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PHILOSOPHICAL TRANSACTIONS

I. On the Propagation o f Tremors over Surface o f an Elastic S

B y  H o r a c e  L a m b ,

R e c e iv e d  J u n e  1 1 ,— R ea d  J u n e  1 1 ,— R e v ise d  O ctober 2 8 , 1903.

I n t r o d u c t io n .

1. T h is  paper treats of the propagation of vibrations over the surface of a “ semi- 

infinite ” isotropic elastic solid, i.e.,a solid bounded only by a 

of description this plane may be conceived as horizontal, and the solid as lying below 

it, although gravity is not specially taken into account.*

The vibrations are supposed due to an arbitrary application of force at a point. In 

the problem most fully discussed this force consists of an impulse applied vertically to 

the surface ; but some other cases, including that of an internal source of disturbance, 

are also (more briefly) considered. Owing to the complexity of the problem, it has 

been thought best to concentrate attention on the vibrations as they manifest 

themselves at the free surface. The modifications which the latter introduces into 

the character of the waves propagated into the interior of the solid are accordingly 

not examined minutely.

The investigation may perhaps claim some interest on theoretical grounds, and 

also in relation to the phenomena of earthquakes. Writers on seismology have 

naturally endeavoured from time to time to interpret the phenomena, at all events in 

their broader features, by the light of elastic theory. Most of these attempts have 

been based on the laws of wave-propagation in an unlimited medium, as developed 

by G r e e n  and S t o k e s  ; but Lord R a y l e ig h ’s  discovery f of a special type of surface- 

waves has made it evident that the influence of the free surface in modifying the 

character of the vibrations is more definite and more serious than had been suspected. 

The present memoir seeks to take a further step in the adaptation of theory 

to actual conditions, by investigating cases of forced waves, and by abandoning 

(ultimately) the restriction to simple-harmonic vibrations. Although the circum

stances of actual earthquakes must differ greatly from the highly idealized state of

* P rofessor Br o mw ic h  has sh ow n  ( ‘ Proc. L ond . M ath . S o c .,’ vo l. 30 , p. 98  (1 8 9 8 ))  th a t  in  such  

problem s as are here con sidered  th e  effec t of g r a v ity  is, from  a practical p o in t of v iew , un im portan t, 

t  ‘ Proc. L ond . M ath. S o c .,’ vo l. 17, p. 4 (1 8 8 5 ) ;  ‘ S c ien tific  P ap ers ,’ vo l. 2, p. 441 .

VOL. CCIIT. A  359. B 6.1.04
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2 P R O F E SSO R  H O R A C E  L A M B  O N  T H E  P R O P A G A T IO N  O F

things which we are obliged to assume as a basis of calculation, it is hoped tha t the 

solution of the problems here considered may not be altogether irrelevant.

I t is found that the surface disturbance produced by a single impulse ol short 

duration may be analysed roughly into two parts, which we may distinguish as the 

“ minor trem or” and the “ main shock,” respectively. The minor tremor sets in 

at any place, with some abruptness, after an interval equal to the time which 

a wave of longitudinal displacement would take to traverse the distance from the 

source. Except for certain marked features at the inception, and again (to a lesser 

extent) at an epoch corresponding to that of direct arrival of transversal waves, it 

may be described, in general terms, as consisting of a long undulation leading up to 

the main shock, and dying out gradually after this has passed. Its time-scale is 

more and more protracted, and its amplitude is more and more diminished, the 

greater the distance from the source. The main shock, on the other hand, is pro

pagated as a solitary wave (Avith one maximum and one minimum, in both the 

horizontal and vertical displacements) ; its time-scale is constant ; and its amplitude 

diminishes only in accordance with the usual law of annular divergence, so tha t its 

total energy is maintained undiminished. Its velocity is th a t of free Rayleigh waves, 

and is accordingly somewhat less than that of waves of transversal displacement in 

an unlimited medium.#

The paper includes a number of subsidiary results. I t  is convenient to begin by 

attacking the problems in their tAvo-dimensional form, calculating (for instance) the 

effect of a pressure applied uniformly along a line of the surface. The interpretation 

of the results is then comparatively simple, and it is found that a good deal of 

the analysis can be utilized afterwards for the three-dimensional cases. Again, the 

investigation of the effects of a simple-harmonic source of disturbance is a natural 

preliminary to that of a source varying according to an arbitrary law.

Incidentally, new solutions are given of the well-known problems where a periodic 

force acts transversely to a line, or at a point, in an unlimited solid. These serve, to 

some extent, as tests of the analytical method, which presents some features of 
intricacy.

2. A few preliminary formulae and conventions as to notation may be put in 

evidence at the outset, for convenience of reference.

The usual notation of Be s s e l ’s  Functions “ of the first kind ” is naturally adhered to ; 
thus we write :

2 G77
Jo(£) =  ^ ;| cos (£ cos co) dco..................... (1). *

* Compare the co n clu d in g  p assage of L ord  R a y l e i g h ’s  p a p e r :

It is n o t im probable th a t th e  su rface-w aves here in v e s t ig a te d  p lay  an  im portan t part in  ea r th q u a k es , 

and in  th e  collision  of e la stic  so lids. D iv e r g in g  in  tw o  d im en sio n s  o n ly , th ey  m ust acq u ire  a t  a  g r e a t  

d istan ce from  th e  source a c o n tin u a lly  in crea sin g  p rep on dera n ce .”

T he ca lcu la tio n s in d ica te th a t  th e  p rep on deran ce is m uch g rea ter  th an  w ou ld  be in ferred  from  a m ere  

com parison of th e  ord inary  law s of tw o -d im ensiona l and  th ree-d im en siona l d iv ergen ce .
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T R E M O R S O V E R  T H E  S U R F A C E  O F A N  E L A S T IC  SO L ID . 3

By a known theorem we have also

J 0 (£) =  2 [ sin (J cosh u)
TT Jo

( 2 ),

provided £ be real and positive. For our present purpose it is convenient to follow 

H . W e b e r # in adopting as the standard function “ of the second k in d ”

2 r
K0 (£) =  — cos (£ cosh u) d u ................................... (3).

7T J o

I t  is further necessary to have a special symbol for th a t combination of the two 

functions (2) and (3) which is appropriate to the representation of a diverging wave- 

system ; we write, after Lord R a y l e i g h , !

D0 (£) =  2 f <r*C08hw du
TT Jo

so that

D «(o  =  K0( o - a 0 ( O ..............................

We shall also write, in accordance with the usual conventions,

Ji (£) =  -  J'o (0, K| {t) =  — K'0 ({)> D1( 0 = - D 'o ( 0

(4) ,

(5) .

• ( 6 ) -

For large values of £ we have the asymptotic expansion

0 . ( 0  =  ^ .  « -« * "{ ■ - n $ ( | +
1L 3~ 

2!(8 iff- ( n

In the two-dimensional problems of this paper we shall have to deal with a 

number of solutions of the equation

a' i  + - 4  + ’< * - > ..................................... <»>•

constructed from the type
$ — Ae~  

where £ is real, and

a =  \ / ( £ 2 “  ^‘2)> or =  i “  £ ~ ) ......................... (10),

* ‘ P ar t. D iff.-G le ichungen  d. m ath . P h y s ik ,’ B runsw ick , 1 8 9 9 -1 9 0 1 , vo l. 1, p. 175. H e i n e  ( £ Kugel- 

fu n c tion en ,’ B er lin , 1 8 7 8 -1 8 8 1 , vo l. 1, p. 185 ) om its  th e  fa ctor 2 / 7r. In  term s of th e m ore usual

n o ta tio n ,

K » =  2 { -  Y 0 +  ( lo g  2  -  y )  Jo})
7r

w here y  is  E u l e r ’s  co n sta n t. T h e  fu n ctio n  |7 t K0 has b een  ta b u la ted  (see J . H . M i c h e l l , ‘ P h il. M a g .,’ 

J a n ., 1 8 9 8 ).

t  ‘ P h il. M a g .,’ v o l. 43 , p. 25 9  (1 8 9 7 ) ;  ‘ S cien tific  P a p ers ,’ vo l. 4, p .2 8 3 .  I h av e in tro d u ced  th e  

factor 2/ 7r, and  reversed  th e  s ign .
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4 P R O F E SSO R  H O R A C E  L A M B  O N  T H E  P R O P A G A T IO N  O F

according as £3 $  h2, the radicals being taken positively. In particular, 

meet with the solution

♦- a
e ay e^x d£ _  2 e a2,cos tjx £

77 JO
• ( i i ) ;

and it is important to recognize that this is identical with D0 (hr), where 

r =  +  y/3). To see this, we remark that , as given by (11), is an even 

function of x, and that for x  =  0 it assumes the form

2 r  <r*y dg _2 r  e -w + V d -q

77 JQ  *  77  J o  V / ( ^ 3  +  V 2 )

( 1 2 ),

by the method of contour-integration.# This is obviously equal to D0 ( ). Again,

the mean value of any function <f> which satisfies (8), taken round the circumference 

of a circle of radius rwhich does not enclose any singularities, is known to

to J 0 (lev).<j60, where </>0 is the value at the centre, t  We can therefore adapt an 

argument of T h o m s o n  and T a i t |  to show that a solution of (8) which has no 

singularities in the region y> 0, and is symmetrical with respect to t

determined by its values at points of this axis. We have, accordingly,

(hr) =  1 j
77" J  — o

e^x dg
(13).

Again, in some three-dimensional problems where there is symmetry about the 
axis of z, we have to do with solutions of

based on the type

a3< £ , a 3<£ , a3d> . , ajL A
w  +  d f  +  w + h , l ,  =  0 .............................. (14)>

4>= ........................................ (15),

where m =  ^/(x- t/~), and a is defined as in (10). In particular, we have the
solution

ife —J  0(£n)gdg  
*= « 1  ....................

which (again) reduces to a known function. At points on the axis of symmetry 
(ur =  0) it takes the form

<t> =  ---- =  _________________
J o «  J 2 • • • • (17).

* I f  w e  eq u a te  sev e ra lly  tile  real a n d  im a g in a ry  p arts  in  th e  seco n d  a n d  th ird  m em b ers o f (1 2 )  w e  
reproduce k n o w n  resu lts. v '

t  H . W e b e r , £ M ath. A n n .,’ vo l. 1 (1 8 6 8 ).

|  ‘ N a tu ra l P h ilo so p h y ,’ § 498.
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T R E M O R S O V E R  T H E  S U R F A C E  O F A N  E L A S T IC  SO L ID . 5

Since the mean value of a function </> which satisfies (14), taken over the surface of 

a sphere of radius r not enclosing any singularities, is equal to

sin hr 
hr

where </>0 is the value at the centre,# the argument already borrowed from T h o m s o n  

and T a i t  enables us to assert tha t

e-<fa,=  r e - “ J o(f a ) f r f g
J I

(18), t

where
r =  ^/{r +  — s/{x2 +  y2 -f z2). 

