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Abstract

We study the proper learnability of axis-parallel concept classes in the PAC-learning and exact-
learning models. These classes include union of boxes, DNF, decision trees and multivariate poly-
nomials.

For constantdimensional axis-parallel concefisve show that the following problems have
time complexities that are within a polynomial factor of each other.

1. Cis a-properly exactly learnable (with hypotheses of size at madsnes the target size)
from membership and equivalence queries.

2. Cisa-properly PAC learnable (without membership queries) under any product distribu-
tion.

3. There is am-approximation algorithm for the MiIEQUIC problem (given @ € C find a
minimal sizef € C that is logically equivalent tg).

In particular, if one has polynomial time complexity, they all do. Using this we give the first
proper-learning algorithm of constant-dimensional decision trees and the first negative results in
proper learning from membership and equivalence queries for many classes.

For axis-parallel concepts over a nonconstant dimension we show that with the equivalence
oracle(1) = (3). We use this to show that (binary) decision trees are not properly learnable in
polynomial time (assuming=PNP) and DNF is nott-properly learnableg(< 1) in polynomial
time even with an NP-oracle (assumigg # PNP).

Keywords: PAC learning, exact learning, axis-parallel objects, minimizing formula size, Boolean
formulas.

1. Introduction

We study the proper learnability of axis-parallel concept classes in the PAC-learning model and
in the exact-learning model with membership and equivalence queries. ANJ&E5D of axis-
parallel concepts is a class of Boolean formuéh, T», ..., T;) whereg@is from a class of Boolean
formulas @ (such as monotone clauses, decision trees, etc.) {@&rjdare boxes infN.,, where

Nm = {0,...,m—1}, that satisfy a certain properfy (such as disjointness, squares, etc.). These
classes include union of boxes, union of disjoint boxes of boxes, decision tree partition, and for

the Boolean casM', they include DNF, decision trees, disjoint DNF and multivariate polynomials.
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The terma-proper learning refers to learning where the final hypothesis and the intermediate
hypotheses used by the learner for equivalence queries, have size (number ofib@tanost
a times the size of the target formula. A class is properly learnable if it is 1-learnable. Table 1
summarizes the results for thedimensional Boolean case.

Upper Bound Lower Bound
Type |Complexity Source Type |Condition Source
DNF | Nonproper 56(n'/3) Klivans and Proper | P#NP Pillaipakkamnatt
Servedio (2001 & Raghavan (1996)
Nonpropef NP-oracle Bshouty et <-Propelf 35 £ PNP [ours]
al. (1996) 2

Hellerstein and
o(v/n/logn)-Proper | o shavan (2002)

CDNF | Nonproper poly(n) | Bshouty (1995
Proper | =h-oracle Hellerstein

et al. (1996)
Proper poly(n) OPEN
Disj- |Nonproper poly(n) Bergadano
DNF etal. (1996) || Proper | P#NP OPEN
Proper | =-oracle OPEN
DT Nonproper poly(n) | Bshouty (1995 Proper | PANP [ours]
Proper | =-oracle OPEN
MP Nonproper poly(n) Bergadano
etal. (1996) || Proper | P#NP OPEN
Proper | =-oracle OPEN
MMP Proper poly(n) Schapire and
Sellie (1993)

Table 1: Result summary for the Boolean domain 2).

Hellerstein et al. (1996) show that proper learnability of a dlaigssing a polynomial number of
membership and equivalence queries is possible in a machine with unlimited computational power
if and only if C haspolynomial certificates They also show that i€ has a polynomial certificate
thenC is properly learnable using an oracle Eij (the cIasst{ contains all languages of the form
{s| IwWvxayvze(s,w,x,y,z)} where@is a predicate computable in time polynomial|g). They
then give a polynomial-size certificate for CDNF (a polynomial-size DNF that has a polynomial-
size CNF). This implies that CDNF is properly learnable using an oraclgjfoFor DNF, decision
trees (DT), disjoint DNF (DNF where the conjunction of every two terms is 0) and multivariate
polynomials with nonmonotone terms (MP), it is not known whether they have polynomial certifi-
cates. Therefore it is not known if they are properly learnable. Pillaipakkamnatt and Raghavan
(1996) showed that DNF is not properly learnable unless P=NP. On the other hand, Bshouty et al.
(1996) show that any circuit is (nonproperly) learnable with equivalence queries only and the aid of
an NP-oracle. The best algorithm today for learning DNF runs in tiR{E'? (Klivans and Serve-
dio, 2001). Recently, Hellerstein and Raghavan (2002) show that DNF has no polynomial certificate
and is notf (n)-properly learnable for an§(n) = o(,/n/logn).

CDNF, decision trees, disjoint DNF and multivariate polynomials dN¢rare (nonproperly)
learnable in polynomial time from membership and equivalence queries (Bshouty, 1995; Bergadano
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et al., 1996; Beimel et al., 2000). Multivariate polynomials with monotone terms (MMP) are prop-
erly learnable (Schapire and Sellie, 1993).

