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[1] We present calculations of the propagation times and energy losses of cosmic rays as
they are transported through the heliosphere. By calculating these quantities for a spatially
1D scenario, we benchmark our numerical model, which uses stochastic differential
equations to solve the relevant transport equation, with known analytical solutions. The
comparison is successful and serves as a vindication of the modeling approach. A spatially
3D version of the modulation model is subsequently used to calculate the propagation
times and energy losses of galactic electrons and protons in different drift cycles. We find
that the propagation times of electrons are longer than those of the protons at the same
energy. Furthermore, the propagation times are longer in the drift cycle when the particles
reach the Earth by drifting inward along the heliospheric current sheet. The calculated
energy losses follow this same general trend. The energy losses suffered by the electrons
are comparable to those of the protons, which is in contrast to the generally held perception
that electrons experience little energy losses during their propagation through the
heliosphere.
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1. Introduction

[2] After galactic cosmic rays (CRs) have entered the
heliosphere, their intensities decrease as they propagate
toward the Earth; a dynamical process referred to as CR
modulation. In order to study the modulation of various
species of CRs, the relevant transport equation (TPE) has to
be solved. Because of the complexity of the TPE, and its
associated transport coefficients, analytical solutions are
only available for limited, mostly oversimplified cases and
the implementation of numerical solutions (numerical mod-
ulation models) have become the norm. More recently,
Monte Carlo type numerical models have become more
widely implemented, solving a set of stochastic differential
equations (SDEs) numerically to calculate differential CR
intensities. The validity of these models in calculating CR
fluxes have been discussed previously by, e.g., Yamada et al.
[1998], Zhang [1999], and Pei et al. [2010]. SDE type
models also allow for the calculation of CR propagation
times (some authors refer to this as the residence or transit
time; the time a CR takes to propagate from the heliopause to
some observational point in the heliosphere) and energy
losses, directly from the numerical scheme. The accuracy and

validity of these quantities, calculated using a SDE model, is
tested in this work.
[3] The propagation times of CR have been a topic of study

since Parker [1965] derived his original TPE. These analyt-
ical calculations were revisited by O’Gallagher [1975], who
essentially found the propagation time to be energy depen-
dent (more precisely, to be dependent on the diffusion coef-
ficient, normally taken to be energy dependent), with longer
propagation times for lower energy particles. This time-lag of
CRs in responding to changing modulation conditions can
explain the observed hysteresis effect in CR intensities as
observed at Earth [e.g., O’Gallagher, 1975; Kane, 1981].
Recently, Florinski and Pogorelov [2009] demonstrated the
advantage of SDE type models by calculating the propaga-
tion times of CRs in a more realistic (geometrically) 3D
heliosphere, finding long propagation times for CRs in the
turbulent heliosheath region. Interpreting the longer propa-
gation time in this region as an indication of large amounts of
energy being lost (via adiabatic cooling) by CRs is incorrect.
The relation between the propagation times and energy losses
is investigated further in this work.
[4] Similarly, the energy losses suffered by CRs propa-

gating through the heliosphere have been studied extensively
in the past, both theoretically [e.g., Parker, 1965, 1966;
Jokipii and Parker, 1967; Webb and Gleeson, 1979, 1980]
and observationally [e.g., Gleeson and Palmer, 1971; Urch
and Gleeson, 1973], as well as through numerical modula-
tion models [e.g., Goldstein et al., 1970; Moraal and
Potgieter, 1982; Zhang, 1999]. Zhang [1999] also illus-
trated the applicability of SDE type models in calculating this
quantity. By examining these energy losses, insight can be
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gained about, e.g., the effect of adiabatic cooling on the
modeled and observed CR spectral shapes, as well as relating
low energy CRs at Earth with their higher energy counter-
parts in the outer heliosphere.
[5] After the technique has been validated, the propaga-

tion times and energy losses of CR protons and electrons, in
different drift cycles, are calculated using a 3D SDE model.

2. The Modulation Model

[6] The transport of CRs is described by the well known
[Parker, 1965] transport equation (TPE). In terms of the
omni-directional CR distribution function f ≡ f (r, q, f, E, t),
with r radial distance, q polar angle, f azimuthal angle and t
time, the 1D version of the TPE is given by

∂f

∂t
¼ 1

r2
∂

∂r
r2k

∂f

∂r

� �

� Vsw

∂f

∂r
þ P

3r2
∂

∂r
r2Vsw

� � ∂f

∂P
: ð1Þ

[7] In these expressions, P is the particle rigidity, Vsw the
solar wind speed and k the effective radial diffusion coeffi-
cient (sometimes labeled as krr). The differential intensity is
related to f by j = P2f. For the spatially 1D case, equation (1)
is essentially a diffusion-convection equation, but with the
addition of energy losses/gains through the last term on the
right hand side.
[8] For the spatially 3D scenario, the TPE has the form