Finally, we shall require F o u r i e r ’s  Theorem in the form

« «00 *00

f i x )  — d f  | /(X ) dHx~k) d \ .............................. (19),|
A t t  j — xi J — oo

and the analogous formula

P X pCC

/ M  ~JoJ o(^CT) f ^ J ()/ W  J 0(fr)\d\.(20).§

As particular cases, if in (19) we have f ( x )  1 for <  a2, and =  0 for x > 2, then

/ ( )  =  7r J  i  e ^ = - J Q — =— c o s g c r f ^  . . . .  ( 2 1 ) ;

and, if in (20) f  (ot ) =  1 for t s <  a, and =  0 for ur >  a, then

*ao

/ ( s r )  =  a  J 0 ( ^ c t )  J x ( f a )  ..............................................(2 2 ) .
•i o

These are of course well-known results. ||

* H . W e b e r , ‘ Crelle,’ vol. 69 (1868).

t  If in (18) we put z = 0, and then equate separately the real and imaginary parts, we deduce

| Jo (C cosh u) cosh du =  C°4~ >

d in  t
j J 0 (C sin u) sin udu = — -—.

These are known results. Cf. R a y l e i g h , ‘ Scientific Papers,’ vol. 3, pp. 46, 98 (1888); H o b s o n , ‘ Proc. 

Lond. Math. Soc.,’ vol. 25, p. 71 (1893); and S o n i n e , ‘ Math. Ann.,’ vol. 16).

|  H . W e b e r , ‘ Part. Diff.-Gl. etc.,’ vol. 2, p. 190. Since A occurs here and in (20) only as an inter

mediate variable, no confusion is likely to be caused by its subsequent use to denote an elastic constant.

§ H . W e b e r , ‘ Part. Diff.-Gl. etc.,’ vol. 1, p. 193.

|| I t  may be noticed that if in (20) we pnt / ( s r )  = e~iĥ 'jw, we reproduce formulae, given in the foot-note f 

above.
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6
PR O FE SSO R  H O R A C E  L A M B  O N T H E  P R O P A G A T IO N  O F

PAITT I.

T w o -D im e n s io n a l  P r o b l e m s .

3. The equations of motion of an isotropic elastic solid in two dimensions (x , y) are

/’ m = <x + ' 4 x + ^ “ ’ H S = < x + ' * > i • • (23)'

where u, v are the component displacements, p is the density, are the 

constants of L a m e , and
_ ,0V

d ............................................

elastic

(24).

These equations are satisfied by

provided

01p 
dy ’

d<f) dijj

dy dx

d'2<f)_X -j-
dt2 p

V3<£,
d~ip _  p yzjj

dt2 P

. (25),*

• (26).

In the case of simple-harmonic motion, the time-factor being e**, the latter 

equations take the forms

(V2 +  h2) (j> =  0, (V2 +  ¥ )  iff 0

where

h i  _  p y  _  p a i  =  £ p  -  p t y t .............................. (28),
A +  2/X {JL

the symbols a, b denoting (as generally in this paper) the wave-slownesses,t the

reciprocals of the wave-velocities, corresponding to the irrotational and equivoluminal 

types of disturbance respectively.

The formulae (25) now give, for the component stresses,

Pz* =  -  A +  2
p  p

du

dx
_  k2d> -  2 -1- 2

*+ Z dy2 +  ^ d x d y

p  dx dy dx dy ™ dx2
br

Pm =  — a  2

(29).

* G r e e n , ‘ C am b. T r a n s ./  v o l. 6 (1 8 3 8 ) ;  ‘ M ath . P a p e r s /  p. 2 61 .

t  T he in tro d u c tio n  o f sp ecia l sy m b o ls  for w a v e-s lo w n esses  rather th a n  for w a v e -v e lo c itie s  is p ro m p ted  by 

a n a ly t ica l co n sid era tio n s. T h e term  “ w a v e-s lo w n ess ” is a ccred ited  in O ptics by S ir W . R. H a m i l t o n .
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T R E M O R S O V E R  T H E  S U R F A C E  O F A N  E L A S T IC  SO L ID . 7

In the applications which we have in view, the vibrations of the solid are supposed 

due to prescribed forces acting at or near the plane 0. We therefore assume as

a typical solution of (27), applicable to the region y  >  0,

=  Ae~aye^x,i =  ........

where f  is real, and a, /3 are the positive real, or positive imaginary,* quantities 

determined by
a3 =  e  -  w ,£* =  -  f

For the region y< 0, the corresponding assumption would be

(f> =  A'eaye^x, B W * ................................... (32).

The time-factor is here (and often in the sequel) temporarily omitted.

The expressions (30), when substituted in (25) and (29), give for the displacements 

and stresses at the plane y — 0

u0 =  (i£A - £ B ) e « ‘, v0 =  ( - a A - t f B  )e«* . . . .  (33),

[ P,s\  = f * { ~  +  ( 2 f  -  V)  B{ 4*  "I

M o  =  V- {(2f» -  **) A +  2ifi8B} J ....................

The forms corresponding to (32) would be obtained by affixing accents to A and B, 

and reversing the signs of a, (3.

4. In order to illustrate, and at the same time test, our method, it is convenient to 

begin with the solution of a known problem, viz., where a periodic force acts 

transversally on a line of matter, in an unlimited elastic solid, f

Let us imagine, in the first instance, that an extraneous force of amount per 

unit area acts parallel to y on a thin stratum coincident with the plane =  0. The 

normal stress will then he discontinuous at this plane, viz.,

[jP^]y=-+o C H? yy\y =—0 =  

whilst the tangential stress is continuous. These conditions give, by (34),

(2 f2 -  V) (A -  A') +  2ifp  (B +  B') =  -  —

^ r
-  2i(a  (A +  A') +  (2 f2 -  F ) (B -  B') =  0

( 3 6 ) .

Again, the continuity of u and v requires

* f ( A - A ' ) - / 8 ( B  +  B') =  o l

a ( A  + A ' )  +  t f ( B - B ' )  =  0 J ................................

* T his  co n v en tio n  sh o u ld  be ca re fu lly  a tten d e d  t o ; i t  runs th ro u g h o u t th e paper, 

t  R a y l e i g h , ‘ T h eo ry  of S o u n d /  2nd  ed ., § 376.
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8 PR O F E SSO R  H O R A C E  L A M B  O N  T H E  P R O P A G A T IO N  O F

Hence
A A  /  Y T >  __ _  T > /  __ _  ^  Y

A =  _ A  =  2 W  B - B  - p ' W f L  ■ ■

We have, then, for >  0,

—  ^  ^
^  =  2 P / ' “V i ’ + =  ^  0

. . . ( 3 8 ) .

(39).

To pass to the case of an extraneous force Q concentrated on the line x  =  0, =  0,

we make use of (19). Assuming that the / ’(A.) of this formula vanishes for all but 

infinitesimal values of A, for which it becomes infinite in such a way that

/(A ) dk =  Q,

we write, in (39), Y =  Q c?f/2ir, and integrate with respect to f  from — co to +  co .* 

We thus obtain, for y> 0,

e aye^x d t  if/ = iQ f 
47t Jc'/jl J

£e Pye^x

J
(40),

or, on reference to (13),

<t>=-
_Q _ a D
4 k2fx B 0

(hr), ip =  9 -  ?  D0
4A'/x ox

(.kr) (41),

where r  =  -^/(x2 -{- t /2).

If  we put x =  r  cos 0, y — rsin 6

that for large values of rthe radial and transverse displacements are

B<j) , Bxj/ _ Q
07' r  B0 4 (A -f- 2p)

B± _  ch// _  Q /  2
r d0 dr 4/x * t

hr 7̂r)

. ei(pt~kr- in) cos 9

0

(

j

(42),

respectively.! Use has here been made of (7).

A simple expression can be obtained for the rate (W, say) at which the extraneous

* T he in d eterm in a te n e ss  of th e  fo rm u la  (1 9 ) in  th is  case m a y  be ev a d ed  b y  su p p o sin g , in  th e  first 

in stan ce, th a t th e  force Q, in stea d  of b e in g  co n c e n tr a te d  on  th e  line  a’ =  0, is u n ifo r m ly  d is tr ib u te d  o v er  

th e  p o rtio n  of th e  p la n e y =  0  ly in g  b e tw e e n  x=  ±a .  I t  ap pears from  (2 1 ) th a t w e  sh o u ld  

Y_ Q singa ^
27r £a

I f  w e  fin a lly  m ak e a =  0  w e  ob ta in  th e  re su lts  (4 0 ).

t  T h e second  of th ese  resu lts  is  e q u iv a le n t to  th a t g iv e n  by R a y l e i g h , cit., for th e  case  of 

in co m p ress ib ility  (A =  <x> ).
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T R E M O R S  O Y E R  T H E  S U R F A C E  O F A N  E L A S T IC  SO LID . 9

force does work in generating the cylindrical waves which travel outwards from the 

source of disturbance. The formulae (40) give, for the value of dv/dt at the origin,

^  ( T - « W
dt 47rF/x • —oo \/3 )

(43).

This expression is really infinite, but we are only concerned with the part of it in the 

same phase with the force,* which is finite. Taking this alone, we have

a t
f [k___

47T V p V - t y / ( & - P )
+  L  V A  -  A  d?} =  A  +  A ■ (44).

Discarding imaginary parts, we find tha t the mean rate, per unit length of the axis 

of 2, at which a force Q cos pt does work is

(45).

5. We may proceed to the case of a “ semi-infinite ” elastic solid, bounded (say) 

by the plane y =  0, and lying on the positive side of this plane. We examine, 

the first place, the effect of given periodic forces applied to the boundary.

As a typical distribution of normal force, we take

M o  M o  * (46),

the factor &jt being as usual understood. The constants A, B in (30) are determined 

by means of (34), viz. :

Hence

where, for shortness,

— 2i£aA -f- (2^2 — 7c2) B =  0,

(2 f8 -  Id) A -f 2tfi8B =  i
J

_  2£2 -  7c2 Y ^  _  2 iga Y

F ( f )  V  F t f j ’ ?

F ( f ) =  (2£3 -  F )2 -  4Pafi  .

(47).

(48) ,

(49) .

We shall find it convenient, presently, to write also

/ ( f )  =  (2£a -**)*  + 4 (*a0 ...................................(50).

* T he aw kw ardness is evad ed  if  (as in  a p rev iou s in stan ce) w e  d is tr ibu te  th e  force un ifo rm ly  over  a len g th

2a o f the a x is  of x .This w ill in troduce a  fa c to r  U1*der th e  in teg ra l s ign s  in  th e  second

member of (4 4 ).

VOL. CCIII.— A. n
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, P R O F E S S O R  H O R A C E  L A M B  O N  T H E  P R O P A G A T I O N  O F

The surface-values of the displacements are now given by (33), viz. :

ig  (2 f2 — F  — 2a£) Y ^

w° ”  no ............  [

W aSx Y

The effect of a concentrated force Q acting parallel to y a t points of the line 

x  — 0, y =  0 is deduced, as before, by writing Y =  — Q cZ£/27t , and integrating 

from — oo to qo ; thus

u0

Vo

iQ r  ((2 P- F  -  2a/3) e'Z* d£ ^

2it[x J-» F ( 0
>  . .

Q  f ” k 2<xe^*

2lT/JL i-oo F (I)

• (52).

In a similar manner, corresponding to the tangential surface forces :

we should find
[>*,]0 =  Xe'fo. [ft.]o  =  0 • •

2ijp  x R_2fi!-;c2 x
F ( f ) V  F ( f )  /*

(53) ,

(54) .

And, for the effect of a concentrated force P  acting parallel to x  a t the origin,

« o =  ~

?,o =

P r  -]
27T/A J -00 F  ( £ )  ’

yP p  g -  It* -  2aP) (P* d£ 
27r j a J _ a, F  ( £ )

. . (55).