In this paper we use a new technique for finding negative results for learning from membership
and equivalence queries (see Theorem 5). We use Theorem 5 and the result of Zantema and Bod-
laender (2000) to show that if a decision tree d\gt is properly learnable from membership and
equivalence queries then P=NP. We then use the result of Umans (1999) and show that if DNF over
N.J'is s-properly learnable with an NP-oracle, whevis the size of the DNF, theR5 = PNP (the
classz§ contains languages of the forf | Iyvz@(x,y,2)} where@is a predicate computable in
time polynomial in|x|). We show our results are still true even if the learner can use other oracles
such as subset, superset, disjointness, etc. ThereforgNPRhen decision trees and DNF are not
properly learnable from membership and equivalence queries (and all the other oracles defined in
Subsection 2.3).

We then consider classes oW, where the dimension is constant. Table 2 summarizes our
results for axis-parallel classes oW for a constant dimensiom

Learnable in Not Learnable
time poly(logm) if P#£NP
Union of t Boxes logt-Proper Proper
Disjoint Union Boxes | dim=2 Proper || dim>2 Proper
Decision Tree Proper
XOR of Boxes a-Proper OPEN

Table 2: Our results for constant dimensiorconstant).

For axis-parallel classes over a constant dimension we show that these classes have polynomial
certificates. Therefore by the result of Hellerstein et al. (1996), they are properly learnable from
membership and equivalence queries usinggheracle. We further investigate the learnability of
these classes and show that an NP-oracle is sufficient for proper learnability. We also show that the
following problems have time complexities within a polynomial factor (in the size of the target) of
each other.

1. Cis a-properly exactly learnable from membership and equivalence queries.
2. Cisa-properly PAC learnable (without membership queries) under any product distribution.

3. There is arm-approximation algorithm for the M EQuIC problem (given &g € C find a
minimal sizef € C that is equivalent t@).

4. C is exactly learnable with a learning algorithm that uses all the queries (membership and
nonproper equivalence, subset, superset, etc.) and outputs a hypothesis that has size at most
o times the target size.

There are some surprising results that follow from this. The first is>(2). It is known that
(proper) learnability from equivalence and membership queries implies (proper) learnability in the
PAC model with membership queries (Angluin, 1987). Here we show that in the case of finite-
dimensional space and for the product distribution we can change a learner that depends on mem-
bership queries, to a learner that learns without membership queries. Another surprising result that
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we show from this is: a decision tree over any constant dimensiomperly learnablefrom mem-
bership and equivalence queries. This contrasts with the Boolean case for which proper learning
is NP-hard. Then we show that decision trees d\igrfor constantn are properly PAC learnable
under any distribution.

Our result also shows that union of disjoint DNF in two dimensions has a polynomial-time
proper-learning algorithm. On the other hand, union of boxes and disjoint union of boxes over
dimensions greater than two are properly learnable if and only if P=NP. Union of boxestis log
properly learnable whereis the number of boxes, andR of boxes isa-properly learnable for
some constard.

All the results in the literature for domains of constant dimension are for nonproper learning of
the above classes in the exact-learning model and there were no negative results for proper learning
of these classes from membership and equivalence queries.

Chen and Maass (1994) give a proper exact learning of one box from equivalence queries.
Beimel and Kushilevitz (1998) show thbt;, disjoint DNF is (nonproperly) learnable from mem-
bership and equivalence queries, for any dimensiomhe output hypothesis is represented as a
N multiplicity automaton. Sinc®,) multiplicity automaton contains the class Nf; multivari-
ate polynomials (Beimel et al., 2000), the clasd\pf multivariate polynomials is (nonproperly)
learnable in polynomial time from membership and equivalence queries. Bshouty et al. (1998) give
a learning algorithm thad(dInt)-properly learns a union dfboxes ind-dimensional space. This
result is also implied by our work.

There are many algorithms in the literature that learn a union of boxes in constant-dimensional
space (Chen and Homer, 1996; Maass and Warmuth, 1998), and even any combination of thresholds
in constant-dimensional space from equivalence queries only (Ben-David et al., 1997; Bshouty,
1998). All of these algorithms are nonproper and return hypotheses that may be arbitrarily large.

2. Preliminaries

In this section we give some definitions and notation that we will use in the rest of the paper. We
also give some preliminary lemmas that will be used in subsequent sections.

2.1 Learning Models

The learning criteria we consider agact learningandPAC learning

In the exact-learning model there is a functibrcalled thetarget function f: N, — {0,1}
(whereNy,={0,1,...,m—1}), which has a formula representation in a classf formulas defined
over the variable séf,, = {x1,...,X,}. The goal of the learning algorithm is to halt and output a
formulah € C that is logically equivalent td.

To gain information about, an exact-learning algorithm might makereembership quenby
sending an assignmeatc N, to amembership oracleMQ; which returns the value M@a) =
f(a). The learning algorithm may also performeguivalence querpy sending a hypothesisc C
to anequivalence oracleEQ; which returns either “YES”, signifying thdt is logically equivalent
to f, or acounterexample buch thah(b) # f(b).

We say that a clagss of Boolean functions isi-properly exactly learnablein polynomial time
from membership and equivalence queries if there is a polynomial-time algofitloch that for
anyf:N-— {0,1} inC,
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e A makes a polynomial number of membership and equivalence queries (polynomial in
logmand|f|),

e all hypothese$ € C that A uses for equivalence queries, have size at rmdsnes the size
of f,

e A outputs a hypothesis € C that is logically equivalent td, and has size at mosttimes
the size off.