∂f

∂t
¼ � V

!
sw þ v

!
dh i

� �

⋅rf þr⋅ Ks⋅rfð Þ þ P

3
r⋅V

!
sw

� �
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ð2Þ

with includes CR drifts through the pitch angle averaged
guiding center drift velocity 〈v

!
d〉 and diffusion described by

the diffusion tensor Ks.
[9] Solutions of the TPE have been used extensively in the

past to model the transport and modulation of CRs for a
variety of modulation conditions. The complexity of these
models range from analytical solutions (only available for
very limiting cases) to complex numerical models in higher
dimensions. Most widely implemented in numerical modu-
lation models are finite difference numerical schemes. These
models, however, have several disadvantages, especially
long computational time when solving the TPE in higher
dimensions, and are notorious for their numerical instabil-
ities. The focus has therefore shifted to implementing new
algorithms and numerical methods, one of which is the use
of stochastic differential equations (SDEs) to solve the TPE
numerically. Several standard texts deal with this method,
e.g., those by Gardiner [1983], Kloeden and Platen [1999],
and Øksendal [2003], while heliospheric implementations of
this method was discussed by, e.g., Fichtner et al. [1996],
Yamada et al. [1998], Zhang [1999], and Pei et al. [2010].
The relevant SDEs, equivalent to equation (1), are

dr ¼ 1

r2
∂

∂r
r2krr
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ffiffiffiffiffiffi

2k
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⋅dWr ð3Þ
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dP ¼ 1
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P
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ds ð4Þ

for the radial and rigidity phase space coordinates respec-
tively and ds indicating the infinitesimal (backwards) time

Figure 1. Energy spectra for galactic (left) protons and (right) electrons are shown as calculated by the
SDE model (scatter points) and a finite difference numerical model (lines) at Earth (1 AU) and at
50 AU with the LIS specified at 100 AU. The dashed lines show the un-modulated local interstellar
spectra at 100 AU. For these computations, N = 10,000 pseudo-particles were followed at each phase
space position.
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increment. The rigidity SDE can also be rewritten in terms of
kinetic energy E as

dE ¼ 1

3r2
∂

∂r
r2Vsw

� �

�E

� 	

ds; ð5Þ

with

� ¼ E þ 2E0

E þ E0

; ð6Þ

and E0 the rest energy.
[10] For the 3D case, the SDEs, equivalent to equation (2),

are
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for the different phase space components. For a derivation of
these equations, see, e.g., Strauss et al. [2011].
[11] To solve the SDEs, the so-called time backwards

approach is adopted, solving the set of SDEs numerically by
using the Euler-Maruyama scheme [Maruyama, 1955]. In
this approach, an initial phase space point (r0,E0) is specified
(which is also the point at which j will be obtained; the
so-called observational point) at the backwards time s = 0.

The evolution of this phase space point, for s > 0, is then
calculated iteratively according to equations (3) and (5)), i.e.,
rn+1 = rn + dr and En+1 = En + dE until a boundary is reached
at (re,Ee) at time se. For galactic CRs, this is assumed to
be the HP, where their intensities are prescribed by a CR
species specific LIS. For electrons the LIS of Langner et al.
[2001] is used, while for protons we use the LIS of
Moskalenko et al. [2002]. For further details of the numeri-
cal implementation used in the modulation model, see
Strauss et al. [2011]. The superscript “e” refers to the exit
position (in the time backwards formulation; in the normal
time forwards scenario, this can be called the entry position)
of this phase space point (pseudo-particle) being followed.
Calculating these trajectories for a large number of pseudo-
particles, we then obtained an average value of j(r0,E0).
[12] Figure 1 shows, as an example, solutions of the 1D

TPE for the modulation of galactic protons (Figure 1, left)
and electrons (Figure 1, right) at Earth and at 50 AU, with
respect to the local interstellar spectrum (LIS), as the scatter
points. The lines are numerical solutions of the same
equation using the Du Fort-Frankel numerical scheme. For
these solutions, the outer boundary (heliopause, HP) is
assumed to be located at R = 100 AU for illustrative pur-
poses, Vsw = 400 km.s�1 and a mean free path of the form
l = 0.1 AU ⋅ (P/1 GV) is used for protons and electrons
when P > 1 GV. Below 1 GV, l = 0.1 AU was used for
electrons. Note that k = vl/3 with v the particle speed. The
obtained results are consistent with similar benchmark
solutions given by, e.g., Yamada et al. [1998] and Pei et al.
[2010], illustrating the validity and usefulness of the SDE
approach in solving the TPE.
[13] Figure 2 (left) shows a realization of a single phase

space point starting at (r0, E0) = (1 AU, 0.1 GeV) and
ending at (r e, E e) ≈ (100 AU, 0.13 GeV). This is done
for galactic electrons with a constant diffusion coefficient