The comparison of u0 in (52) with v0 in (55) gives an example of the general 

principle of reciprocity.*

We may also consider the case of an internal source -of disturbance, resident 

(say) in the line x — 0, y —f ,  the boundary 0 being now entirely free. 

simplest type of source is one which would produce symmetrical radial motion (in 

two dimensions) in an unlimited solid, say

<f> — D0 (hr), 0 ...................................... (56),

where r, =  {x2 +  (y — f ) 2}, denotes distance from the source. I f  we superpo

this an equal source in the line x  =  0, y =  — f ,  we obtain

<jf> =  F>0 (hr) +  D0 0 .............................. (57),

* R a y l e i g h , ‘ T h eo ry  of S o u n d ,’ vo l. 1, § 108.
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T R E M O R S O V E R  T H E  S U R F A C E  O F A N  E L A S T IC  SO L ID . 11

where r' — \ / '{x2 -f  (y +  / ) 3}. I t  is evident, without calculation, 

of zero tangential stress at the plane y  =  0 is already s

however, does not vanish. I t  appears from (13) th a t in the neighbourhood of the 

plane y =  0 the preceding value of <j> is equivalent to

77 J — a

ea(y f) e^x. 1
+  -1 f

TT J _ 0

a ( y  + f )
e*1

=  2 f  co sh ay <_v. ^  ^
7 r  J - o o  a

(58).

Substituting in (29) we find th a t this makes

[ ? , ] ,  =  «, [ftr]o =  2 e f  . . . .  (59).
7T J -oo a

Comparing with (46), we see th a t the desired condition of zero stress on the 

boundary will he fulfilled, provided we superpose on (57) the solution obtained from 

(30) and (48) by putting

Y =  — - e - ^ d g ,
77 a

and afterwards integrating with respect to £ from — g o  to c o . The surface- 

displacements corresponding to this auxiliary solution are obtained from (51), and if 

we incorporate the part of uQ due to (58), we find, after a slight reduction,

— ___ f°° @£e~af ê X '
U° ~  F(£)

> ......................... (CO).
_ _2 k2f00 (2^3 — P) e a/ elix j

0 TT J -oo F J

These calculations might be greatly extended. For example, it would be easy, 

with the help of Art. 4, to work out the case where a vertical or a horizontal periodic 

force acts on an internal line parallel to 2. And, by means of the reciprocal theorem 

already adverted to, we could infer the horizontal or vertical displacement at an 

internal point due to a given localized surface force.

6. I t  remains to interpret, as far as possible, the definite integrals which occur in 

the expressions we have obtained.

I t  is to be remarked, in the first place, that the integrals, as they stand, are to a 

certain extent indeterminate, owing to the vanishing of the function F (£) for certain 

real values of I t  is otherwise evident d priori that on a particular solution of any 

of our problems we can superpose a system of free surface waves having the wave

length proper to the imposed period 2njp.The theory of such
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1 2 P R O F E S SO R  H O R A C E  L A M B  O N  T H E  P R O P A G A T IO N  O F

by Lord R a y l e i g h /  and is moreover necessarily contained implicitly in our 

analysis.
Thus, if we put Y =  0 in (47), we find that the conditions of zero surface-stress are 

satisfied, provided

A : B =  2/c2 — k2: 2 i k x1 =  — 2 : 

where k is a root of F (f) =  0, and a i? /31? denote the corresponding values of a, , 

Now, in the notation of (49) and (50),

F ( f ) / ( f )  =  (2f» -  k2y-  16 ( f3 -  h2) ( f 3 -  /^) f 4

Equating this to zero, we have a cubic in f 3/& 3, and since >  h2, it is plain tha t 

there is a real root between 1 and o o . I t  may also be shown without much difficulty 

that the remaining roots, when real, lie between 0 and h2/k2. The former root makes 

a, /3 real and positive, and therefore cannot make / ( f )  =  0. The latter roots make 

a, ft positive imaginaries, and therefore cannot make F (f) =  0. This latter 

equation has accordingly only two real roots f  =  +: where k  >  k.

Thus, in the case of incompressibility (X =  oo , =  0) it is found tha t

a:/k =  1-04678

and that the remaining roots of (62) are complex.f On P o is s o n ’s  hypothesis as to 

the relation between the elastic constants (X =  /r, h2 =  %k2), the roots of (62) are all 

real, viz., they are
P l »  =  i .  i ( 3 - v / 3 ) ,  i ( 3  +  v /3),

so that
K/k =  1 / ( 3  +  y/S) =  1*087664 . . . ;

this will usually be taken as the standard case for purposes of numerical illustration. 

In analogy with (28), it will be convenient to write

k  =  

where c denotes the wave-slowness of the Itayleigh waves. The corresponding 
wave-velocity is

According as we suppose X =  o o , or X =  [x,this is '9553 times, or 

velocity of propagation of plane transverse waves in an unlimited solid.

The further properties of free Itayleigh waves are contained in the formulae (61)

* ‘ P roc. L ond . M ath . S o c .,’ vo l. 17 (1 8 8 5 ) ;  ‘ S c ien tif ic  P a p ers ,’ vo l. 2, p. 44 1 .

t  Of. R a y l e i g h  (loc. cit.), w h ere i t  is a lso  sh o w n  (v ir tu a lly )  th a t th e y  are roots of /  (£), n o t of F  (£), if 

oc, ft  he cho sen  so as to  h ave  th eir real p arts p o sit iv e .
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T R E M O R S O Y E R  T H E  S U R F A C E  O F A N  E L A S T IC  SO L ID . 1 3

and (30). We merely note, for purposes of reference, th a t if in (33) we put ^ ±  k ,

and accordingly, from (61),

A =  ( 2 k3 — k2)C, B =  i  2hca1C

we obtain by superposition a system of standing waves in which

u0 =  *— 2 k  ( 2 k 3 — k 2 — 2a1/81) C sin . =  2&3a 1C cos kx  . . (65).

The theory here recapitulated indicates the method to be pursued in treating the 

definite integrals of Art. 5. We fix our attention, in the first instance, on their 

“ principal values,” in C a u c h y ’s  sense, and afterwards superpose such a system of free 

Bayleigh waves as will make the final result consist solely of waves travelling 

outwards from the origin of disturbance.

I t  may be remarked that an alternative procedure is possible, in which even 

temporary indeterminateness is avoided. This consists in inserting in the equations 

of motion (23) frictional terms proportional to the velocities, and finally making the 

coefficients of these terms vanish. This method has some advantages, especially as 

regards the positions of the “ singular points” td be referred to. The chief problem 

of this paper was, in fact, first worked through in this m anner; but as the method 

seemed rather troublesome to expound as regards some points of detail, it was 

abandoned in favour of that explained above.

7. The most important case, and the one here chiefly considered, is that ot a 

concentrated vertical force applied to the surface, to which the formulae (52) relate. 

The case of a horizontal force, expressed by the formulae (55), could be treated in an 

exactly similar manner.

Since «0 is evidently an odd, and vQ an even, function of x, it will be sufficient to 

take the case of x  positive.

As regards the horizontal* displacement u0, we consider the integral

I*  m  m  =  y ) ~  V U 8 ~  -
J J J J (2C-  Wf-  I V MC; -  -

■ ■ (66),

taken round a suitable contour in the plane of the complex variable £, =  +  irj.

I f  this contour does not include either “ poles” (fi: k , 0), or “ branch-points” 

(ih K 6), ( i  k,0) of the function to be integrated, the result will be zero.

A convenient contour for our purpose is a rectangle, one side of which consists of 

the axis of £ except for small semicircular indentations surrounding the singular 

points specified, whilst the remaining sides are at an infinite distance on the side t?> 0. 

I t  is easily seen that the parts of the integral due to these infinitely distant sides 

will vanish of themselves. If  we adopt for the radicals — h2) and k2),

* T h e sen se in  w h ich  th e  term s 54 h o r izo n ta l ” and  44 ver tica l ” are used  is in d ica ted  in th e secon d  

sen te n ce  of th e  In tro d u ctio n .
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P R O F E S SO R  H O R A C E  L A M B  O N  T H E  P R O P A G A T IO N  O F

at points ol the axis of f, the consistent system of values indicated in fig. 1,* we 

find, for the various parts of the first-mentioned side,!

p  $  ( 0  d i  =  y  p  * (2P  ~  _  i ,  ,

p  $  ( £ ) =  p  ,
* A; J —A: y \b /

J_» — ----------- T ( | )  w  F ( k )

where the terms with F ' ( — k ) and F'(/c) in the denominator are due to the small 

semicircles about the points ( ±  k ,0). Equating the sum o

zero, we find, since F ' ( — k ) =  — F '( k ),

9  f  _ =  _  2 4V H COS

2 £ 3 — Jc2 — 2 a  f i .  2 £ 3 — A:3 +  2 a

+  L  { F (f) / ( f )

=  -  2 iV H  c o s  k x  -  a *  f  ^ 2^ ~ ,  P M y — '~
F ( f ) / ( f )

fe'*' rff

(60 .

* T h e  fu n ctio n  un d er  th e  in te g r a l s ig n  in  (6 6 ) is u n iq u e ly  d ete rm in ed  (b y  c o n t in u ity )  w ith in  an d  on  

th e  con to u r w h en  on ce  th e  v a lu e s  of th e  rad ica ls  -  and  — a t  som e on e p o in t  are

a ssig ned . T h e co n v e n tio n  im p lie d  in  th e  t e x t  is th a t  th e  rad ica ls  are b o th  p o s it iv e  a t  th e  p o in t ( +  oo , 0 ) .

I t  w ill be n o ticed  th a t  o ver  th e  p o rtio n  of th e  a x is  of £ betAveen -  k  a n d  — th e  fu n c tio n  in  (6 6 )  

d iffers from  th a t in v o lv e d  in  th e  v a lu e  of u0 as g iv e n  b y  (5 2 ). T h is  is  a llo w e d  for in  th e  seco n d  m em b er  

of (6 7 ). C o rrections, or ra th er a d ju stm en ts , of th is  k in d  occur r e p e a te d ly  in  th e  tr a n s fo rm a tio n s  of th is  

paper.

t  T h e  sy m b o l $  is u sed  to  d is t in g u ish  th e “pr in cipa l \Ta lu e ”

var ia b le ) to  w h ich  it  is prefixed.
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T R E M O R S O Y E R  T H E  S U R F A C E  O F A N  E L A ST IC  SOLID . 1 5

where

XT _ K (2x2 --  &2 --

~  ~ F ' (*)
(68),

a numerical quantity depending only on the ratio : [i. 

To examine the value of v0 we take the integral

f * ( / )  d i  - f ________ i V ( £ 2 -
J w  H ”  )(2n - -  4 , / ( c 2 -  h*) -(2 ^  -  -  4 -  y ( p  -  *») ^

round the same contour. Integrating along the axis of we find

(69)

e* *  ,

and thence by addition, since the terms due to the infinitely distant parts of the 

contour vanish as before,

* ( : . % f = - 2» K ' ” “ + 5 « n T S r

+  L { r ® + 7( i j } ‘‘ ‘ ' " *

=  -  2*VK cos KX +  2 f

I o i .i  ( ‘  ( 2 (~  —  a e ~il’ ‘K
+  J 4 -  p ( f ) / ( f )  • • • •

where

TT _  __  ^ 2<x1

F 'W

(70),

(71).