If a =1, we omit thea and simply say that is properly exactly learnable
The PAC-learning model is as follows. There is a distributiddefined over the domail,;,.
The goal of the learning algorithm is to halt and output a fornfulaat ise-close tof with respect
to the distributionD, that is,
FI;r[f(x) =h(x)] >1-c¢.

We say that is ang-approximation off with respect to the distributioD. In the PAC orexample
querymodel, the learning algorithm asks for an example fromeak&mple oracleand receives an
example(a, f(a)) wherea is chosen fronf\ ;1 according to the distributiob.

We say that a class of Boolean functidDss a-properly PAC learnablaunder the distribution
D in polynomial time if there is an algorithrA, such that for anyf € C overV, and anye andJ?,
algorithmA runs in polynomial time, asks a polynomial number of queries (polynomia|llimgm,
1/¢, 1/ and the size of the target function) and with probability at leasdloutputs a hypothesis
h € C that is ane-approximation off with respect to the distributioD. The size ofh is at most
o times the size of . It is known (Angluin, 1987) that if a clasS is a-properly exactly learnable
in polynomial time from equivalence queries (and membership queries) thea-jprisperly PAC
learnable (with membership queries) in polynomial time under any distribdtion

We say that a distributioD is aproductdistribution overlN; if

D(X1,...,%) = D1(X1)D2(X2) - - - Dnn(Xn)

where eaclD; is a distribution ovelN.

2.2 Axis-Parallel Concept Classes

A Boolean functiorover N,Jl is a functionf : N3 — {0,1} on variablesv;, = {xq,...,Xa}. The
elements oN," are callecassignmentsFor an assignmeite N,7, theit" entry ofa will be denoted
ai, wherea; € Ny, This is the assignment for variabkg Our results easily extend to Boolean
functions oveMNp, x --- x Ny, , but we will continue to us&l,, for its notational simplicity.

An Ny literal is a function with either of the following forms.

_ _J 1 ifx>a . 1 ifx<a
bz = { 0 otherwise, bi<al= { 0 otherwise,

wherei € {1,...,n} anda e N,U {m}. The literal on the right is the negation of the one on the
left. A Nl monotone literakefers to one of typéx, > a). If m= 2, we have the familiar Boolean
variablesx;, X; and the constants 0,1.

An N, termis a product (conjunction) d¥,| literals. For example, if = 3, then

T=MX>2]AX <5 A[X>9

161



BSHOUTY AND BURROUGHS

is anN 3 term. Note that the conjunction of a term with literals of the fdwm> 0] or [x < m], is
logically equivalent to the term itself. Thus we may write

T=2<x <5 A[9<x <1A0<X3 < 1]],

wherela < x < b] def [xi > a][x < b|. Therefore, every terN,) term can be written as

n

Ti= N\ [aik < x<bigl,
k=1

whereg x, bk € NmU {m}.

Geometrically, each term corresponds to a box in-dimensional space. That is, the points
x € N on whichT(x) = 1 fall within an n-dimensional box whose sides are parallel to the axes.
For this reason, the classes built from these terms will be caktedparallel concept classes

An Nl monotone ternis anN,}) term that uses only monotorié¢, literals. AnN,) DNFis a
disjunction ofN] terms, and &, monotone DNFs a disjunction ofN,) monotone terms. AN
multivariate polynomials a sum of terms (mod 2), and &, disjoint DNFis anN,) DNF where
the conjunction of every two terms is O (geometrically, the terms are representeditmgnsional
boxes that do not overlap).

An N, decision tregN] DT) is a full binary tree (that is, every parent node has two children)
whose nodes are labeled withy literals and whose leaves are labeled with constants fi@r}.
Each decision tre& represents a functiofiy : N — {0,1}. To computefr(a) we start from the
root of the tre€l : if the root is labeled with the literdlandl (a) = 1, thenft (a) = fr;(a) whereTris
the right subtree of the root (that is, the subtree of the right child of the root with all its descendents).
Otherwise,fr(a) = fr, (a) whereTy is the left subtree of the root. T is a leaf thenft (a) is the
label of this leaf.

In general, for every set of Boolean functiofs(e.g., XOR, OR, etc.) andproperty function
Pt : (Nh-term)! — {0, 1} that is computable in polynomial time, (€.8¢(T1,..., ;) =1if Ty,..., T
are pairwise disjoint) we can build a concept oWéf as follows. We define the axis-parallel
concept clas® ®[N,] to be the set of allT,...,T;) whereg e ® and{Ti} areN terms with
Pi(Ti,...,Tt) = 1. If Py = 1 then we writed[N,1)].

For example, leth = {x1,X1 VX2, X1 VX2V X3, - - - } be the set of monotone clauses and define the
property functionP; such thatP;(Ty,..., ;) = 1 if and only if T, ATj = 0 for every 1<i < j <t.
ThenP ®[N," is the set of disjoint DNF (in the Boolean domain) @h@®[N,2] is the set of unions
of disjoint rectangles in two-dimensional space.