Figure 2. (left) An example of the evolution of a phase space density element (pseudo-particle), as
described by the set of SDEs (for the spatially 1D case) in terms of (bottom) radial distance and (top)
kinetic energy for galactic electrons. (right) The binned propagation time for N = 10,000 pseudo-particles.
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of k = 80 PUs, where PUs refers to program units (1 PU
= 6 � 1020 cm2.s�1), introduced for shorter notation.
[14] The SDE approach allows for the calculation of the

propagation time of CRs directly from the numerical
method. For the realization of a single pseudo-particle,
labeled by the index i, the propagation time is simply the
time it takes for the pseudo-particle to be transported, for the
1D case, from r0 to r e, calculated as

ti ¼ sei � s0i
�

�

�

�

: ð8Þ

[15] Calculating t for a single pseudo-particle is however
statistically insignificant. Therefore, ti is calculated for a
large number of these particles (usually N > 3000) and
binned in a normalized histogram. The expectation value is
calculated as the weighted average of ti, as

th i ¼
X

M

l¼1

tlrl; ð9Þ

where M refers to the number of bins in the distribution and
rl is the probability of finding ti in the time bin tl,

rl ¼
Nl

N
; ð10Þ

with Nl the number of particles ending up in the l-th bin and
the normalization condition

X

M

l¼1

rl ¼ 1 ð11Þ

automatically satisfied.
[16] Figure 2 (right) shows the normalized binned propa-

gation time of N = 10,000 pseudo particles (in this case
galactic electrons). Two timescales are indicated on the fig-
ure, namely: tmax which is the most probable propagation
time and 〈t〉 which is the average propagation time (i.e., the
expectation value thereof ). Because of the long tail in the
distribution of t, we generally find 〈t〉 > tmax. For the rest of
this paper we consider only the behavior of 〈t〉.
[17] Since we use the time backwards approach to solve

the relevant SDEs, this normalization to unity is character-
istic of the method of solution; in the normal time forward
case this corresponds to all particles entering the heliosphere
eventually reaching a point r0 in the inner heliosphere, after
some time t > 0. In later sections this normalization of the
propagation time is discussed further.
[18] Similar to 〈t〉, the SDE approach also allows for

the direct calculation of the energy loss by a CR during its
propagation through the heliosphere. Again the expecta-
tion value of the exit energy 〈E e

〉, can be calculated (in
the time forward scenario, E e would refer to the energy of
a CR directly before entering the heliosphere). The aver-
age amount of energy loss during the propagation process
is then

�Eh i ¼ Eeh i � E0
: ð12Þ

[19] For this work, the focus is on galactic electrons
and protons. CR electrons are highly relativistic for all
energies considered, so that E � E0 and G → 1. Galactic
protons of E > 100 MeV are however somewhere in between

a totally relativistic and totally non-relativistic case. For fully
non-relativistic CRs, E � E0 and G → 2.

3. Case 1: A Diffusion Dominated Scenario

3.1. Propagation Times: Analytical Approximations

[20] In his seminal paper, Parker [1965] introduced the
probability wave approach to study the propagation times of
CRs. Instead of computing the differential intensity of the
CRs, this approach calculates the probability w(r, t) of
finding a particle at a position r at a time t. Choosing a
constant (energy and spatially independent) diffusion coef-
ficient in 1D, the processes that influence CR transport are
convection and diffusion. The evolution of w(r, t) thus
satisfies the convection-diffusion Fokker-Planck equation

∂w r; tð Þ
∂t

¼ 1

r2
∂

∂r
r2k

∂w r; tð Þ
∂r

� �

� Vsw

∂w r; tð Þ
∂r

; ð13Þ

with the first term on the left hand side referring to the
inward diffusion of galactic cosmic rays and the second term
the outward convection by the solar wind and embedded
magnetic field. As a first application of this model, we
assume the system to be diffusion dominated and neglect
convection by setting the solar wind speed to Vsw = 0. For
this scenario, equation (13) can be solved analytically quite
easily. As an initial condition, an empty heliosphere is
assumed and the CR particles are introduced at a radial
position of r = R � h at t = 0 where R is the radius of the
outer boundary (HP) and h the penetration length of a
galactic CR, i.e., the distance it penetrates the heliosphere
before being scattered for the first time. With these
assumptions, using a free-escape outer boundary (CRs are
free to leave the heliosphere) and a reflecting inner boundary
at r = 0, Parker [1965] obtained

w r; tð Þ≈ h

2R3r

X

∞

n¼1

�1ð Þn�1
n sin

npr

R

� �

exp � n2p2kt

R2

� �

; ð14Þ

valid for h � R. As w(r, t) is a probability, it can be
re-normalized to unity because of the linearity of equation
(13). Figure 3 (left) shows w(r, t) as a function of normal-
ized distance. The numbers in brackets label the curves
according to the dimensionless parameters (RVsw /k, kt/R

