C!, b(z) € C? and b(x) is
positive;
(ii) f(x) is nonnegative and continuous and has compact support and, to exclude the
trivial case, f(x) is not identically zero;
(i) u(z,t) is nonnegative, the moments

/DO z"udr (n=0,1,2) (2)

x
exist, and u — 0 and Ou/dxr — 0 as |x| — oo (at rates sufficiently rapid to justify
certain integrations by parts).

Here u(z,t) is the density, and f(x) is the initial density, of a mass distribution that is
convected with velocity a(z) (the drift coefficient) and is subject to diffusion, the positive
coefficient b(z) being the diffusion coefficient. Our purpose is to study the manner in
which the bulk of the mass is dispersed.

The well posedness of the problem is ensured by the standard theory of Cy-semigroups,
which also guarantees that the positivity of the initial density is preserved [1].

Equation (1) arises in many scientific and technical applications; a recent review of
the Fokker-Planck equation has been given by Miyazawa [2], where the relationship
of this equation with the Schroedinger equation is discussed and an entire section is
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dedicated to periodic coefficients. Moreover, it is well known that (1) arises in the study
of quasistatic brownian motion in a periodic potential, a problem of interest in physics,
chemical physics and communication theory ([3]. chapter 11). In the mechanical sciences
the Fokker-Planck equation with periodic coefficients arises in the study of diffusion
in inhomogeneous media (for example in composite materials, [4]), in flow enhanced
diffusion in porous media, [5], and in simple caricature models of turbulence [6]. A
referee has suggested that it may be possible to weaken the hypothesis of periodicity on
the drift and diffusion coefficients; we hope to report on this possibility in a later paper.

In the context of the heat equation, for which a(x) is identically zero and b(z) is
identically constant, many authors have observed that u(x,t) > 0 for every x and every
t > 0. This observation has led some to conclude that the speed of propagation is
infinite (e.g. Racke [7], pp. 27, 141). Such a conclusion is often deemed to be nonphysical
or paradoxical and has lead to the construction of alternative theories yielding finite
speeds of propagation (e.g. Cattaneo [8], Gurtin and Pipkin [9], Joseph and Preziosi
[10]). More recently Fichera [11] and Day [12, 13] have defended the classical theory
of diffusion against the charge that it is paradoxical and, following Maxwell [14], have
drawn attention to the fact that while an infinitesimally small fraction of the distribution
does propagate at an arbitrarily large rate, the propagation of the bulk is in fact a very
slow process and the time taken is proportional to the square of the distance.

In the context of the initial-value problem (1) we prove results that shed light on the
propagation of the bulk of the mass. It does not seem possible to extract these conclusions
in any straightforward way from solutions of (1) obtained by classical methods. By a
change of variables we can replace (1) by an equation in which the drift coefficient is
constant, but such a transformation seems not to lead to any significant shortening of
the proofs and the results are more difficult to interpret. We prefer to work directly with
(1) and to state our conclusions in terms of the physical coefficients a(x) and b(x).

The first result concerns the total mass and the centre of mass, which is the point

f'xx rudzr

s

THEOREM 1. The total mass is conserved, i.e.,

/_iudxz/_ifd;v. (3)

Furthermore, there is a constant «, depending only upon a(z) and b(x), such that
T(t) = at + O(1). (4)
Thus, if o # 0, then T(t) ~ at as t — oo, and the speed of the centre of mass is

asymptotically equal to a; but if @ = 0, then the centre of mass is confined to a bounded
interval. :

The second result is concerned with the moment of inertia with respect to the centre
of mass.
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THEOREM 2. There is a positive constant 3, depending only upon a(z) and b(z), such
that
oC oC
/ (:t—f)2udx~[3t/ fdzr ast— oo. (5)
_x —x
Our arguments yield explicit formulae for a and 3; when the drift and diffusion coef-
ficients are constant, it turns out that & = a and 8 = 2b, but, in general, each of a and
8 depends upon both coefficients.
Now let € be any number in 0 < € < 1, and let the distance d(¢;€) be defined by the
requirement that the fraction of mass lying within distance d of the centre of mass is

equal to €, i.e.,
/ udr = 6/ fdz. (6)
lz—Z|<d —oc

It will be shown that d(¢;€) grows no faster than a constant multiple of /ft.

COROLLARY 3. There is a constant A, depending only upon ¢, such that

h?isolip d\(/t%) < A. (7)

Lastly, let
[lull (t) = sup{u(z,t) : —o0 < & < 00}
be the maximum density at time ¢, let 0 < € < 1, and let £(¢;€) be the set

{z: u(z,t) = ellull<(t)},

which may be regarded as the densest part of the mass distribution. We shall establish
that m(X), the Lebesgue measure of the set ¥, grows no faster than a constant multiple

of /Bt.