The size of a formuld € P®[N ], which we will denotesize o ( ), will be defined to be the
smallest number d¥l ) termsTy, ..., T; such that for somee @, f =h(Ty,...,T;) andP(Ty,...,T;) =
1. For the class of decision trees, the size will be the minimum number of non-leaf nodes used by
anN, decision tree equivalent th

Our main result uses a technique in which we compress the domain of a function in an attempt to
extract its main features. That is, we will map a functionN,; — {0,1} to f: Ny, x -+ X Ny, —
{0,1} for which eachm; < m. We need such a mapping (called a projection) to retain its relative
ordering of points. Anonotone projectiorfrom Ny to Ny is a functionM : Ny U{m'} — Npu{m}
such that for every, j € Ny wherei < j we haveM (i) <M(j) andM(m') = m. Extending this ta
dimensions, a monotone projecti : (Ny U{m })" — (NpyU{m})"isM = (My,...,M,) where
eachM; : Ny U{m'} — N,U{m} is a monotone projection. We say tt@t= P ®[N] is closed
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under monotone projectioif for any monotone projectioM wheneverP (T,...,T;) = 1 we also
haveP (T:M ..., TtM ) = 1. A class with the property that the boxes be equilateral is an example
of a class not closed under monotone projection. Notice that=H¢@(Ty,...,T;) € ®[N] then

fM =@TM,....,TiM) € ®[N]. If the classC = P ®[N{] is closed under monotone projection
thenfM € P®[NT].

To map functions on compressed domains to functions on larger domains, we defth&althe
monotone projection For a monotone projectiol : Ny U {m'} — Ny U {m} define the dual
monotone projectioM* : NyU {m} — Ny U{m} whereM*(y) is the minimalx such that (x) >
y. SinceM(m') = m, the dual monotone projection is well defined. For a monotone projection
M = (My,...,My,) we defineM * = (M7,...,M}).

The monotone projection that we will use in this paper islétgce projection. Since it will
be used for classes of constant dimension, we willdiger the dimensiom. A lattice in N,d is
L=L;x---x Lgwhere eact; C N, Notice that a lattice represents a subsampling of the domain,
in which only certain rows (those ig) are represented for each dimension

Let f € @(Ty,...,T) € P[N,J] whereg € ® and

d
Ti= Alaik < % <bigl.
k=1

LetL =Ly x --- x Lq be a lattice irN,%. Fora,b € N, define
laj, =max({x € Li|x<a}u{0}),

[b], =min({x € L; | x>b}u{m}).

Note that|a|(, is @ monotone projection, whild], is its dual monotone projection. For an assign-
mentv € N, we define|v|_ = (|vi]L,,---, [Vd]L,)- Define

d
T = Allaik]u < % < [bik]L]
k=1

and fl = @(T},..., Ti"). We call f- thelattice projectionof f onL. Some useful properties of the
lattice projection are given by the next lemma.

Lemma 1
1. fH(u) = f(lufu) = fH(Lul).
2. sizeo(fl) <sizee(f).

3. LetP ®[N 9] be closed under monotone projection. For any functianA®[N 9] and lattice
L we have ¥ € P®[NY].

4. Let f=@(Ty,...,Ty) wherepe ®and T = /\ﬂ:l[a,-,k <X < byy]. If for every i and k we have
aj k, bi k € L then f=f.
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Proof. For (1) it is enough to examine the literals. Fdr(u) the literals ard[a],, < ux < [b]L ],
which (since|a],, is a monotone projection), is equivalent to

[Tl < Ly < bl | = [aly < Ludu < bl

which is the corresponding literal ift-(|u]). Similarly, f(|u].) has literal§a < [ux|., < b], which
(since[b]., is a monotone projection), is equivalent to

Ha:‘ L = HU|JLk~‘ < “ﬂ Lk] = ”8:‘ L < Uk | L < “jl Lk]

which is also the corresponding literal fh(|u]).

Since the lattice projection does not increase the number of terms (although it may render some
terms redundant), (2) follows.

For item (3), note that the lattice projection does not change the domain. ABOT4f..., T;) =
1thenPy(TE, ..., ) = 1. Thusfl remains in the same class &s

Item (4) follows from the fact that i& x,bi x € Lk then[a; x|, = aix and [b; k], = bix, which
implies T = Ty and hence: = (T},..., TH) = @(Ty,..., Th) = f. O

It is not necessary that each dimension have the same size. All the results in this paper are also
true for the clas® ®[Ny, x --- x N |. In that case a monotone projectionNk = (My,...,Mp)
whereM; : Nyy — N and for f € P®[Np, x -+ x Nm ] we havefM € PO[Nq; x -+ x Ny .

Constructiveness Assumption\We assume that there is an algorithm “Construct” such that for any
function : Npy, x --- x Ny, — {0,1} that is computable in polynomial time, Constriye}f runs in

time poly([1m) and returns some formuac P ®[Np, x --- x Ny, ] that is equivalent tq, if there

exists such a formula, and returns “error” otherwise. Such algorithms exist (and are in fact very
trivial) for all the classes presented in this paper.

2.3 Oracles

In addition to the example, membership and equivalence oracles, we will also consider the following
oracles defined by Angluin (1987).

e Subset oracle Suk (h) for h € C. This oracle returns ‘YES’ ih = f and returns a coun-
terexamplea such that(a) = 1 andf(a) = 0 otherwise.

e Superset oracle Sup(h) for h e C. This oracle returns ‘YES’ ih < f and returns a
counterexampla such thah(a) = 0 andf(a) = 1 otherwise.