2).
Assuming k and R to be constant, the curves can be inter-
preted as showing the temporal evolution of w(r, t). Starting
from an initial delta function, the probability wave diffuses
spatially, getting reflected at the inner boundary, and finally
being absorbed at the outer boundary, i.e., when t → ∞,
w(r, t) → 0. Figure 3 (right) shows the temporal evolution
of w(r, t) at a constant radial position of r/R = 0.01 (i.e.,
1 AU for this choice of R). Starting from zero at t = 0, the
probability of finding a particle at this position increases
sharply to a maximum (the most probable propagation
time), where after it decreases again to zero, following an
almost Poisson like distribution.
[21] The expectation value (〈t〉) of the propagation time is

calculated, for a particular spatial point ra < R, as

th i ¼
R

∞

t¼0
w ra; tð Þtdt

R

∞

t¼0
w ra; tð Þdt : ð15Þ
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Figure 3. (left) Plot of w(r, t) as a function of radial distance. The curves are labeled by values for
(RVsw /k, kt/R

2) with Vsw = 0 when convection is neglected. (right) The temporal evolution of w(r, t) at
a fixed spatial point. The solid line is the analytical solution of equation (13), while the dashed line is
a numerical solution of the same equation, discussed in section 4.1.

Figure 4. (left) The binned propagation times as calculated with the SDE model for different transport
parameters (scatter points) at a radial position of r/R = 0.01; the solid line shows the re-normalized
probability, initially shown in Figure 3 (right). (right) Plot of 〈t〉, as calculated with equation (16),
with R = 100 AU, as the solid line; the scatter points show 〈t〉 as a function of k as calculated with
the SDE model.
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[22] Again this equation can be solved analytically to give

tdh i ¼ R2

p2k

X

∞

n¼1

1

n2
→

R2

6k
; ð16Þ

where the subscript “d” indicates that this is the average
propagation time when only diffusion is considered.
O’Gallagher [1975] derived the same expression for 〈td〉
and refers to this as the diffusion timescale. Note that 〈td〉 is
inversely proportional to k and that 〈td〉→ ∞ when k→ 0,
while 〈td〉→ 0 when k→ ∞.

3.2. Propagation Times: SDE Approach

[23] The SDE solutions shown and discussed in this
section neglect solar wind convection consistent with the
analytical approximations discussed in the previous section.
Figure 4 (left) shows the binned propagation times from the
SDE model as scatter points. This is similar to Figure 2
(right), but with the time expressed as kt/R2 using differ-
ent combinations of k and R. All solutions are shown at a
constant (normalized) radial position of ra = r/R = 0.01.
The dashed line shows the analytical solution, given by
equation (14), with the probability w(r, t) re-normalized
so that

Z

∞

t¼0

w ra; tð Þdt ¼ 1; ð17Þ

in line with the results from the SDE model where all
CRs entering the heliosphere will penetrate up to ra.
The solutions of the SDE model compare very well with
the analytical approximation, confirming the reliability of the
results generated with the SDE model. In order to test the

validity of equation (16), Figure 4 (right) shows 〈t〉, as
calculated with equation (16), as the solid line, while the
scatter points show the results from the SDE model for the
same scenario. Again, excellent agreement between the two
methods are obtained, which we consider as the validation of
the SDE approach in calculating 〈t〉.

4. Case II: A Diffusion-Convection Scenario

4.1. Propagation Times: Analytical and Numerical
Approximations

[24] The solutions of the previous sections neglected the
outward convection by the solar wind, which is now
included. As shown by Parker [1965] and O’Gallagher
[1975], analytical solutions of equation (13) are possible
only for very limited cases. Therefore we solve the proba-
bility wave equation numerically, where k is again assumed
to be constant and the equation is solved by a finite differ-
ences scheme. Figure 3 (right) already showed the numerical
solution as the dashed line, using R = 100 AU and h =
15 AU, compared to the analytical solution of Parker
[1965] as the solid line.
[25] In Figure 5 (left), w(r, t), as calculated numerically, is

shown as a function of radial distance at different times. Two
solutions are shown: including convection (solid lines) and
neglecting convection in the model (dashed lines). With the
inclusion of outward convection, it is clear that the CRs find
it more difficult to reach the inner heliosphere. Figure 5
(right) shows w(r, t) as a function of time at r = 1 AU
(Earth) for the same two cases shown in Figure 5 (left). What
is notable from the solutions is that tmax is approximately
equal for the different cases. However, the calculated dis-
tribution including convection is much wider that the case