COROLLARY 4. There is a constant B, depending only upon ¢, such that
2 .
lim sup __—m( (L))

t—oco \/E

Our proofs yield the inequalities (7) and (8) with

A= L pYE

1—c¢€ €

<B. (8)

but almost certainly these values are not the best possible.

It is a standard technique for the treatment of integrodifferential equations to take
moments of the equations concerned and consider suitably truncated sets of the resulting
equations. For example, tensor moments of the hydrodynamical equations yield the so-
called virial equations, [15], and for the Fokker-Planck equations a study of this type
has been carried out in [16]. In the context of a solute in a fluid flowing through a tube
the method of moments has been used in a paper by Aris [17], and the search for finite
dimensional approximations of this problem is still a current topic of research [18]. To
the best of our knowledge there are no studies in which qualitative exact behaviour of
the moments for equations with space-dependent coefficients has been determined. In
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a recent paper on the heat equation with variable coefficients, Toscani [19] has found
bounds on the time evolution of the second moment of the solution, but only for special
classes of initial data. For related arguments and a bibliography of qualitative results for
partial differential equations the reader is referred to [20].

2. The total mass and the centre of mass. The proofs of Theorems 1 and 2
depend upon studying the evolution of the moments (2).

Let ¢(x,t) be any function that is suitably differentiable but, for the present, is other-
wise arbitrary. On multiplying the Fokker-Planck equation through by ¢ and rearranging
the resulting equation, we arrive at the identity

0p 09 6(,25 0 ou 90¢
700 = |5 +oge 4 3 (05 ) o g [-oon o (o3 - 320))

Next, we integrate with respect to = and suppose u and du/Ox to be such that, for each

t>0,
ou 0¢ ,
—a¢u+b<¢8z—6—xu)—>0 as |x| — oo,

and in this way we arrive at the identity

B 9 0 9 (,00
/x oudx

is a conserved quantity whenever ¢ is a solution of the adjoint equation

v+ o (5E) o 9)

Thus the integral

0 6

It should be noted that, by means of a closely related argument, Steinberg and Wolf
[21] have determined the evolution with time of all the moments for the heat equation
and for the particular Fokker-Planck equation with a(x) = —z and b(x) = 1. Pucci and
Saccomandi [22] have determined all the conservation laws of the first degree for the
Fokker-Planck equation by a direct method.

The choice ¢ = 1 in the adjoint equation (9) leads immediately to the conclusion that
the total mass is conserved, as Theorem 1 asserts.

In order to study the behaviour of the first moment and, hence, the motion of the
centre of mass, we ask if the adjoint equation has a solution of the form

¢ =1x—at—6(x), (10)

where « is a constant and 6(x) has period p. On substituting from (10) into (9) we arrive
at the differential equation

a(z)d' + (b(z)0') = a(z) + V' (x) — a (11)

and thus we are led to pose the problem: determine the constant «, if any, such that the
differential equation (11) has a solution 6(x) with period p.
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It will be shown presently that this problem has exactly one solution «; 6(z) is deter-
mined only to within an arbitrary additive constant, but it can be rendered unique by
imposing the additional constraint

p
/ O(z)dx =
0

If, temporarily, we take the existence of o and 6(z) for granted, then, since (10) is a
solution of the adjoint equation

/oo(:c—at—H)udx=/x(x—O)fd:c,

—c —oc

and, hence,

/ud:czat/ fdx+/ a:fdz—/ Ofd:v-l—/ Oudz.

Thus the centre of mass satisfies

Z(t) = at + T(0) + £(¢), (12)
where
[ f_ 0fd:£+f Hu dz)

Since u and f are nonnegative, we have

2, fdz+ [7_ udz]
f_ocfd:v

where M = maxo<z<p |0(z)|, and we conclude from (12) that the order relation (4) is
correct.

The proof of the existence of a and 6(x) involves an appeal to the following lemma.

l€@t) < M

=2M,

LEMMA 5. If a(x) and b(z) satisfy hypothesis (i), and if c(x) is continuous and has period
p, then there is a unique constant A such that the differential equation

a(z)y + (b(z)y) = c(z) = A (13)
has a solution y(x) which has period p and satisfies the constraint
P
/ ydxr = 0. (14)
0

The constant A is equal to the quotient

5Ly Z((Z)b do dz +k(p) [ [y k(zﬁﬁi do dx

P k(o) k(o
I Ta)etmy 4o dz + k(p) 5ty k(z()b(a:) dode’

k(z) = exp [/OI Kz)da] . (16)

where
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In order to verify this we note that k(x+p) = k(z)k(p), and that k(z) is an integrating
factor for Eq. (13). Thus