¢ Disjointness oracle Disj; (h) for h € C. This oracle returns ‘'YES’ ih A f = 0 and returns a
counterexampla such thah(a) = 1 andf(a) = 1 otherwise.

e Exhaustiveness oracleExh (h) for h e C. This oracle returns ‘YES’ iiiv f =1 and returns
a counterexampla such that(a) = 0 andf(a) = 0 otherwise.

Given a set of oracle@, we say thaO is easy(resp. NP-easy) fd€ if every oracle inO can be
simulated in polynomial time fo€ (resp. simulated in polynomial time using an NP-oracle), where
the simulation uses the target functibn
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Lemma 2 Let ® be a set of Boolean functions. For a constant dimension d, membership and
equivalence oracles and all the above oracles (subset, superset, etc.) are eady fir

Proof. Suppose we have a targétand wish to simulate an orack (h). Given a hypothesis,
we take all the literal$xQd] for Q € {>,<} in the terms of the target and the formuleh. Let

A be the set of all tha’s in those terms and the two constants 0 andSupposeA = {0 = a; <

ap < --- < & = m}. Notice thatt < 2d(s, + st + 2) wheres, ands; are the number of terms im
and f, respectively. It is easy to see that the functibresd f are constant functions 0 or 1 in each
subdomaina;,,a,+1) X --- X [a@,,&4+1). Thus we only need to compafeandh on a single point
in each subdomain. The number of subdomair(s-s1) which is polynomial for any constant

|

2.4 Polynomial Certificates

Following the definition of Hellerstein et al. (1996), the cl&s- P ®[N ] has polynomial certifi-
cates if for everyf € C of sizet there areg = poly(t,n) assignmenté = {a{, e ,a(‘;} such that for
everyg € C of size less thah, g is not consistent witlf onA. That is,g(a) # f(a) for somea € A.

Lemma 3 Let d be constant. If G- P®[NY] is closed under monotone projection then it has
polynomial certificates.

Proof. Let f = @(T4,...,T;) wheregpe ® andT, = A‘k’:l [@i ) < X < Dbjk]. LetLyx = {ajk,bix |1 =
1,...,t}andL = L1 x --- x Lg. Notice that/L| < (2t)4 = poly(t) for constand. We now show that
if g P®[N,] is consistent withf on L thensize ¢ (g) > t.

Sinceg is consistent withf on L, by Lemma 1 parts 1 and 4, we hage(x) = g(|x|L) =
f(|x]L) = f*(x) = f(x). By Lemma 1 part 3 we havg- € P ®[N9]. Therefore, by Lemma 1 part
2 we havesize ¢ (Q) > Size@ ¢ (g-) = sizev o (f). O

It follows from Hellerstein et al. (1996) that@ = P ®[N 9] is closed under monotone projection
thenC is learnable from membership and equivalence queries using an oraﬂ?x flor this paper
we will show that an NP-oracle is sufficient.

2.5 Approximation Algorithms

We assume the reader is familiar with approximation algoritramapproximation and some of the
basic concepts in approximation theory and complexity theory. For a problem in which we seek to
minimize the size of a formula equivalent to a functibrana-approximation algorithm (foxx > 1)
returns a formuld = f that has size at most times the size of the smallest formula equivalent to

f. Given a clas€ = P @[N], we define the optimization problem Minimal Equivalent Formula
(MINEQUIC) to be the following.

MINEQuUIC
Given a formula fe C =P ®[N]].
Find a minimal size ke C that is equivalent to f.

We expect an algorithm for MIEQuUIC to run in time polynomial im and the size of.

In some cases the functiohis given as am-dimensionalm; x m, x --- x my matrix and an
algorithm is expected to find a minimal sike= C in time polynomial in[]m.. We call the matrix
theunary representationf f. Then MNEQUIC for unary inputs is defined as follows.
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MINEQUICy
Given an m x --- x m, matrix A representing a formula in € P®[Npp, x -+ x Ny .
Find a minimal size ke C that represents A.

A generalization of this problem is theIMEQuI* Cy problem. For MNEQuUI*Cy the input is given
in its unary representation, but the matrix may contaéntries which denote unspecified values.

MINEQUI*Cy
Given an m x --- x mp matrix A with entriesO,1 and x, representing a function in &
P®[Nm, x -+ x Ny ].
Find a minimal size k& C that is equivalent to f on the specified values.

Another problem that is related to the latter problem is the minimal-size consistency problem.

MINEQuUI*C
Givenaset S {(ay, f(a1)), -, (a, f(a))} where fe C=P®[N].
Find a minimal-size ke C that is consistent with S. That is,d) = (&) for all .

Some of these problems appear in the literature. For exampleEQUI N,2 DNFy is the task of
covering orthogonal polygons by rectanglesiNgQui N2 Disj-DNF, is the problem of partition-
ing orthogonal polygons into rectangles.

Next we show that MMEQuUIC and MINEQUICy are equivalent for the constant-dimensional
domain.

Lemma 4 Let C= P ®[N ] for a constant d, be closed under monotone projection. Then

1. MINEQUIC has a polynomial-time-approximation algorithm if and only if
MINEQUICy has a polynomial-time-approximation algorithm.

2. MINEQuUI*C has a polynomial-time-approximation algorithm if and only if
MINEQUI*Cy has a polynomial-time-approximation algorithm.