Hence if to the principal values of the expressions in (52) we add the system of 

free Rayleigh waves,

i ^  IT sin kx , —■ K cos kx • (72),
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1 6 P R O F E SSO R  H O R A C E  L A M B  O N  T H E  P R O P A G A T IO N  O F

which is evidently of the type (65), we obtain, on inserting the time-factor,

uo
Q J | ei(p*-«r) _ 2Q f* (2p  -  F ) y (£*  -  A2) -  p )  d£ (7 ,

ntx )h (2f2 -7c2)4 +  16f4(?s -  A2) (F  -  f 2) V

o ‘—

7.2 / / £ 2  __ /,2\ d t

(2f®*— F ) 4 -  4 >  v / ( P  -  A2) v / ( ^ F j

Q f* _ F ( 2 £  -  F ) \ / ( ^ - ^ )  ,7 ,v
^ J „ : ( 2 f 3- F ) * +  i 6 ^ ( p - / i s)(A-2 - f )  ■■■' ■' > ■

This is for cc positive; the corresponding results for cc negative would be obtained by 

changing the sign of x  in the exponentials, and reversing the sign of u0.

The solution thus found is made up of waves travelling outwards, right and left, 

from the origin, and so satisfies all the conditions of the question.

The first term in u0 gives, on each side, a train of waves travelling unchanged with 

the velocity c~l. The second term gives an aggregate of weaves travelling with 

velocities ranging from A"1 to a~l. As x is increased, this term diminishes indefinitely, 

owing to the more and more rapid fluctuations in the value of e^x.

On the other hand, the part of v0 which corresponds to the first term of remains 

embedded in the first definite integral in (74). To disentangle it we must have 

recourse to another treatment of the integral jAP (£) c/£. One way of doing this is to take 

the integral round the pair of contours shown in fig. 2, where a consistent scheme of

a - f t  -a ,- f t a, ft

Fig. 2.

values to be attributed to the radicals a/ ( £ 2 — A2) and — A2) is indicated. For 

the only parts of the left-hand contour which need be taken into account we find
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1 7

! > « « = £ ,

f ” ¥  (D d t  =  f* W ( W  + v 2) W e -v id r)
Jo W b lU2r,2 -i-k2)!‘ - i r , K / ( h 2 4-r,2' ) . / alo ( 2 r f  +  k2f  -  4 y f  ' / ( h ?  +  of) v /(k<l +  r,'1) ' 

Similarly, .in the right-hand contour,

(° (?) <77= f° i  +  ^ e~v i dr> ___
J<- w  ^  !. (2>r +  -  I>r -v W  +  ./•)v \ i r  + y j  •

!>«)<«- » ( w f to

F  (k) 6 '

We infer, by addition, 

P  f00 k2ae^x k2ae~^x d (

L % f - 2' K - i" “  +  2 i.  r « )

+ 0 * 1 0

k 2 y / (li2 +  y f )  c drj

(2r)2 -j- k 2)2 — 4r)2 y /  (h -J- 2) y/(/c2 -f- y f)
(75).

I f  we multiply this by — Q/2 jt ^ , and add in the term due to the free Rayleigh 

waves represented by (72), we obtain, as an equivalent form of (74),

,, _  »Q r  iQ  l h l  VJl-  d £  _ _

n  (2 f2 -  V f  +  4f- ~

4iQ f* P f 2 ( f 2 -  h2) v /(F  -
Trjx J» (2g* -  k2f  +  16f4 (g2 -  A8) (F  -  g2)

4- Q. Pwt f _______ W^/jh* +  c-^dr)________  *
7Tja Jo (2 r f  +  k 2) 2 — 4i72 y / (h 2 +  

I t  is evident that all terms after the first diminish indefinitely as x  is increased.

* From th is  w e  can deduce, b y  th e  sam e m eth od  as in  A rt. 4 , an exp ress ion  for th e  m ean  rate  W  a t  

wh ich  a ver tica l pressu re Q cos ptdoes w ork  in  g en era tin g  w aves , v iz .,

W -  4K ^- 
¥

. f S t  {h _______________________  kl  d j}l~
+ 27T/A J0 (2̂ 2 -  By -1- 4? J(/¥ -  e) d d 2 -  ef)

2pQ2 [kk*&(? -  a 2) dd2 -  e)AL.
irp )h (2y -  By + 16£4 (f  - B) -  t )  •

VO L. C C III .— A . D
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1 8 P R O F E S SO R  H O R A C E  L A M B  O N  T H E  P R O P A G A T IO N  O F

I f  in (73) and (76) we regard only the terms which are sensible a t a great distance 

from the origin, we have, for x  positive,

m0 =  — -S . v „ = - i  -2- .................... (77);
f l  / X

and similarly for x  negative we should find

u0 =  §  , v =  { Q
/ x  p

These formulae represent a system of free Eayleigh waves, except for the 

discontinuity at the origin, where the extraneous force is applied. The vibrations 

are elliptic, with horizontal and vertical axes in the ratio of the two numbers 

H and K, which are defined by (68) and (71), respectively. To calculate these, we 

have, since F (k ) =  0,
f( k ) =  2 (2 k2

and therefore
yy   F  (2k 2 — F )3 1 -̂ 2 F a1 (2 k 2 — F ) 2

-  “  ( * ) / ( , )  ’ -  - F  (« ) / (« )  ' '

where, by differentiation of (62),

-  F  « / « = i 6 i v  { 1 -  ( 6 - 4 5 )  S + 6 ( '  -  5 )

• ( 7 9 ) .  

. ( 80 )*

In the case of incompressibility I find

H =  *05921, K =  -10890; 

whilst on P o is s o n ’s  hypothesis

H =  -12500, K =  -18349,

so that the amplitudes are, for the same value of /x and for the same applied force, 

about double what they are in the case of incompressibility.

A similar treatm ent applies to the formulse (55), which represent the eflect of a 

concentrated horizontal force Veipt. Taking account only of the more important terms, 

I find, for x  positive,

m0 = - ^ H  ......................... (81),
f t  f t

and, for x  negative,

u0 =  -  — » ; „ = - ?  K'gip <!+.*>.....................(82),
f t  f t

where
yy,_ F /^  _ 2/c'2/3] (2 k 2 — F ) 2

jr, _  k  (2k 2 — F  — 2a1/81) _ F  (2k 2 — F ) 3

“ F > )  -  = - , F  ( „ ) / ( « )

( 8 3 ) .
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T R E M O R S  O Y E R  T H E  S U R F A C E  O F A N  E L A S T IC  SO L ID . 1 9

The ratio of H7 to K ' is, of course, equal to tha t of H  to K ; K' is, moreover, 

identical with TI, in conformity with the principle of reciprocity already referred to. 

I t  appears, therefore, from the numerical values of H, K above given, tha t for X — oo

H7 -  -03219, K ' =  -05921 ;

and for \  =  fi
H ' =  -08516, K ' =  -12500.

Again, in the case of the internal source (56) I find, for large positive values of

u0 =  — 8kH =  8 i / t K W ^ cx).................... (84),

and, for large negative values,

u0 =  8KH.'e~ai/eipct+cx\  v0 =  8iKK'e~aifeip(t+cx).................... (85).

The factor e-ai/ indicates how the surface effect (at a sufficient distance) varies 

with the depth of the source.

8. If  in any of the preceding cases we wish to examine more closely the nature and 

magnitude of the residual disturbance, so far as it is manifested at the surface, it is 

more convenient to use the system of contours shown in fig. 3. W ith this system we

• \V

a"
- p

-K

F ig . 3 .

can so adjust matters that the radicals \Z(C2~  ^3) and \/(£
parts of the axis of £ exactly the values a, /3 with which we are concerned in formulae 

such as (52). I t  is convenient, for brevity, to denote by a', /3' the values assumed 

by the same radicals on the two sides of the lines ^ =  — h, and by a", ^  /3" their 

values on the two sides of the line £ =  — , these values being supposed determined
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2 0 P R O F E SSO R  H O R A C E  L A M B  O N  T H E  P R O P A G A T IO N  O F

in accordance with the requirements of continuity. Thus, with the allocation shown 

in the figure, we shall have, for small values of

ot! — — y/ ( 2  hr))e liir, f t  =

a" == v /(P  -  h2), ft” =  -  y/(2 bj)

( 86 ) ,

approximately.
Taking the integral (66) round the several contours, in the directions shown by 

the arrows, we find

1 t\j “—

P ( f )
' " =  -  2inK  cos *)c

_|_ e-ikxj1 J f 2 ^ - P - 2 « " / 8 " 2£2 - k *  +  2a"jSw

L(2C2- F ) :!- 4 f a " / 3 " (2£* -  /fc2)2 +  4£V'j8"

_j_ e ~ i h x  |  j• 2 ?  — F  — 2a'/8' 2{* -  P  +  2a'y8' ‘>

1CO1
CO

( 2 ?  -  *2)2 +  4 £ V 0 '

=  -  2.VH cos k x  + 4 ie-»*J# -  {•)

/•C O

4- \ u ~ ihx _____ !
+  Jo (2£2 —

k2 (212 — k2) ol vx

(2£2 -  k2f  +  16{* (£2 -  h2) -  £2)
• • (87),

where, in the first integral, £ =  — k + irj, and, in the second, £ =  

The integral (69), taken round the same contours, gives

* * • '  - i v
-he

l0 \(2£2- k 2)2- 4 £ * 'P  (2£2-& 2)2+ 4 £ V £ '

=  2nK  sin kx-f- Sie~ikxf ____
Jo ( 2£2- A ;3)4 +  16£ ± (£ 2- / i 2)  ( £ 2 - £ 2)

4- 2ie~ihx[*____ &2 (2£2 •— k2) 2ct'e~riXdr)______ /g8\
^  Jo(2£2-F )* + 1 6 £ * (£ 2- /> 2)(&2--£2) ‘ * * K h

on the same understanding.

The definite integrals in these results can all be expanded in asymptotic forms by 

means of the formula

j 0 V*K (v) e ”* dr, =  5 ^  x (°) +  +  . . . . (89);

and when hx, and therefore also kx, is sufficiently large, the first terms in the 

expansions will give an adequate approximation.
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T R E M O R S O Y E R  T H E  S U R F A C E  O F A N  E L A S T IC  SO L ID . 2 1

Tims, taking account of (86), the last members of (87) and (88) are equivalent to

: p  i  (kx +

— 2 iirH  COS K X  +  2^(273-) / \ J ^1 —
¥

¥ (lex)*

— i ( h x  + Jtt)

and

7,373 / /7 3  __ 7,2\ p

+  2 3 (217) (w -\w' - *T &c..

2 t t K  sin k x  — 4 y / (2 nr) ( 1 —
, — i  (kx +  ?7r)

(A c):]

-  v / (27r)
A 2P

-  (hx + ln)

( ¥  — 2 A2)2 (Ax)*
&c.,

respectively. Substituting in (52), and adding in the system (72) as before, we have, 

for large positive values of x ,

v w

- h 2 

F

gi (pi -  fas -

(,kx)*

■ < * » ■( A x ) “

_ ^ Q  Ke ;( +  . A  _ & \

/ l  [X y  TT \

k x - \ i r )

(kx)

, Q /  2 ¥ ¥ ( P t  - h x  -  in )

t 2 F V t  ( * » - 2 W ) 2 (h x f
-f- &C. (91).