Figure 5. (left) The numerically calculated w(r, t) as a function of radial distance at different times,
including convection (solid lines) and neglecting convection (dashed lines) in the model for the parameters
as indicated. (right) Plot of w(r, t) as a function of time, for the different cases, at r = 1 AU. The scatter
points show the corresponding solutions from the SDE model.
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including only diffusion, so that 〈t〉 is clearly longer for this
case. This is expected, as inward diffusing CR scattering
centers are continuously convected outwards, making it
harder for CRs to reach the inner heliosphere, and subse-
quently taking longer to do so.
[26] Next, assume a CR scattering center originally

located at r = R. Equation (16) gives the average propagation
time of the scattering center to reach r = 0 when only dif-
fusion is considered. The average velocity at which the
scattering centers diffuse inward, covering a distance R, is
then

v
!
dh i ¼ � 6k

R
er: ð18Þ

[27] If outward convection with a speed of Vsw is also
considered, the net transport velocity is then

v
!
cdh i ¼ Vswer �

6k

r
er: ð19Þ

[28] To be displaced by �Rer, the scattering center will
thus take a time

tcdh i ¼ R2

6k� VswR
: ð20Þ

[29] Introducing the characteristic convection time as

tch i ¼ R

Vsw

; ð21Þ

i.e., the time it takes for a scattering center to be trans-
ported from r = 0 to r = R without undergoing diffusion,
equation (20) can be rewritten more compactly as

tcdh i ¼ 1

tdh i �
1

tch i

� 	�1

; ð22Þ

giving the approximate propagation time in the convection-
diffusion model. Note that when 〈tc〉→ ∞, 〈tcd〉→ 〈td〉 and
when 〈tc〉→ 〈td〉, 〈tcd〉→ ∞, i.e., when the convective and
diffusive processes are in equilibrium, a CR will remain at a
radial position 0 < r < R indefinitely. When 〈tc〉 < 〈td〉
(equivalently, 〈vd〉 < 〈vc〉) the CR will be convected to r > R
and cannot spend any time in the heliosphere. From equation
(22), this situation occurs when 〈tcd〉 < 0.

4.2. Propagation Times: SDE Approach

[30] In Figure 5 (right), the resulting propagation times
calculated with the SDE model are compared to the results
from the probability wave model. These calculations use
k = 40 PUs and Vsw = 400 km.s�1 with the propagation
times shown for the cases when solar wind convection is
included or neglected. Again, very good agreement is
obtained between the different approaches.
[31] In Figure 6, 〈t〉is shown as a function of k, with the

effects of convection included. The scatter points show
results from the SDE model and the solid lines 〈t〉 as cal-
culated from the numerical wave probability approach. The
dashed line shows 〈tcd〉, calculated from equation (22),
while the dash-dotted line show 〈t〉 as calculated by
O’Gallagher [1975]. The vertical dashed line shows the
value of k where 〈tcd〉 → ∞. For larger values of k the
analytical approximation of the previous section seems rea-
sonable, whereas small deviations occur at lower values of k.
The analytical solution of O’Gallagher [1975], however,
deviates completely with the results from the SDE model
with 〈tcd〉 → 〈tc〉 as k → 0; a non-physical situation for
galactic CRs in the heliosphere.

4.3. Energy Losses

[32] In his original derivation of the TPE, Parker [1965]
derived the CR energy loss term as

I ¼ � ∂

∂E

∂E

∂t
f

� �

; ð23Þ

where

∂E

∂t
¼ � 1

3
r⋅V

!
sw

� �

�E ¼ � 1

3r2
∂

∂r
r2Vsw

� �

�E ð24Þ

is the rate at which CRs are adiabatically cooled in the
expanding solar wind and f the CR distribution function. As

pointed out by, e.g., Fisk [1979], r ⋅ V
!
sw is the rate at which

a solar wind volume element expands as it moves radially
outwards with a speed of Vsw. Equation (23) is derived by
assuming that adiabatic cooling is the only mechanism

Figure 6. The propagation time as a function of k for the
convection-diffusion model. Scatter points show results of
the SDE model, the solid line of the numerical probability
wave approach, the dashed line the derived analytical solu-
tion given by equation (22) and the dashed-dotted line the
analytical solution of O’Gallagher [1975].
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responsible for CR energy losses. In terms of momentum,
the average deceleration rate is

_p′h i ¼ dp

dt

� 

′
¼ � p′

3r2
∂

∂r
r2Vsw

� �

: ð25Þ

[33] As however discussed by, e.g., Webb and Gleeson
[1979], this rate is only valid if the CRs are described
with respect to a frame co-moving with the solar wind at
a speed of Vsw. In a coordinate system fixed on the Sun
(heliocentric coordinates), the momentum loss rate has the
form

_ph i ¼ � p

3
V
!
sw ⋅g

!
r ð26Þ

[e.g., Webb and Gleeson, 1979], where g
!
r is the radial

CR differential intensity gradient. Although these momen-
tum loss rates differ from each other, the resulting TPE
remains unchanged, largely because of the Compton-Getting
factor [e.g., Gleeson and Axford, 1968; Forman, 1970;Webb
and Gleeson, 1980].
[34] To calculate the total energy lost by CRs propagating

through the heliosphere, the analytical approach of Parker
[1965, 1966] and Jokipii and Parker [1970] is used, where
the differential intensity, j(r, E, t) in terms of kinetic energy,
is obtained by deconvolving the equation

w r; tð Þ ¼
Z

∞

0

j r;E; tð ÞdE: ð27Þ

[35] This model introduces a constant stream of particles
at r = R with an energy of E e, and calculates the average
energy 〈E0