Proof. We prove (1). The proof of (2) is similar. Lét be a polynomial-timex-approximation
algorithm for MINEQUICy. We will describe an approximation algorithiBrfor MINEQuUIC. Let
f € C be represented agTi,...,Ty) wherep e ® andTi = AP_;[aik < X < bix]. Algorithm B

builds the sets

Lk={aixbik|i=1,... t'k=1...d}={cik<Cok<...<Cmk}

and defines the lattice = Ly x --- x Lg. By Lemma 1 we have(x) = f(x) = f(|x].) which
implies that all features of are captured by the lattice. NoB/ builds anmy x --- x myg matrix A
that stores the values 6fon the lattice. That iA[i1, ... ,iq] = f(C, 1, ,Ci,.d). Matrix Arepresents
a functionfM in whichM compresses the domain by mapping eacl;, x in Ny to its ordinal
ike{1,...,m}. Thatis,M (¢, 1,...,Ciyd) = (i1,...,iq). Clearly this is a monotone projection, as
is its inverseM ~ (i1, ...,ig) = (Ci, 1,-.-,Ciy.d). The size of matriA is at mostfim < (2t")4 which

is polynomial for constand. Algorithm B now usesA (A) to find ape ® andTs, ..., T; such that

Pi(Ty,...,TH) =1, fM =q@(T,...,T) and t<a-sizee(fM).
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Algorithm B then uses the inverdd — and returns
g= (P(T]_M 77"'7TIM 7)'

SinceC is closed under monotone projection aktl~ is a monotone projection we know that
Pi(TtM —,..., tM ~) = 1. Thereforeg € P ®[N,9]. We also have by Lemma 1,

sizee(g) <t<a-sizee(fM) <a-sizee(f).
Finally, we have
gx) =¢MM~,....TM ™) = (M) (M~ (x)) = f([x]o) = f(X).

For the other direction, suppose that we have an algorithm farBgui1C. Given anmy x - - - X
my matrix A, by the constructiveness assumption we can build a forrhe@d@ ®[Np, x --- X Ny ]
that represent& in time poly([]m) and then using the algorithm forIMEQuIC we get the desired
representation. O

3. Approximation Algorithms and Learning

In this section we show the connection between approximation and learning.

Theorem 5 If C is a-properly exactly learnable from a sé of oracles and) is easy (resp., NP-
easy) for C therMINEQUIC has ana-approximation algorithm (resp., with the aid of an NP-
oracle).

Proof. Let A be a learning algorithm that uses the oracle€ito learn a hypothesis of size at
mosta times the size of the target. Sin€eis easy forC, all the oracles ifD can be simulated in
polynomial time forC. So we can run algorithrA and simulate all the oracles in polynomial time.
Since the learning algorithm ¢s-proper, the output hypothesis has size less thiames the size of
the target. O

The next theorem follows from Lemma 4 and the Occam Theorem (Blumer et al., 1987), which
shows that one can PAC learn by taking a sufficiently-large (but polynomial) sample and finding a
hypothesis consistent with the sample.

Theorem 6 Let C= P ®[N,d] for a constant d be closed under monotone projection. The following
three problems have time complexities within a polynomial factor (in the target size) of each other.

1. Cisa-properly PAC learnable.
2. There is ara-approximation algorithm foMINEQuI*C.

3. There is ara-approximation algorithm foMINEQUI*Cy.

We now demonstrate a connection betwaeproper learning in the PAC and exact models, and
a-approximation of MNEQUIC, for classes of constant dimension.

Theorem 7 Let C= P ®[N,{] for a constant d be closed under monotone projection. The following
problems have time complexities within a polynomial factor of each other.
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1. Cisa-properly exactly learnable from membership and equivalence queries.
2. Cisa-properly PAC learnable (without membership queries) under any product distribution.

3. There is aru-approximation algorithm for thé1INEQUIC problem.

Proof. We first show(1) = (3). By Theorem 5 and since by Lemma 2 the oracles are easy, we have
(1) = (3). Now we show(3) = (1). Let A be ana-approximation algorithm for MMEQuUIC. Let
f =@Ty,...,T) be the target function wherge @, f € P®[N,d] and

d
Ti= A laik < % <bigl.
k=1
We now give a learning algorithm that uses a technique similar to one used by Bshouty et al. (1998).
However, where that learning algorithm was nonproper, ouespsoper. This learning algorithm
works as follows. At each stage it holdsetsL,,...,Lq whereLy C ({aj i, bix |i=1,...,t}U{0}).
Lk is initially {O}. The elements dfy are sorted in an increasing order:

Ly ={c1x < Cok < -+ < Cipk}-

From the latticeL = L1 x --- x Lg, the learning algorithm then builds the functidh. It saves
a tableA of size [, (|L| + 1) whereA[js, ..., ja] = f(Cj,.1,---,Cj,a)- The table can be filled
in using the membership oracle. Nof; can be defined using this table by (u) = f(|u].) =
Alj1,...,ja] where |ui],, =cj, for i =1,...,d. Sinceft e P®[NJ] (the class is closed under
monotone projection), we can use algoritfmand construct a formulh that is equivalent td-
and has size at moattimes the size of". Since the size of" is at most the size of, the size of
his at most times the size of.