The first terms in these expressions have already been interpreted. The residual 

disturbance constitutes a sort of fringe to the cylindrical elastic waves which are 

propagated into the interior of the solid, and consists of two parts. In one of these 

the wave-velocity p/&, or b~l, is that of equivoluminal waves; the vibrations (at the 

surface) are elliptic, the ratio of the vertical to the horizontal diameter of the orbit 

being 2^/(1 — ¥ /¥ ) ,  or 1'633 for X =  [x.The re

pjh, or a -1,of irrotational waves; the surface vibrations which it represents 

are rectilinear, the ratio of the vertical to the horizontal amplitude being 

( ¥  — 2h2)/2 h (¥  — A2)*, or ’3535 for X =  W ith increasing distance x  the

amplitude of each part diminishes as whereas in an unlimited solid the law 

is cc- *, as appears from (42).

Similar results will obviously hold in the case of the other problems considered in 
Art. 5.

9. I t  has been assumed, up to this stage, that the primary disturbance varies as a 

simple-harmonic function of the time. I t  is proposed now to generalize the law 

of variation, and in particular to examine the effect of a single impulse of short 

duration. From this the general case can be inferred by superposition.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 A

u
g
u
st

 2
0
2
2
 



2 2 P R O F E SSO R  H O R A C E  L A M B  O N  T H E  P R O P A G A T IO N  O F

I t is to be noticed, in all our formulae, tha t if we write

f  =  pO,  k  — p a ,  k  =  p b ,  k =  p c ,

the symbol p  which determines the frequency will disappear, except in the 

exponentials; this greatly facilitates the desired generalization by means of 

F o u r ie r ’s  theorem. Thus, in the case of a concentrated vertical pressure Q ( ) acting 

on the surface, the formulae (73) and (74) lead to

„ -  _ H  o  ( t - c x ) __— f  Q ( t_ 0x) d0 ,,^

_  J L  f _ _ _ - & ? > / { * - < * ) '  . A  f t  _
w m J .  (2 0 s - & * ) *  +  ^  J

Q (i — to) <10 . (93).

(20

~  —  i fnp ^ h ( 2 0 2 -  b2f  -  402 x/(63 -  a 2) ^/(fl* -  52)

The definite integrals represent aggregates of waves, of the same general type, 

travelling with slownesses ranging from a  to b,  and from to oo, respectively.

If  we suppose that Q ( t )  vanishes for all but small values of t ,  it appears from 

(92) that the horizontal disturbance at a distance x  begins (as we should expect) 

after a time a x ,  which is the time a wave of expansion would take to travel the 

distance; it lasts till a time bx,  which is the time distortional waves would take to 

travel the distance ; and then, for a while, ceases.'* Finally, about the time ex,  comes 

a solitary wave of short duration (the same as that of the primary impulse) represented 

by the first term of (92). This wave is of unchanging type, whereas the duration 

of the preliminary disturbance varies directly as x ,  and its amplitude (as will be seen 

immediately) varies inversely as x.

If  we put

Q =  j  Q (0 d t ............................................. (94),

the integration extending over the short range for which Q is sensible, the 

preliminary horizontal disturbance will be given by

u 0 =

provided

2 Q  q j  /  t

T/xbx \  x

U  ( 0 ) = - m  (M! -  fr2) sA - a 2) y/(62 -  

V 1 (2 0 2 -  b2y  +  1 -  a 2) 2 -

. . (95),

. . (96),

where a<C 6<C b.The following table gives the values of U (#) for a series of values
of Oja,  on the hypothesis of X  =  g,  or b / a  =  1*7321.

* 1 liis tem p orary  c e ssa tio n  of th e  h o r iz o n ta l m o t io n  is  sp ec ia l to  th e  case of a norm al im pu lse. I f  

th e  im p u lse  he ta n g e n tia l, th e  co n tr a st b e tw e e n  th e  h o rizo n ta l an d  v er tica l m o t io n s , in  th is  resp ect, is  

reversed .
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T R E M O R S O Y E R  T H E  S U R F A C E  O F A N  E L A S T IC  SO L ID . 2 3

Oja. U(0). Oja. U(fl). Oja. U(0). 0/a. U(0).

1 - 0 0 0 0 1 - 0 2 5 + - 6 2 7 7 7 1 - 1 0 +  -2 2 7 8 9 1 -5 5 0 -  -1 5 1 2 2

1 -0 0 1 + - 3 1 2 4 7 1 - 0 3 0 + - 5 9 3 5 1 1 - 1 5 + - 1 0 2 9 5 1 - 6 0 0 -  -1 5 8 4 2

1 - 0 0 2 + ' 4 2 0 8 0 1 - 0 3 5 + - 5 5 8 0 6 1 - 2 0 + - 0 2 7 2 2 1 • 6 2 5 -  -1 5 9 2 7

1 - 0 0 3 + - 4 9 1 4 8 1 - 0 4 0 + - 5 2 3 0 8 1 - 2 5 -  -0 2 3 1 1 1 - 6 5 0 -  -1 5 6 8 1

1 - 0 0 4 + - 5 4 1 9 1 1 - 0 5 0 + - 4 5 7 4 1 1 - 3 0 -  -0 5 9 0 5 1 -6 7 5 -  -1 4 8 4 5

1 - 0 0 5 +  -5 7 9 2 6 1 - 0 6 0 + - 3 9 8 8 9 1 - 3 5 -  -0 8 6 2 2 1 - 7 0 0 -  -1 2 7 9 5

1 - 0 1 0 + - 6 6 4 9 3 1 - 0 7 0 + - 3 4 7 4 6 1 - 4 0 -  -1 0 7 7 1 1 - 7 2 5 -  -0 7 0 2 1

1 -0 1 5 +  -6 7 5 3 6 1 - 0 8 0 + - 3 0 2 3 8 1 - 4 5 -  -1 2 5 2 7 b/a 0

1 - 0 2 0 +  -6 5 7 4 4 1 - 0 9 0 + - 2 6 2 7 9 1 - 5 0 -  -1 3 9 7 5 — —

The function has a maximum value +  ’67643 when 0/a =  1*01368 ; it changes sign 

when 0/a =  1*22474 ; and it has a minimum value — *159319 when =  1 *62076.# 

The graph of this function is shown in the upper part of fig. 4. I f  the scales be

!
I
I
I
I

properly chosen, the curve will represent the variation of u0 with during the 

“ preliminary” disturbance, at any assigned point x. For this purpose the horizontal 

scale must vary directly, and the vertical scale inversely, as x.

* The calculations were made almost entirely by Mr. H. J. W o o d a l l , to whom I am much indebted.
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The interpretation of the expression (93) for the vertical displacement r 0 is not 

quite so simple. For a given value of x the mos

sponding to t  =  cx, or 0 =  c,nearly, when the integrand in the se

sign by passing through infinity. This is the epoch of the main shock; the minor 

disturbance which sets in when t — ax  leads up continuously

out gradually after it.

As a first step we may tabulate the function V (6 defined by

v(0 = -
bs (2 0* -Vf•/(<?>- a 8)

(20* -  b-y +  160*(0» — a2) (6s - 0 s)
, for a  <  0 <  b,

bsy ( 0 2 -  a2)
(208 — 68)2 -  402 , / ( 0 8 -  a2) v/(/f- -  /.•)

, for 0 >  6 • (97).

0/a. V(0). 0/a. V(0). d/a. v ( 0). 0/a.

1
Y(0).

1-000 0 1-025 -  -39425 1-10 -  -08981 1-550 -  -22781
1-001 -  -21995 1-030 -  -36340 1-15 -  -02454 1-600 -  -31645
1-002 -  -29488 1-035 -  -33293 1-20 -  -00218 1-625 -  -37299
1-003 -  -34284 1-040 -  -30387 1-25 -  -00193 1-650 -  -44110
1-004 -  -37630 1-050 -  -25142 1-30 -  -01508 1-675 -  -52493
1-005 -  -40039 1-060 -  -20681 1-35 -  -03796 1-700 -  -63087
1-010 -  -44907 1-070 -  -16932 1-40 -  -06941 1-725 -  -76935
1-015 -  -44543 1-080 -  -13795 1-45 -  -10989 b/a -  -81649
1-020 -  -42324 1-090 -  -11173 1-50 -  -16137 — —

6/a. \ ( 0 ) . Oja. V ( 0 ) . 0/a. V ( 0 ) . 0/a. V ( 0 ) .

b/

1 -7 5

1 - 8 0

1 -8 5

c/a

- 0 - 8 1 6 4 9

- 1 - 3 9 0 3 1

- 2 - 9 8 1 9 7

- 8 - 6 5 8 4 3

00

1 - 9 0

1 -  95

2 -  0 0  
2 - 0 5

+  2 0 -3 8 6 8 5  
+  5 -4 2 3 3 5  
+  3 - 3 1 7 5 9  
+  2 -4 6 3 9 8

2 - 1 0

2 - 1 5

2 - 2 0

2 - 2 5

+  1 -9 9 5 9 1  
+  1 -6 9 7 4 3  
+  1 -4 8 8 9 1  
+  1 -3 3 4 0 4

2 -  5

3 -  0

4 -  0  
1 0 - 0

+ - 9 1 4 6 4  
+ - 6 0 1 9 6  
+ - 3 8 1 7 9  
+  • 1 3 2 9 2

The function has a minimum value — *45120 when Oja =  1*01170, and a zero 

maximum when Oja —1*22474; it changes from — oo to -f- oo when 6 /b  =

or 0/a =  1*88389.* Its graph is shown in the lower part of fig. 4, and also (on a

smaller scale, so as to bring in a greater range of in fig. 5.

I t  is postulated that the function Q ( t) is sensible only

a short range on each side of 0 ; the function Q — Ox) will therefore be sensible 

only for values of 0 in the neighbourhood of t/x. We will suppose that for given 

values of x  and t its graph (as a function of 6) has some such form as that of the

* A s in  th e  case of U  ( 0), th e  ca lcu la tio n s  are due  ch iefly  to  Mr. W o o d a l l .
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dotted curve in fig. 5. If  x  be constant, the effect of increasing t will be to cause 

this graph to travel uniformly from left to r ig h t ; and if we imagine that in each of

its positions the integral of the product of the ordinates of the two curves is taken, 

we get a mental picture of the variation of v0 as a function of t, on a certain scale.

For the greater part of the range of t, the integral will be approximately 

proportional to the ordinates of the curve V (6), viz., we shall have

' • - A v© ...... . . . . . . . . . . . . . <“ >■
in analogy with (95). But for a short range of £, in the neighbourhood oi cx, the 

statement must he modified, the dotted curve being then in the neighbourhood of the 

vertical asymptote of the function Y (6). Since the principal value of the integral is 

to be taken, it is evident that as t approaches the critical epoch and passes it, v0 will 

sink to a relatively low minimum, and then passing through zero will attain a 

correspondingly high maximum, after which it will decrease asymptotically to zero, 

the later stages coming again under the formula (98).