〉 of the particles reaching r = 0, as

E0
� �

¼
R Ee

0
Ej 0;E; tð ÞdE

R Ee

0
j 0;E; tð ÞdE

ð28Þ

with

Ee

E0h i ¼
Ee

E0

� 

ð29Þ

the average fractional energy loss. In the limit of

RVsw

k
� 1; ð30Þ

equation (28) was solved by Parker [1966] to give

E0
� �

� Ee ¼ ��

3
Ee RVsw

k
; ð31Þ

or in terms of the fractional energy loss as

Ee

E0

� 

¼ 1� G

3

RVsw

k

� ��1

; ð32Þ

satisfying the limiting case of 〈E e/E0
〉→ 1 when k→ ∞, i.e.,

for very large values of k the CRs will loose no energy.
[36] In the time backwards SDE approach used here, CRs

are introduced at r = 1 AU with an energy of E0. They then
propagate toward the outer heliosphere, continually gaining
energy adiabatically, and reach the HP with an energy of
Ee > E0. In this section, the SDE model incorporates con-
vection and uses a value of E0 = 0.1 GeV. Figure 7 (left)

Figure 7. (left) The normalized probability of Ee from the SDE model for 10000 pseudo-particles for
(top left) protons and (bottom left) electrons. (right) The scatter point shows 〈Ee/E0

〉 as a function of k,
as calculated from the SDE model. The solid line is the analytical approximation of equation (32) for rel-
ativistic CRs, the dashed line for non-relativistic CRs and the horizontal dotted line shows the limiting
case of 〈Ee/E0

〉 = 1.
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shows binned values of E e for 10000 individual pseudo-
particles; Figure 7 (top left) for protons and Figure 7 (bottom
left) for electrons. As expected, E e > E0, with no apparent
upper limit to the fractional energy loss. The expectation
value 〈E e/E0

〉 is calculated, and shown as a function of k in
Figure 7 (right) as scatter points. As expected, the fractional
energy loss increases with decreasing values of k. The solid
line shows the analytical approximation of equation (32), for
relativistic CRs (G = 1), the dashed line the same approxi-
mation but for non-relativistic CRs (G = 2), while the hori-
zontal dotted line shows the limiting case of 〈Ee/E0

〉 = 1. The
SDE electron solutions and the G = 1 approximation agrees
quite well. For protons, the fractional energy loss is expected
to be somewhere in between the G = 1 and G = 2 approx-
imations, and this is indeed what the SDE model gives.
These good comparisons between the results indicate the
validity of the SDE approach in calculating the energy losses
suffered by CRs.

5. The 3D SDE Model: Galactic Electrons
and Protons

[37] Using the 3D SDE modulation model, energy
spectra at Earth are shown in Figure 8 for galactic elec-
trons (Figure 8, left) and protons (Figure 8, right). Using
a Parker [1958] heliospheric magnetic field (HMF),
solutions are shown for both the A < 0 (Figure 8, left)
and A > 0 (Figure 8, right) HMF polarity cycles, illus-
trating the effect of gradient and curvature drifts in the
model. The drift velocity is incorporated into the model
as discussed by Strauss et al. [2011], which includes
curvature, gradient and neutral sheet drifts. For the latter, a
flat current sheet drift model is adopted. For the diffusion

coefficient parallel to the mean HMF, the following form
was used

kk ¼ k0

P

P0

1þ r

r0

� �

ð33Þ

with r0 = 1 AU, P0 = 1 GV and k0 = 25 PUs for protons
and electrons above 1 GV. Below 1 GV, an energy
independent kk was used for electrons, with P/P0 ≡ 1.
Furthermore, isotropic perpendicular diffusion with k?r =
k?q = 0.02kk [Giacalone and Jokipii, 1999] was assumed.
The diffusion tensor is thus qualitatively similar to the one
used by Potgieter and Moraal [1985].
[38] Analytical approximations of CR energy losses in the

spatially 3D scenario are impossible and must thus be stud-
ied with numerical modulation models. The traditional way
of computing this is shown for illustrative purposes in
Figure 9: At the HP, a near Gaussian input spectrum is
specified. This input spectrum is then modulated, with the
resulting distribution at Earth investigated. In Figure 9,
nine of these peaks are introduced at the HP for electrons
(Figure 9, left) and protons (Figure 9, right). The corre-
sponding modulated distributions at Earth are also shown
(with the numbers labeling the individual pairs of solu-
tions), with the intensities normalized at the HP to LIS
levels. Examining how these initial peaks modulate, gives
some indication of the energy losses suffered by the CRs.
Normally, only the shift in energy of the peak’s maxi-
mum intensity is taken as the energy loss, i.e., for pro-
tons, peak 7 is introduced at the HP with E ≈ 1 GeV,
while it ends up at Earth at E ≈ 0.5 GeV, giving an
energy loss of DE ≈ 500 MeV. This however does not give
the entire picture as the modulated intensities at Earth, as