After we constructh = f-(x), we ask the equivalence query B(QX)). Letv be the coun-
terexample. That isf-(v) = h(v) # f(v). Then by Lemma I (|v|_) = f-(|v]L) = f-(v) # (V).
Intuitively, sincef(|v].) # f(v), the straight line that connects the two poimtand |v|, hits the
“boundary” of f. Now we give an algorithm to find a point close to this boundary and using this
point we will add a new point to the lattidethat is equal to one newy j orb; ;.

The algorithm works as follows. It first finds the smallest vadfer somek using binary search)
such that

f(LvlJ Lisee> kaflJLk,17Vk7Vk+l7” . 7Vd) 7& f(LVlJ Lise-+ kaflJkap LVKJ Lk7vk+17’ .. 7Vd)-

Such ak exists sincef(|v|.) # f(v). Then (again with a binary search) the algorithm finds an
integerc such that v |, < ¢ < w where

f(LVlJ Lis--> LVk,]_J Lg1,C— 17Vk+17 s 7Vd) 7é f(LV]_J Lis--e> kaflJ Li1C Vikt1,- -+ 7Vd)'
Now we prove the following.
Claim 8 We have & {a;,bj«} for some i, and & Ly.

Proof of Claim 8. Let O(x«) = f(|Va]iys-- -, [ Vi1 ]y 15Xk Vit1, - - -, V). Herey; are constant so the
function 8 is a function on one variabbg. So0(xc) = @(Ty,...,Tm) where eachi; is either O, 1 or
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[ai k < X < bjk]. SinceB(c—1) # 6(c) we must have somievhere eithes; x < canda; x >c—1, or
c—1<bjxandc > bjk. Inthe first case = & x and in the second case= b k. Thusc € {a; k,bi x}.
Now notice that vi |, # Vk and|w], < ¢ < w. Thereforec was not inLy. O

We addc to Ly and update the table by adding all the missing vafegwhereve Ly x - -- x Lg.
We now show that this algorithm runs in polynomial time. Notice that the number of equivalence
gueries is at most

d
> Haibik[i=1,....t}u{0} < (2+1)d,
k=1

and the number of membership queries is at most the size of the table wigthtid)? plus the
number of membership queries needed for the binary search. We do one binary search for each
equivalence query. Therefore the algorithm uses at rfgbst 1) + (2t + 1)d?logm membership
queries.

We now give the proof that (2) is equivalent to (3).

To prove(2) = (3), we use the following standard argument (see for example Haussler et al.,
1991). Suppos€ is a-properly PAC learnable under any product distribution. We show that (3)
is true for MNEQUICy. Then by Lemma 4 the result follows. Latbe anmy x --- x my matrix,
an instance for MMEQUICy. Define the product distributioD(i1,...,iq) = l/(|‘|{’:1mi) (uniform
overNp, x --- x Npy,). We now run algorithmA with errore = 1/(2[1%,; m). The hypothesis we
get is consistent withh with probability at least - d and has size at moattimes the target size.

To prove(3) = (2), let A be ana-approximation algorithm for MEQuUIC. Letr(1/€,1/8) be
the number of examples needed to le@rmssuming we have unlimited computational power. This
r is polynomial and can be upper bounded by the VC-dimension Theorem (Blumer et al., 1989).
Let B be a polynomial-time (nonproper) PAC-learning algorithm @under any distributiorD.

Such an algorithm exists (Bshouty, 1998). The idea of the proof is very simple. Since we cannot
use membership queries, we learn a nonproper hypolfleltffai is close to the target functidnand

then useh for membership queries. We do that by first runnBido nonproperly learn the target
function with a small error. AlgorithnB will output some hypothesis Then we use the hypothesis

h to simulate membership queries fof We show that if the distribution is the product distribution
then with high probabilityh simulates membership queries fof

We define the following algorithm to learn

Proper_Learning )
1. RunB with € = 3/(3r?) wherer =r(1/¢,3/3) andd = &/3.
Let h be the output hypothesis.

. Getr =r(1/¢,3/3) examplegxV, f (xM)), ..., (x), f(x1)).
. Defineli = {xV | j=1,...;r}andL =Ly x -+~ x Lg.
. Define amy x - - x My matrix Awith iy = |Li| andAliy,...,id] = ﬁ(x(l'l),...,xé"‘)).

. RunA onAand leth: Ny x --- x Nm, — {0,1} be the output.
. Defineg = hM * whereM *(x) = M ~2(|x].) andM ~2(" . x{9) = (ig, ... ia).
. Output @)

No ok WON

In algorithm Proper_Learning, step 1 learns some functidn Steps 2-3 take examples and
build a latticeL. Since we do not have membership queries to find the value of the target on this
lattice we use instealdto find the values. Steps 4-6 build a consistent hypothesis.

169



BSHOUTY AND BURROUGHS

We now show that with probability at least1 all of the membership queries that are simulated

by h give a correct answer. Notice that since the distribution is the product distribuﬁiﬁn,. . ,xg“)
are chosen independently. Therefore,

PaG™ ey £ 104 X)) < &

and

Since the learning algorithm® andA also have failure probability at mo&f3, we are guaranteed
that algorithmProper_Learning succeeds with probability at least-1d. This completes the proof
of Theorem 7. O

As a corollary, it follows that for classes with constant dimension that are closed under monotone
projection, a} oracle is not required for proper learning. An NP-oracle is sufficient.