Although the above argument gives perhaps the best view of the whole course of 

the disturbance, we are not dependent upon it for a knowledge of what takes place 

VOL. CCIII.--- A. E
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about the critical epoch cx. We may proceed, instead, by generaliz

sions (77). This introduces, in addition to the given function Q(£), whose Fourier 

expression is

Q (t) — ~ f 
77 J 0 J  — oo

the related function

Q' (t) =  -  |  dp | Q (X) sin — X

viz., we have

u0 =  — ®  Q ( t  — cx) +  &

It does not appear that the connection between the functions Q (t) and Q (t) has 

been specially studied, although it presents itself in more than one department of 

mathematical physics. The following cases may he noted as of interest from our 

present point of view :

Q («) =
Q T
77 t 2 "T" T 2  ’

Q' ( t )

Q

7T t 2 +  T2
( 102 ) ;

Q (0 =
C t

t2"+ T2 ’ Q 'W
C T

i2 -f- t 2
(103);

Q (t) =  p -  for t* <  t 2,
At

=  0 for 2 >  t 2,

(104).

I t is evident, generally, that if Q be an odd function, Q' will be an even function,

and viceversd.

rfhe values of uQand v0, as given by (101), are represented graphically in fig. 6, 

tor the case where Q  ( t )  and Q' ( t )  have the forms given in (102).# Moreover, writing

HQ/27rp,T =  f,KQ/27rp.T =  — =  r tan

we have

uo = “  (1 +  cos 2X) •/» ??o =  sin2X ' . 7 .................

the orbit of a surface-particle is therefore an ellipse with horizontal and vertical semi

axes f  and g. And if from the equilibrium position O we project any other position 

P of the particle on to a vertical straight line, the law of P ’s motion is that the 

projection (H) describes this line with constant velocity. See fig. 7, where the 

positive direction of y is supposed to be downwards.

* T h e  re la tio n  b etw een  th e  scales  of th e  ord in ates in  th e  gra p h s of u0 and  v0 d ep en d s u pon  th e  ra tio  of 

the e la stic  co n sta n ts  A, p,. T h e  figu res are co n str u cted  on  th e  h y p o th e s is  of A =  p.
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A similar treatment would apply to the formulae (81), and (with some modification) 

to (84).

I t remains to justify these approximations by showing that the residual disturbance 

tends with increasing x  to the limit 0. For this purpose we have recourse to the 

formulae of Art. 8. As a sufficient example, take the second term in the last 

member of (88). If  we multiply by eipi, take the real part, and substitute 07 

h — pb ,the corresponding term in the value of %  as given by (52), assumes the form*

— cos p( t — bx) |  F (<f>) ed(f) -f- sin p ( t  —

where the functions F ((f)) and f  (</>), which do not involve are of the order <f>~1 when 

(f> is large. If  we generalize this expression by F o u r i e r ’s  Theorem (see equation (99)),

we obtain, in the case of an impulse Q of short duration,

— f F {(f>) d(f>f e~x*p cos p (t — bx) 
TTIA Jo Jo 7 Jo Jo

_  Q fI p / 1 \_____ x 4> _____ 1 _Q f f ( A \  (̂  bx)
7T[X J o  X2(fr +  ( t  —  b x )2TT[X

TTfX Jo

Q

* T h e sy m b o ls  <j>, F , /  are here u sed  te m p o ra r ily  in  n ew  senses,

E 2

. (106).
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For any particular phase of the motion, t varies as and the expression (106) 

therefore varies inversely as x. This confirms, so far, our previous results (95) and 

(98). Hence with increasing distance from the origin the disturbance tends to the 

limiting form represented by (101).

Before leaving this part of the subject, it is to be remarked that the peculiar 

protracted character of the minor tremor which we have found to precede and follow 

the main shock is to some extent special to the two-dimensional form of the question. 

I t  is connected with the fact, dwelt upon by the author in a recent paper,* tha t even 

in an unlimited medium a solitary cylindrical wave, whether of the irrotational or 

equivoluminal kind, is not sharply defined in the rear, as it is in front, but is prolonged 

in the form of a “ tail.” In the three-dimensional problems, to which we are about 

to proceed, this cause operates in another way. The internal waves are now 

spherical instead of cylindrical, and so far there is no reason to expect a protraction 

of a disturbance which in its origin was of finite duration. But at the surface they 

manifest themselves as annular waves, and accordingly we shall find clear indications 

of the peculiarity of two-dimensional propagation to which reference has been made. 

On the whole, however, it appears that the epochs of arrival of irrotational and 

equivoluminal waves are relatively more clearly marked and isolated than in the two- 

dimensional cases,

PABT II.

T h r e e -D i m e n s io n a l  P r o b l e m s .

10. Assuming symmetry about the axis of 2, we write

vr =  x/(x '  +  y 2), u =  ~ v = ^ q  . . . . (107),
5T TXT

so that q denotes displacement perpendicular to that axis.

A typical solution of the elastic equations, convenient for our purposes, is derived 

at once from Art. 3, if we imagine an infinite number of two-dimensional vibration- 

types oi the kind specified by (25) and (30) to be arranged uniformly in all azimuths 

about the axis of z,and take the mean. In this way we obtain from (33
necessary change of notation,

2» =  A -  (8B) . JL | V -™ -  cos o, =  -  (fA +  I/3B) J , (fw)

JO„ =  ( - a A  - i ( B )  . -1 f  d1™ -d a ,  =  -  ( « A +
7T J o

(108).

* C ited  on p. 37
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Also, from (40), for the corresponding stresses a t the plane z — 0, we have

O J o  =  M {2f«A +  t (2 f2 -  **) B} J ,  (far)

M o  =  {(2f* -  *2) A +  2 i f i 8 B J 0 (far)
.................... (109).

Although the above derivation is sufficient for our purpose, it may be worth while 

to give the direct investigation,* starting from the equations

d2u _ / v . v  0A . _ 2
p ^  - ( *  +  * * ) +  «,

d2v _ /v  , n 3A .
p 8ti  ~ ( ^  +  p) 8y +

p ~  =  (X +  P) +  f*V»ir
dz

where
_du . dir

dx

( 110 ),

(in).

In the case of simple-harmonic motion (e'p/) these are satisfied by

_ d(j).
u — *«-- -fi u , 

ox

provided

and

d(b- ,
V =  - - r  +  V , w =  ' +  to . .

dy

(V2 h2) <j> =  0 ...................

(V2 +  P) v! — 0, (V2 +  k2)v' =  0, (V2 +  P) 

da'. dv'. duo' _____
dx +  dy +  dz ~

where h2, k 2 are defined as before by (28). A particular solution of (114) is

(112),

(113),

( '1 4 ) ,

u' =  v' =  vt  =  +
dxdz ’ &;jcz ’ 3 ^

(115).

provided

(V3 +  F ) x  =  ° ........................................ (116).

On the hypothesis of symmetry about Oz we have

................................ (117).

and the formulae (112), (115) are equivalent to

=  £ *  + 1  a-  +  f l

=  t * + A : -  w =  t*  +  fJf +  * X .....(118).dvrdz

* CJ. 1 P roc. L ond. Math. S o c .,’ vol. 34, p. 276, for th e co rresp on din g  sta tica l in v estig a tio n .
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If  we take, as the typical solution of (113) and (116),

4> =  Ae~asJ 0 (far)

where a, /3 have the same meanings and are subject to the same convention as in 

Art. 3, Ave have, from (118),

q — (— gAe~az -j- £/3Bc”*) J l ~] 

w  =  ( —  a.Ae~az +  £ 2B e ” * )  J 0 (£rar) f

and thence for the stresses in the plane 2 =  0

( 1 2 0 ) ;

[^arjo M
3 q . 3 
3 z 3w

M o  — AA -j-  2 g
3 w '

=  p { 2 f * A - ( 2 ( * - & )  fB} J^fnr)  

=  /x {(2£2 — P ) A — 2P/3B} J 0 (fw)

( 1 2 1 ).

The formulae differ from (108) and (109) only in the substitution of B for B. The 

notation of (119) is adopted as the basis of the subsequent calculations.

If  we are to assume, in place of (1 19),

<£ =  A W 0(ftr), x  =  B'e*J0( ( m ) ......................... (122),

the corresponding forms of (120) and (121) would be obtained by affixing accents 

to A and B, and changing the signs of a and /3 where they occur explicitly.

11. As in Art. 4, we begin by applying the preceding formulae to the solution of a 

known problem, viz., where a given periodic force acts at a point in an unlimited solid.

Let us suppose, in the first place, that an extraneous force of amount Z . J 0 (gnr) eipt, 

per unit area, acts parallel to 2 on an infinitely thin stratum coincident with the 

plane z =  0. The formulae (119) will then apply for s >  0, and (122) for The

normal stress will be discontinuous, viz. :

0 —  ^  • J 0 ( ^ )

whilst q}irsis continuous. Hence
•s

(2f2 -  V) (A -  A') -  2 f2/3 (B -I- B') =  — ?
f  f

2a (A +  A') -  (2f- -  V)  (B -  B') =  0

Also, the continuity of q and ct  requires

A — A' -  0 (B  +  B') =  0 1

a (A +  A') — £2 (B — B') =  0 j

We infer

B = Br =
Z

f t

(123),

(124).

(125) .

(126) ,
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and therefore, for 2 >  0,

*  =  S a e~~  J » (fra) > * =  T J ° { S o ) ...................... (127)-

To pass to the case of a concentrated force Re‘̂ , acting parallel to at the origin, 

we have recourse to the formula (20), where we suppose f  (X) to vanish for all but 

infinitesimal values of X, and to become infinite for these in such a way that

tt\  dX =  It.

We therefore write Z =  R£df/27r, and integrate with respect to f  from 0 to co 

We thus find, for z >  0,

which are equivalent, by (IS), to

, _____ R 3 _  R e~ ^
^  4:np2p ‘ dz r̂  4:Trp2p r

This will he found to agree with the known solution of the problem.! I f  we retain 

only the terms which are most important at a great distance r, we find, from (118),

J - 1 e~ihr
lx+ 2fi r 3 

( f
l X +  2p r 3

___ L  ^,-ar
H r 3

+  - 1  - 2 e -« r]
p r J

1-.................... (130).

J

Inserting the time-factor, the radial displacement is

ZW +  ™(L R
r  47 (X -f- 2/z) r 2

and the transverse displacement in the meridian plane is

(131),

ZS lV  — zq _ R 777
...................................(132).

T 4 : 7 T p T ~

Returning to the exact formulae (128), the expression for the velocity parallel to 2

at the plane z — 0 is found to be

8 w iKeipt

47Tpp J. - “  +  1  •
(133),

* A  m ore rigo rou s procedure w o u ld  be to  su pp ose in  th e  first in stan ce  th a t th e  force I i  is u n iform ly  

d is tr ib u te d  over a circular area  of rad ius a, u s in g  th e  fo rm ula  (2 2 ). I f  in th e  end  w e  m ake — 0, w e  

ob tain  th e  resu lts  in  th e  tex t.

t  St o k e s , ‘ Cumb. T ran s.,’ vo l. 9 (1 8 4 9 ) ;  ‘ M athem atica l and  P h y s ica l P apers,’ vol. 2, p. 278 .
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or, taking the real part,

37=if PP 1C cosp<
+  terms in sin ........................................ (134).

The terms in cos pt  remain finite when we put ct  =  0 and the mean rate W  at 

which a force R cos pt does work in generating waves is thus found to be

W  = R a j r
8npp t  Jo y/ —

+  £ * ^ ( 4 * - * » ) # }

R 2

2 4 7 r
. ( 2 ¥  +  ^3) =

jo2R3
247rp

(a3 +  263) (135),

a and b denoting as before the two elastic wave-slownesses. The result (135) can be 

deduced, as a particular case, from formulae given by Lord K e l v i n , t

12. Proceeding to the case of a semi-infinite solid occupying (say) the region 2>  0, 

we begin with the special distribution of surface-stress :

O JO  — ^  * ^0 (^CT)> [P*«r] — 0 (136).