-1 p
y(z) = W [ — Nk(o)do + "))’ (17)

where p is a constant. There are unique choices of A and p which ensure that y(z) has
period p and (14) holds. To see this we argue that

r+p p T+p
/ [c(o) = Ak(o)do = / [e(o) = Ak(o)do + / [c(o) — Alk(o)do

0 0
= p[c(a) — ANk(o)do + /:r [c(o + p) — Nk(o + p)do
0

[c — Mk(o)do + k(p / [c(o) — Ak(0)do,

and hence that

e+ ) =960 = s | [ leto) = Witordo + - k)|

k(z)k(p)b
Thus y(z) has period p if and only if the sum enclosed within the square brackets vanishes,
that is to say, if and only if

/\/p k(z)dxr + p(k(p) — 1) = /P c(z)k(zx)dx. (18)

0 0

Moreover, it follows from (17) that the integral constraint (14) is satisfied if and only if

P 3 de [P ["c(o)k(o)
UL wesmet e [ ww = e e 0

By virtue of (18) and ( 9)

P dx b ()
a= W/o c(x)k(x)d:v-i—(k(p)——l)/(/) kx dadr (20)

and

pA = ()I)Axé(;(%)dadx/npc(z)k(x) dx—/ dr/u /} c(o dadx

(21)

where the determinant A equals

/p%/pk()dx+ -1/“/ iz()rd dx (22)
/p/ oy o da+ K )//} k(") y do (23)

k(x)b(

Hence A > 0 and Egs. (20) and (21) determine A and p uniquely, while y(z) is uniquely
determined by Eq. (17).

Finally, a simple rearrangement reveals that the right-hand side of Eq. (20) agrees
with the numerator of the quotient (15). Thus A is equal to the quotient, and the proof
of the lemma is complete.
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In order to solve the problem associated with the differential equation (11) we appeal
to the lemma, with c(z) = a(z) + b'(z) and a = A, and define §(x) uniquely by the
conditions

0'(x) = y(z) and ’ O(z)dz =0

0
Then

[0(z +p) —0(z)] = 0'(z +p) — 0'(z) = y(z + p) — y(z) =0,
and so

0(x +p) — 0(x) = 0(p) — 6(0) = /0 " (o) do = 0.

Thus 6(x) has period p, as required, and we have proved Theorem 1.
The proofs yield an explicit formula for the constant «, viz.

ol = / / +b/ ))( do dz + k(p) / A +bl((;)))k(0)dadx, (24)

where A is given by (23).
In the important case in which the diffusion coefficient b(z) is constant (= by, say),

b'(z) =0, a(x)k(z) = bok'(z),
and the right-hand side of (24) reduces to

Jo [ e v [C

@Y
B k() ka) K@) -1,
‘/0 ") d*’““/o L
= p(k(p) — 1)

:p[exp <b10 /p (x)dx) —1].

COROLLARY 6. If the diffusion coefficient is identically constant, then « is positive, zero,
or negative according to whether the mean drift coefficient

1 [P
- / a(x) dx
b Jo
is positive, zero, or negative.
It might be expected that o would coincide with the mean drift coeflicient, but this
is not generally so. Thus if a(z) = 1+ dcosz, b(z) = 1, p = 2w, then the mean drift
coefficient

Hence we have

1 2w

5 ), a(z)dr = 1.

However, calculation on the basis of (24) reveals that, as § — 0,

a=1-1x6"+0(8).
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3. The moment of inertia with respect to the centre of mass. We turn to the
proof of Theorem 2. Let a and 6(z) be as in the preceding section, and let us put

"=z —at—0(x) (25)

for the solution, already constructed, of the adjoint equation (9). We now ask whether
the adjoint equation also has a solution of the form

6= (") — Bt —y(z), (26)

where the constant § and the periodic function 1(z) are to be determined. Then,

¢ 0 0 ¢
§+“%+£(b55>
L [0e 8¢t a (9"
=2 [615 e +6x<b3r>]

o\ 2
o (50) - - aw - oy
T

=2b(1 -6 =B —a — (by').
Thus, ¢ is a solution of the adjoint equation if and only if ¥ is a solution of the differential
equation

a(x)y’ + (b(x)y)" = 2b(z)(1 ~ 0'(x))* — B, (27)

and, as before, we are led to pose the problem: determine the constant 3, if any, such
that the differential equation (27) has a solution ¥(x) that is periodic with period p.
The lemma, with

c(z) = 2b(x)(1 - 0'(x))?, (28)

tells us immediately that the problem has exactly one solution 3; ¥(x) is determined
only to within an arbitrary additive constant, but it can be rendered unique by imposing
the additional condition
P
/ Ydr =0.
0

The value of 3 can be read off from Eq. (15) on substituting for ¢(z) from (28), and
it is clear that B > 0, as asserted.