Figure 8. Modeled energy spectra at Earth, with respect to the LIS at R = 120 AU, for galactic (left) elec-
trons and (right) protons for both HMF polarity cycles, indicated by A < 0 and A > 0, using the 3D SDE
modulation model.
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all of the peaks have a long “tail” distribution to lower
energies. Characteristic of adiabatic cooling, proton spectra
at Earth follow a j ∝ E spectrum at low energies, while

electrons follow a j ∝ E2 trend [see, e.g., Moraal and

Potgieter, 1982]. To calculate the “true” energy loss, the
energy density of both the peaks and their counterparts at
Earth, has to be integrated and the total energy density cal-
culated. As demonstrated in the previous sections, the SDE
approach does not have this limitation because the energy
losses can be calculated directly for each pseudo-particle.
[39] A good test for the calculated t and DE is illustrated

in Figure 10. Above 1 GV, all transport coefficients for
protons and electrons (as used in this study) are assumed to
be exactly the same. The propagation times and rigidity loss
of protons and electrons (in opposite drift cycles for the
oppositely charged CRs) above 1 GV should thus be iden-
tical; a fact illustrated in Figure 10. The figure shows the
rigidity loss (keeping in mind that the rigidity loss rate is
independent of G) as a function of the propagation time at
5 GV and 10 GV and different drift cycles. We can thus
summarize that protons and electrons at the same rigidity,
will loose the same amount of rigidity adiabatically and
have identical propagation times, if they had identical
transport (drift and diffusion) coefficients.
[40] The modeled energy losses and propagation times of

protons (Figure 11, top) and electrons (Figure 11, bottom)
are shown as a function of energy (E0) for both the A > 0
(Figure 11, left) and A < 0 (Figure 11, right) HMF polarity
cycles. In contrast to the results of the previous sections, the
3D scenario is much more complex because of the addition
of an energy dependent diffusion tensor and CR drifts.

Figure 10. The rigidity loss of CR electrons and protons,
plotted as a function of propagation time for P0 = 5 GV
and 10 GV and the two polarity cycles.

Figure 9. Modeled energy spectra at Earth for (left) electrons and (right) protons for the A < 0 HMF
cycle using the 3D SDE model to illustrate the total effect of adiabatic energy losses under these drift con-
ditions. Instead of a continuous function for the LIS, Gaussian peaks are specified at different energies
(dashed grey lines), while the resulting spectra at Earth (for each of the numbered peaks independently)
are shown as the solid lines. The dotted lines are the corresponding LIS and modulated solutions from
Figure 8.
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Focussing first on protons, we note that for both drift cases
the propagation time decreases with increasing energy, as
expected because both the diffusion tensor and drifts
increase with energy (rigidity). The propagation time is also
much larger in the A < 0 than the A > 0 cycle. This is con-
sistent with general drift considerations: For the A < 0 cycle,
the protons that reach Earth have to drift inward along the
heliospheric current sheet (HCS), taking a much longer time
to reach Earth than protons which simply drift toward Earth
from the polar regions in the A > 0 cycle. The energy losses
suffered by the protons also decrease with increasing energy
and is also larger for the A < 0 drift scenario. For electrons,
the propagation times are qualitatively similar to those of the
protons. The propagation time, 〈t〉, decreases with energy
and is large for the A > 0 case (i.e., the drift cycle when
electrons drift inward along the HCS). More intriguing is the
fact that t is much larger for electrons than protons at the
same energy. For protons and electrons at the same energy,

the rigidity of the protons is much higher, and as the trans-
port coefficients are expressed in terms of rigidity, the pro-
tons will have a much larger mean free path and drift speed
and thus propagate faster than the electrons. The energy
losses of electrons peak at intermediate energies, and
decrease at high and low energies. This decrease at low
energies (being absent for the proton case) is due to the
electron diffusion coefficients being energy independent
below E ≈ 1 GeV. Electrons at, e.g., 10 MeV and 100 MeV
will thus have the same diffusion coefficient, but the
100 MeV particles will loose more energy as the energy loss
rate is proportional to E. More noteworthy is that the energy
losses of electrons (at least at 100 MeV) are comparable
to those of the protons. This is in contrast to the widely
believed paradigm that electrons loose relatively little
energy adiabatically [e.g., Langner and Potgieter, 2004;
Nkosi et al., 2008]. This paradigm is based on the absence
of the adiabatic limit j ∝ E2 in electron spectra observed

Figure 11. Calculated propagation times 〈t〉 and energy losses 〈DE〉 of (top) protons and (bottom) elec-
trons are shown for the (left) A > 0 and (right) A < 0 HMF polarity cycles. The propagation times are
shown as black fills, while energy losses are indicated by grey fills.
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and modeled at Earth. As however discussed by Moraal
and Potgieter [1982], this limit will only be seen when
the net CR streaming is negligible; something that is more
difficult to satisfy for electrons than protons. It might seem
contradictory that electrons have longer propagation times
than protons, yet loose equivalent amounts of energy adia-
batically. One must however keep in mind that the energy
loss rate is also proportional to G (see equation (24)), and
that G is always larger for protons (for the energies consid-
ered here) than for electrons (see also Figure 7, right). This
again illustrates the difficulty in calculating and interpreting
the energy losses suffered by CRs.