The coefficients A, B in (119) are now determined by

whence

(2f2 -¥)A -  2 f2/3B =  -
P

2 aA  -  (2 ? 2 B  =  0

* =  2f* -  k 2 Z t ,  _  2 a  Z

F(£)  ’ ^  ’ P

• (137),

. (138),

the function F (£) having the same meaning as in Art. 5. The corresponding 
surface-displacements are

% — ~

iv0 =

£(2£s -  ¥  — Safi) Z

p t f j ---------- J l ( f w ) ' 7

¥ a  x / c \ Z
f TJy ' J ° ' 7

1

(139).

This result might have been deduced immediately from (51) in the manner indicated 
at the beginning of Art. 10.

* The term s in  sin  p t  becom e in finite . I f  th e  force R  be d is tr ib u te d  o ver  a circu lar area, th e  a w k w a rd n ess  

is  a v o id ed . A  factor

( J i  (£ 0 1 2
l  J

is  th u s in troduced  under th e  in teg ra l s ign s in  th e  first lin e  of (1 35 ) , where a d en o te s  (for th e  m om en t) th e  

rad ius of th e circle. F in a lly , w e  can  m ake a in f in ite ly  sm all, 

t  'P h il .  M a g ./  A ug . 1899 , pp. 234, 235.
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II we put Z =  0 in (137) we get a system of free annular surface-waves, in which

q0 =  — k (2/c2 — Zr — 2a]jS]) . J x (k z s) .

IV0 =  Z:2a 1 . J 0 (kzs) . C&{

( 1 4 0 ) .

where k is the positive root of F (£) =  0, and a ]} /3X are the corresponding values of 

a, /3. These are of the nature of “ standing ” waves.

To pass to the case of a concentrated vertical pressure Re#* at 0 ,# we put in 

accordance with (20), Z —  —  R£cZ£/2 v,and in

(139) become

. . (141).

Again, the case of an internal source of the type

p  — ihr

-̂  =  V ’ x =  0 ........................................ (142)>

where r  denotes distance from the point (0, 0, / ) ,  can be solved by a |irocess similar 

to that of Art. 5. First, superposing an equal source at (0, 0, — f ) ,  distance from 

which is denoted by r', we have

<p =
— ihr

+
■ ih r1

=  0 (143);

and therefore, by (18), in the neighbourhood of the plane 2 =  0,

f 00 p~~ a ( z + f )  f 00 p& iz  — f )

t  =  f—  j 0 (fCT) m  +  Jo (H m
j  0 CL J o  CL

=  2 f  5°-A_“U - ^ J 0(fCT) ^ f ........................................(144).
•J o a

This makes

J o = - 2 f e ’ , ' j i ( W M ,  »o =  0 .................... (145),
Jo a.

* T h is  m a y  be regard ed  as th e  k in e tic  a n a lo g u e  of B o u s s in e s q ’s  w ell-k n ow n  sta tic a l problem , 

t  I t  m ig h t  appear a t first s ig h t th a t a s im p ler procedure w o u ld  be p ossib le, an d  th a t th e  effec t of a 

pressure co n cen tra te d  a t a p o in t m ig h t  be in ferred  b y  su p erp o sin g  lines of p ressure (th ro u g h  O) u n ifo rm ly  

in a ll az im u th s, an d  u s in g  th e  re su lts  of § 7. I t  is e a s ily  seen , h o w ev er, th a t such  a d is tr ib u tio n  of lin es  

of pressure is eq u iv a le n t to  a p ressu re -in ten sity  v a r y in g  in v e r se ly  as th e  d ista n ce  (w) from  O. T his  is  

n o t  an ad eq u a te rep resen ta tion  of a loca lized  pressure, since i t  m ak es th e  to ta l pressure on a circu lar 

area h a v in g  its  centre  a t O increase in d e f in ite ly  w ith  th e  rad ius of th e  circle.

V O L .  C C T T T . —  A.  F
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and

=  0, O J o  =  [ &  A)e «/ J 0 (fOT) f  d
Jo Ol

The additions to (143) which are required in order to annul the stresses on the 

plane z =  0 are accordingly found by writing

Z =  —
2 f 3 — 2

( d (

in (139), and then integrating with respect to f  from 0 to oo. In this way we 

obtain, finally,

=  _ 2 j ; ^ - * V . Jo(^

J
(147).

In a similar manner, with the help of Art. 11, we might calculate the effect of a 

periodic vertical force, acting at an internal point.

13. For the sake of comparison with our previous two-dimensional formulae, it is 

convenient to write, from (2) and (6),

J 0 =  ~  1 [(e;fwcosh,!
7T J o

J, (fOT) =  -  1 f (e*°rc0,h,t
7T J()

_ p —/far cosh u) du

e  i(ercosh  u'jc o s | 1 u

(148).

The formulae (141) are thus equivalent to

« » = - & J #« *  ^ L * * * - ^ - * *
(149).

These results are closely comparable with (52), and our previous methods of trea t

ment will apply. I t  is, however, unnecessary to go through all the details of the 

work, since the definite integrals with respect to f  which appear in (149) can be 

derived from those in (52) by performing the operation — upon the latter, and

then replacing x  by ct  cosh u.

Thus, from (67) and (70) we derive

1c 2 a  f t ); ttj>- cosh  v

F (? )
d g  =  2 t t kH  sin (kct  cosh

I- 41.2 f* -  W) a/3 -,-i„oo.n,
( 150).
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f  J? f e ^ * 00*1** sin (k w  cosh «) — 2k"-^ J e rff

. ' .  . . (151),

where H and K are the numerical quantities defined by (68) and (71). Substituting 

in (149) we have

*®> =  - . y . H .  K,  (« .)  +  -  j 4 F ( f ) / ( f )  -  A  ( H  # (152),

£/C.l\; ry T / \
P ( ) o  =  _ _ . k . j o M _ _ D0 (fnr) Ctf

r(

* L  F ( f )

«FR f* f  (2 f8 -  D , ,  , d£

2 ^ J / ,  F ( f ) 7 ( f )  o ( f  ’ f  '

where the notation ol the various B e s s e l ’s  Functions is as in Art. 2. 

Superposing the system of free waves in which

%  =  4 J  ■ H . J , («*), w lt =  -  “ F  . K  . J 0 (k« ) . . .

we obtain, finally, on inserting the time-factor,

kK ,, . , - , , d 2R f i f 2(2f2 - F ) a /8 r. , ,  , , ,

'*  =  -  v  • H  • D ‘ <r a > e* +  V 7 ) ,  F  ( f )  / ( f )  D >(fCT) ^

(153),

(154),

O T ,

'Z lT fl l»i; r | , D-1 i; a r e  w-if I- * « * * '«2*7* J* F ( f ) / ( f )

(155),

(150).

Since these expressions are made up entirely of diverging waves, they constitute 

the complete solution of the problem where a periodic normal force lle!U is applied to 

the surface at the origin.

An alternative form of (156), which puts in evidence that part of the vertical 

disturbance which is most important at a great distance from the origin, is obtained 

trom (75). Attending only to the “ singular” term, we find

P  I lfe  eiforc08h“ d£ =  — 2*™K . cos (kct  cosh u) +  &c. . 
J-8 T (£)

and therefore, from (149),

fJWo= * 1f K . K 0(KCT) +  &c. (158).

Adding in the system (154) we have altogether

<Zo =  — *—■. H . Ifi (kc t ) eipt -f- &c., iv0 . K . D 0 (/cot ) +  &c. (159).
*2fJL
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Hence, by (7), we have, at a great distance

9 o -
ik]t
1jfJL

H . w,
7TKZJ

kM

2fi
. a / -  2~. e npt-,cw-i*)'( i 60).
v  7TKZJ

This may be compared with (77). The vibrations are elliptic, with the same ratio of 

horizontal and vertical diameters as in the case of two dimensions; but the ampli

tude diminishes with increasing distance according to the usual law c t - " of annular 

divergence.

In the same manner we obtain, in the case of an internal source of the type (142),

<h =  -  ^ - 'D ,  (Km) e*‘ +  &c„
b (k )

=  ( 2 -  - /  • ) e- ^  D {m )  ^  +  *<, . 
f (#c)

( I d ) ,

where the factor e~aiJ shows the effect of the depth of the source.

The expressions for the residual disturbance might be derived from the formulae 

of Art. 8 by the same artifice. W ithout attempting to give the complete results, 

which would be somewhat complicated, it may be sufficient to ascertain their general 

form, and order of magnitude, when hzsand kzs  are large. 

parts due to the distortional waves, if we perform the operation — id/dx on the 

second terms of the unnumbered expressions which occur between equations (89) 

and (90), above, and then replace xby 

result in each case is
e -iiarooshM HJcTSCOsll w)3'2,

multiplied by a constant factor. This result is to be substituted for the definite 

integrals with respect to £ which occur in (149); the corresponding terms in 

</0 and iv0 are therefore of the types

1_r  er*"coshM du ( , 1
(&or)’ Jo (cosh u)*’ (km )'1 Jo (cosh

respectively. By the method by which the asymptotic expansion (7) of the 

function D0(£) is obtained, it may be shown, again, that these terms are ultimately 

comparable with
(£ o t )3 ,

where the time-factor has been restored. In the same way, the terms in q() and w0 

wliich correspond to the expansional waves are ultimately comparable with

The attenuation with increasing distance is much more rapid than in the case of the
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annular Rayleigh waves, so tha t the latter ultimately predominate.# I t is also

much more rapid than in the case of elastic waves diverging from a centre in an 

unlimited medium, where the amplitude varies inversely as the distance.

14. The generalization of the preceding results, so as to apply to an arbitrary 

time-variation of the source, follows much the same course as in Art. 9. The full 

interpretation is however more difficult, so far at least as regards the minor tremors.

The main part of the disturbance, in the case of a local vertical pressure applied to 

the surface, is obtained by generalizing the formulae (159). These may be written

2o = H lv 0 [ eip<i-cracosh u) du  + &c., w0= — -  — eip cosh 
Jo TT Uj vt J 0IT [1

Hence, corresponding to an arbitrary pressure R ( ), we have

70==~  [ R (*—c o t  cosh u)du + &c., k ;0= —  ~  f R'(£ — c o t  cosh 
TT jJL  COT J o  7TJJL  J 0

where, in analogy with (100),

R  (t)=
7T JO

R (X) sh ip  ( — X) d \  . (164).

The character of the function of t represented by the first definite integral in (163) 

lias been examined by the author f for various simple forms of R ( ), and a similar 

treatment applies to the second integral. For example, if we take

? +
. . (165),

it is found, on putting
t —  c o t  =  r  t a n  y ,§  

t h a t  fo r  v a l u e s  o f  o t  l a r g e  c o m p a r e d  w i t h  r / c ,  a n d  fo r  m o d e r a t e  v a l u e s  of y ,

—  c o t  cosh u) da =
’ 2

R' ( t — c o t  cosh ) =  —
J o

V ( ~ )  cos t t 73" -  *x) v/(cos x) • ( LGG) t  

f  a / (  — )sin(i7r — i X) \ / ( cosx)- ( i67)’
2 t  v  \C o t /

approximately. Substituting in (163), we have, ignoring the residual terms,

clo  =  “ / s i n  ( \ n  -  f y )  c o s ^ y  

w0 =  gcos ( \ r r  —  f y )  cos? y
. (168),

* Cf. th e  fo o tn o te  on p. 2 ante.

t  “ On W a v e-P ro p a g a tio n  in  T w o  D im e n sio n s ,” ‘ P roc. L o nd . M ath . S o o .,’ vo l. 35, p. 141 (1 9 0 2 ).