In order to derive the asymptotic relation (5) we argue that, since ¢ is a solution of
the adjoint equation,

x<

/x [(x — at — 0(x))* - Bt — Y(x)|udr = / [(x = 0(x))? = ¥(2)]f dx.

—x —oc

Hence

/x(x—at—e(x))Qudxzﬂt/x fdx+/)C Yudz

+ [ e = 02))? - ()] da.

x
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On setting M = maxo<z<p |¥(x)|, and remembering that v is nonnegative, we see that

/ Yudx SM/ udx:M/ fdx,

/oc (x — at — 0(x))’udr = Gt /x fdx+ O(1). (29)

and it follows that

This is not quite what is required, but, according to Eq. (12),
z—at—0(x) =z —T(t) +wlx,t),
where w = T(0) + £(t) — 6(z) and w(x,t) is bounded for —0o < x < oo and ¢ > 0. Thus,

if we choose a constant v such that |w(z,t)| < v and put

I(t) = /_x (z — T(t)) *udz,

for the moment of inertia, we have

/ (x—at—O)Qudx=/ (x -7 +w)udr
o o x (30)
:I+2/ (:r—T)wud:c+/ wudz.

—oc —c
Now let § be any number in 0 < § < 1. In view of the elementary inequalities

2
2/(x — T)wu| < 29|z — T|u < 8(x — T)%u + T

6
2 ’/ (z — 7)*wudzr

and it follows from (30) and (31) that

| @-at-opuds < 4o+ (%“)/_zfd’“‘

o

we have

v? [
351+7/ fda, (31)

and that

o 2 oC
/ (x—at—0)2ud12(1—6)1—%/ fdzx.

These last two inequalities and the order relation (29) imply that

< — <
1—+—6/ fdxr < llmmfﬁ ll{llsolclpﬁ < 1—6/ fdx

for every 6 in 0 < § < 1 and, finally, that

ke [

which is (5), and, hence, the proof of Theorem 2 is complete.
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4. A comparison with the heat equation. The constant § depends upon the
coefficients a(x) and b(z) in a complicated way. There is an important case, however, in
which ( is given by a comparatively simple formula (32) from which we can deduce the
following corollary.

COROLLARY 7. Suppose that, in addition to hypothesis (i),

/Op a(z)dx =0,

that a(x) is not identically zero, and that b(z) = by for all z, where by is a positive
constant. Then 0 < 8 < 2by.

The hypotheses ensure, as we know, that k(p) = 1 and o = 0. Moreover, calculation
reveals that

/ p 1
0 (I) =1- TP do LI’
Jy 7 k=)
1 (P dx ([P
A:—/ —/ k(z) dx,
bJo k(x) Jo
and that
2bgp*
g = - , (32)
7 % 17 k(z) dx
where

k(z) = exp (% /O " a(0) da) .

The desired conclusion now follows from (32) and the Cauchy-Schwarz inequality.
Here we are, in effect, comparing the Fokker-Planck equation

ou 0 0%u
ot g @ =bgs

with the heat equation

E =
for which 8 = 2by. Thus, by comparison with the heat equation, the effect of a periodic
drift coefficient, with mean value 0, is to reduce the rate of growth of the moment of
inertia with respect to the centre of mass.

5. Corollaries 3 and 4. In order to prove Corollary 3 we return to Eq. (3), and to
Eq. (6), which defines the distance d(¢;¢), and argue that

o

/ (x—T)Qudxz/ (ac—f)zudxzd?/ uda:=d2(1—e)/ fdx.
—oo |lz—Z|>d |e—Z|>d -

Hence

d(tie) _ 1 (f_xx(z—fyudz)lm.

VBt T V11—« Bt 7 fdx
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and on letting ¢t — oo and appealing to Theorem 2, we see that the inequality (7) holds,
with A =1/4/1 — ¢, and, therefore, we have established Corollary 3.
To prove Corollary 4 let r be any positive number to be chosen presently. Then

/ udr < 2|juf| <,
le~z|<r

and

1 9 1 [~ _\2 1
/|:c—f|>7'de§ = (r —Z)udxr < T—Q/-oc(r_Z) udx = ﬁj’

T Jlz—z|>r

and, hence,

> 1
/ udr < 2lullor + 1.
_ T

o

The choice r = (I/||u]|~)'/® minimizes the right-hand side and leads to the inequality
/ wdz < 3(J|ul|~)?/21Y3. (33)

On the other hand, in view of (3) we can argue that

[vie= ([Lew) " ([rw)”
(/Eudx>2/3 (/_O:cfdx)l/3 (34)

(clullem(2))? ( | fdx>1/3,

—oC

\Y]

v

and, on combining (33) with (34), we see that

27 I
(m(¥))? < @ m

Thus the inequality (8) holds, with B = v/27/¢, and the proof of Corollary 4 is complete.
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