6. Summary and Conclusions

[41] The propagation times and energy losses of CRs in
the supersonic solar wind were calculated by making use
of a SDE numerical modulation model with increasing
complexity.
[42] First, the propagation times t of CRs were calculated,

for a spatially 1D scenario, with and without solar wind
convection included in the model. These results were then
compared successfully to analytical approximations, vindi-
cating the SDE approach. The results indicate that t is
highly dependent on k, as expected, and is generally longer
when solar wind convection is included in the model as
CRs find it more difficult to penetrate to the inner helio-
sphere. For the aforementioned scenario, the analytical
approximations of O’Gallagher [1975] seem to be insuffi-
cient to describe t. The reason for this is that he used the
approximation k� 1, a non-physical assumption because at
these very small values of k, convection dominates the dif-
fusive process and CRs are unable to enter the heliosphere.
The fractional energy loss of CRs was calculated, for the
spatially 1D case and also compared successfully to analyt-
ical approximations. As with t, we found that the energy
loss increases with a decrease of k. We also demonstrated
that the energy loss of non-relativistic CRs is much larger
than for relativistic particles due to the dependence on G

(equation (24)) of the energy loss rate.
[43] With the SDE model thoroughly benchmarked, t and

DE (the average energy loss) were calculated for CR elec-
trons and protons, for a spatially 3D scenario. The calculated
values depend again strongly on the assumed transport
(diffusion and drift) coefficients, with our choices of these
parameters leading to t decreasing with increasing energy.
The drift cycle dependence of t was also illustrated, with
CRs having longer propagation times in the HMF cycle
when they drift inward along the HCS toward Earth. We
found that t is much larger for electrons than protons at the
same energy, as the electrons have a smaller mean free path
(above rigidities of 1 GV for our choice of the diffusion
tensor). The energy loss DE for protons also decreases with
increasing energy and is largest in the A < 0 drift cycle. Due
to the assumed energy independence of K for electrons in
this energy range, we found however that DE decreases at
low energies. Moreover, we find DE for electrons to be
smaller than for protons with the same energy, but larger
than previously thought.
[44] In contrast to previous studies [e.g., Gervasi et al.,

1999], we are careful not to state that DE ∝ t. Referring
back to equation (24), this will only be the case when the

energy loss rate (in the solar wind frame) is constant. The
energy loss rate is however dependent on G, which is energy
dependent, as well as E itself, making the process per defi-
nition non-linear. Moreover, it is also dependent on the

quantity r ⋅ V
!
sw. In this work we focused on the supersonic

solar wind inside the TS, where r ⋅ V
!
sw > 0 and adiabatic

cooling consequently occurs. In the heliosheath however, a

mixture of r ⋅ V
!
sw > 0, r ⋅ V

!
sw = 0, and r ⋅ V

!
sw < 0 can

occur. When r ⋅ V
!
sw < 0, adiabatic heating of CRs can take

place [e.g., Langner et al., 2006] and equation (24) changes

to an energy gain rate. When r ⋅ V
!
sw = 0, no adiabatic

energy changes can occur, even in the limit when t → ∞.
[45] For future study, refinements to the present SDE

model will be made in order to examine the effects of
inserting a wavy current sheet and calculating, e.g., 〈t〉 as a
function of solar activity, as well as the addition of a more
realistic heliospheric geometry, i.e., to also include the effect
of the heliosheath on the present results. Energy losses, on
average, will be relatively small in the heliosheath, since

r ⋅ V
!
sw ≈ 0. CR re-acceleration at the solar wind termina-

tion shock still needs to be investigated with the present
model. This too would however not be significant for
galactic cosmic rays as the Voyager spacecraft observed a
much weaker than expected shock, with a compression ratio
of only �2. In conclusion, comparing the energy losses that
CRs experience inside the heliosphere as calculated with a
SDE model, which includes CR drifts, with previous mod-
eling results [e.g., Potgieter and Moraal, 1985] we find
remarkable good agreement for both HMF polarity cycles. In
addition, the SDE approach offers an exact method for cal-
culating energy losses, directly from the numerical scheme,
in a full 3D heliosphere, for which no analytical solutions are
possible. The same applies to the calculation of the CR
propagation times with the SDE approach. Comparing with
ADI-based modulation models, the SDE approach gives
significant additional insights into the modulation process,
in particular into a subtle process such as adiabatic energy
losses as described above.

[46] Acknowledgments. Philippa Browning thanks the reviewers for
their assistance in evaluating this paper.
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