\  Cf. E qu atio n  (3 6 ) of th e paper cited . I t  m ay  lie n o ticed  th a t th e  fu n ctio n s  on  th e r ig h t h and  of (1 6 6 )  

and  (1 6 7 ) are in tercha n ged , w ith  a ch an ge of sign , w hen  w e reverse  th e  s ig n  of x- 

§ T he sym bol x  is no lo ng er requ ired  in  the sen se of eq u a tio n s (1 1 5 ), &c.
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wl lere

The following numerical table is derived from one given on p. 155 of the paper 

referred to :—

2x /tt. (t-  Cw )/t

x |

io0ig.

-  -9 - 6 - 3 1 4 -  -0 1 4 -  -0 6 0

-  -8 - 3 - 0 7 8 -  -0 7 8 -  -1 5 3

-  -7 -  1 • 9 6 3 -  -1 9 9 -  -2 3 3

-  -6 - 1 - 3 7 6 -  -3 6 5 -  -2 6 5 *

-  -5 - 1 - 0 0 0 -  -5 4 9 -  -2 2 8

-  -4 -  -727 -  -7 1 9 -  -1 1 4

-  -3 -  -5 1 0 -  -8 3 8 +  -0 6 6

-  -2  ' -  -3 2 5 -  -8 8 2 * +  -2 8 7

-  • 1 -  -1 5 8 -  -8 3 7 +  -5 1 3

0 0 -  -707 +  -7 0 7

+  -1 +  -1 5 8 -  -5 1 3 +  -8 3 7

+  -2 +  -3 2 5 -  -287 + - 8 8 2 *

+  -3 +  -5 1 0 -  -0 6 6 +  -8 3 8

+  -4 +  -7 2 7 +  -1 1 4 +  -7 1 9

+  -5 +  1 -0 0 0 +  -2 2 8 +  -5 4 9

+  -6 +  1- 376 + • 2 6 5 * +  -3 6 5

+  -7 + 1 • 9 6 3 +  -2 3 3 +  -1 9 9

+  ‘ 8 +  3 -0 7 8 +  -1 5 3 +  -0 7 8

+  -9 +  6 - 3 1 4 +  -0 6 0 +  -0 1 4

* E x trem es .

The graphs of qQ and w0 as functions of , in the neighbourhood of the critical 

epoch ct s, are shown in fig. 8, which may be compared with fig. 6.f The corresponding 

orbit of a surface particle is traced in fig. 9, where the positive direction of z is 

downwards ; it may be derived by a homogeneous strain from a portion of the curve 

whose polar equation is
v r* =  c& cos § f 7r).

'fhe amplitude of this part of the disturbance diminishes, with increasing distance 

from the source, according to the law zj K

Complete expressions for the disturbance are obtained by generalizing (155) and 

(15G). They may be written

H cm coshu)du— ~- j  U(0) .  j R(£ —0CTcosh (1G9),
7 TfJL dvr

=  p j  ON(0). ^  | K (t — 0mcosh u) d u . dO .

where U ( 0)and V (0) are the functions defined and tabulated in Art. 9.

t  S ee  th e fo o tn o te  on p. 26 ante.
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F ig . 9.

The method applied in that Article to obtain a general view of the whole progress 

of the vertical displacement at any point might be employed again here, the upper and 

lower curves in fig. 4 being combined with auxiliary movable graphs of

a
0CT

r°° 9 r°°
R (t — 0xscosh u ) d u  and R (t — 0zs cosh u) 

Jo ut J0

considered as functions of 0. In the case of a primary impulse of the type 

graphs would have somewhat the form of the lower curve in fig. 8, the functions being 

practically (except for a constant factor) of the type

sin ( \ tt — f  y) cos’y , where y =  tan-1  ̂ ,
V  g t  r

in the more important part of the range. Both graphs, if drawn to the scale of 

fig. 4 or 5, would be excessively contracted horizontally when we are concerned with 

values of zs large compared with r/c0. Owing to the compensation between positive 

and negative ordinates in the auxiliary graphs, it is plain that the disturbance 

expressed by the d-integrals in (169) and (170) will he relatively very small except 

when t/m has values 0 for which the gradient of U (0) or V is considerable. As
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4 0 P R O F E S SO R  H O R A C E  LAM P. O N T H E  P R O P A G A T IO N  OF

regards the horizontal displacement q{), the minor tremor will consist of a single 

to-and-fro oscillation about the epoch am, followed a

similar oscillation about the epoch bm, with almost comple

regards the vertical displacement, there will be a to-and-fro oscillation about the epoch 

am, then a period of comparative quiescence, and finally a gradually increasing 

negative displacement (with a slight irregularity at the epoch leading up to the 

main shock, after which there is a gradually decreasing positive displacement.

The expression for the horizontal displacement g0 may be treated in a different 

manner. Transforming (169) we have

_ H  3 f"
—

H 0
7 TfJL C JO

f B ( « -

cosh u) du---------- —  |  6XJ (d). ^  J It 6m cosh

cm cosh u) du

+  S —  f  (6) +  U  (6)} . p R  (t -  6m cosh u) du.d6
7T~ OjATjiS J a J 0

A rough sketch of the graph of 0U'(0) -j- U (is easily 

/.QO

It (t — 6m cosh u) du
■ o

is, in such a case as (165), one-signed, but its integral with respect to 6 does not 

converge when the lower limit is large and negative. The method therefore fails to

F ig .  10 .
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give us a convenient view of the progress of q0 as a function of The difficulty is 

due to the peculiarities of annular propagation to which reference has already been 

made.

In fig. 10 an attempt, based on the former method, is made to represent (very 

roughly) the whole progress of the horizontal and vertical displacements due to a 

single impulse of the type (165) at a distance large compared with r/c.

S u m m a r y .

We may now briefly review the principal results of the foregoing investigation, so 

far as they may he expected to throw light on the propagation of seismic tremors 

over the surface of the earth.

I t  has been necessary to idealize this problem in various ways in order to render it 

amenable to calculation. In the first place, the material is taken to be compact and 

homogeneous, to have, in fact, the properties of the “ isotropic elastic solid ” of 

theory. Moreover, the curvature of the surface is neglected. Again, instead of a 

disturbance originating at an internal point, we study chiefly the case of an impulse 

applied vertically to the surface. Under these conditions the disturbance spreads 

over the surface in the form of a symmetrical annular wave-system. The initial form 

of this system will depend on the history of the primitive impulse, but if this be of 

limited duration, the system gradually develops a characteristic form, marked by 

three salient features travelling with the velocities proper to irrotational, equi- 

voluminal, and Rayleigh waves, respectively. As the wave-system, thus established, 

passes any point of the surface, the horizontal displacement shows first of all a single 

well-marked oscillation followed by a period of comparative quiescence, and then 

another oscillation corresponding to the epoch of arrival of equivoluminal waves. 

The whole of this stage constitutes what we have called the “ minor trem or” ; it is, 

of course, more and more protracted the greater the distance from the source, and 

its amplitude continually diminishes, not only absolutely but also relatively to that 

of the “ main shock,” which we identify with the arrival of the Rayleigh wave. I t may 

be remarked that the history of the minor tremor depends chiefly on the time- 

integral of the primitive impulse; the main shock, on the other handf follows the 

time-scale of the primitive impulse, and is affected by every feature of the latter.*

Similar statements apply to the vertical displacement, except that the minor 

tremor leads up more gradually to the main shock, being interrupted, however, by a 

sort of jerk at the epoch of arrival of equivoluminal waves.

The history of the horizontal and vertical displacements, about the epoch of the 

main shock, in the case of a typical impulse of the type (165), is shown in fig. 8 ;

* O bserva tio na l ev id en ce  in  favou r of th e  ex is ten ce  of th e  th ree cr itica l epochs in  an earthquake  

distu rbance  has been  co llec ted  and  d iscussed  b y  R . D . O l d h a m , “ On th e  P ropaga tion  of E arthquake  

M otion  to  G rea t D is tan ce s ,” ‘ Ph il. T ran s.,’ A , 1900 , vo l. 194, p. 135.

V O L .  C C I I I . — A .  G
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whilst fig. 9 shows the corresponding orbit of a surface-particle. In fig. 10 a sketch 

is attempted of the whole progress of the disturbance.

These results are of a fairly definite character, but they are based, as has been said, 

on purely ideal assumptions, and it remains to inquire how far they are likely to be 

modified by the actual conditions of the earth. The substitution of an internal source 

for a surface impulse will clearly not affect the general character of the results at a 

distance great compared with the depth of the source, although differences of detail 

in the wave-profile at the critical epochs will occur, and we can no longer assume that 

the disturbance is the same in all vertical planes through the source. Again, the 

chief qualitative difference introduced by the of the earth will be that

the minor tremor, whose main features are evidently associated with the outcrop of 

spherical elastic waves at the surface, will be propagated directly through the earth, 

so that the first two epochs will (at distances comparable with the radius) be 

accelerated relatively to the main shock,# which being due to the Rayleigh waves 

will travel, with the velocity proper to these, over the surface. f

I t is a more difficult matter to estimate the nature and extent of the modifications 

produced by heterogeneity. I t is, perhaps, possible to exaggerate these, for the 

qualitative effect of a gradual charge of elastic properties would not be serious, and 

even considerable discontinuities would have little influence if their scale were small 

compared with the wave-length! of the primitive impulse. A covering of loose 

material over the solid rock probably causes only local, though highly irregular, 

modifications, with some dissipation of energy.

I t must be acknowledged that our theoretical curves differ widely in two respects 

from the records of seismographs. In the first place, they show nothing corresponding 

to the lono- successions of to-and-fro vibrations which are characteristic of the latter. 

I t  would appear that such indications, so far as they are real and not instrumental, 

are to be ascribed to a succession of primitive shocks, in itself probable enough. 

Again, the theory gives vertical and horizontal movements of the same order of 

magnitude, and in the case of the Rayleigh waves, at all events, where a definite 

comparison can be made, the vertical amplitude is distinctly the greater. The 

observations, on the other hand, make out the vertical motion to be relatively small. 

The difficulty must occur on almost any conceivable theory, and appears indeed to be 

clearly recognised by seismologists, who are accordingly themselves disposed to 

question the competence of their instruments in this respect.

Cf. R . D . O l d h a m , loc. cit.

t  T he th eo r y  of free R a y le ig h  w a v es on  a sp herica l su rface  is k n o w n ; see P ro fesso r  B r o m w ic h , loc. cit. 

f  T h is term  is u sed  in  th e  sam e g en er a l sen se in  w h ich  in  h y d r o d y n a m ic s  w e  sp ea k  of th e  “ le n g th  ” of 

a so lita ry  w av e tr a v e llin g  a lo n g  a canal. T h ere  is  no q u estio n , in  th e  p resen t co n n ectio n , of a n y th in g  

an a lo g o u s to  “ o sc illa to ry  w a v e s .”
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