Corollary 9 Let C= P ®[NY] for a constant d be closed under monotone projection. Then C is
properly learnable from membership and equivalence queries using an oracle for NP.

Proof. Since MNEQUICy can be solved in polynomial time using an NP-oracle, by Theoreth 7,
is properly learnable from membership and equivalence queries using an oracle for NP. O

LetC = P ®[N,J] for a constantl be closed under monotone projection. Consider these prob-
lems:

1. C is exactly learnable with a learning algorithm that uses oracles that are eaSy dod
outputs a hypothesis of size at mostimes the target size.

2. C is exactly learnable with a learning algorithm that uses equivalence queries only. The
hypotheses given to the equivalence oracle may have size largen tiraes the target size,
but the output hypothesis has size at motimes the target size.

Since all the oracles fa€ = P ®[N 9] are easy, both problems give arapproximation algorithm
for MINEQUIC. Therefore they are equivalent to the problems in Theorem 7.

This shows that a negative result for theapproximation of MNEQUIC will give a negative
result for thea-proper learnability o€ from all of the oracles mentioned in Section 2.3.

4. Positive and Negative Results for Proper Learning

In this section we will prove positive and negative results for dhproper learning of different
axis-parallel classes.

4.1 Decision Trees

In this subsection we give our results for decision trees.
We first show the following.

Lemma 10 The class of decision trees is easy for all the oracles.
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Proof. For any@: {0,1}?> — {0,1}, and decision tree¥; for f and Ty for g, let @(f,g)(x) =
@(f(x),9(x)) (for example,@ may compute thexor of the two trees). We show that for any such
@, there is a polynomial-time algorithé such thatA can decide in polynomial time @(f,g) =0
and if@(f,g) # 0 thenA finds an assignmen such thatp(f(x),9(X)) = 1.

The algorithm takes the decision tréeand replaces each leain T; by a decision tregy = Tg.
It then takes each leafin Tg" and labels it withp(ly, l,) wherely is the label ofvin T¢ andl, is the
label ofuin T Itis easy to see that this new tree compuel g). We will call this treeT’.

Each path in the tre®@’ from its root to a leaf labeled with 1, defines a term. If all such terms
are identically 0 then there is no assignment that gives valueT! Bnd thereforep(f,g) = 0.
Otherwise, there is a term that is 1 for some assignmegand then the algorithm returms. O

Theorem 11 If there is a proper-learning algorithm foN,' decision trees from membership and
equivalence queries (and other oracles) thes RP.

Proof. Decision tree is easy for all the oracles. Then, this result follows from Theorem 5 because
MINEQuIN," decision tree is NP-complete (Zantema and Bodlaender, 2000). O

Theorem 12 There is a proper-learning algorithm fd¥ ¢ decision trees over constant dimension
d, from membership and equivalence queries.

Proof. We describe an algorithm for MEQuUICy whereC is the class oNn% decision trees. The
algorithm easily generalizes to other constant dimensioih®t A be anm x m binary matrix. Each
nodev of the decision tree foA partitions a submatrix oA into two submatrices, which are passed

to the left and right subtreas The partitioning continues until each submatrix contains only 0s, or
only 1s, and the corresponding path in the decision tree terminates with a leaf. Befibg,y)

to be the size (number of non-leaf nodes) of a minimum decision tree that partitions the submatrix
with rowsa throughx and columns throughy. Then

0 ifthe submatrix is all 0 or all 1,

S(a> b>X7y) = H { mina<i<x(5(a, bvl —1,y)+S(i,b,X,y)), } :
1+ min . = . : otherwise.
T ming (S byx, — 1) + S, j,xY)

There are at mosd(m*) submatrices, so the number of subproblems is polynomialSém@, m—
1,m— 1) can be computed in tim@®(m®). The subproblems also provide information to build the
minimal tree. For general, the algorithm has time-complexi®(dn?4*+1) which is polynomial for
constand. O

Theorem 13 There is a proper-PAC-learning algorithm ot decision trees for constant d.

Proof. The same algorithm above will also solveaMMEQUI*Cy. By Theorem 6 the result follows.
|

4.2 DNF and Union of Boxes

In this subsection we give the results for DNF, union of boxes and disjoint union of boxes. We first
prove the following.
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Theorem 14 There is are < 1 such that: If the clas& ;) DNF is $-properly learnable with mem-
bership and equivalence oracles (and all the other oracles) where s is the size of the DNF, then
55 =pPNP,

Proof. The oracles are NP-easy fbl,;' DNF and approximating MiEQuUINJ' DNF within & is
5P-hard (Umans, 1999). Then the result follows from Theorem 5. a

For union of boxes in a constant dimension we have the following.

Theorem 15 For union of boxes over constant dimensior\jYDNF) we have

1. There is a Q@dlogt)-proper-learning algorithm for union of boxes over dimension d from
membership and equivalence queries, where t is the optimal number of boxes required.

2. There is ana such that there is am-proper-learning algorithm for union of boxes over
dimension 2 from any set of oracles if and only E=ENP.

Proof. Part 1 uses the fact that MEQuI N,ﬂ DNFRy reduces to an instance of Set Cover of size
(2t)2 as described by Bshouty et al. (1998), allowing @(n(2t)2)-approximation algorithm for
Set Cover to be used. Part 2 uses the result thatBgui Nn% DNFy is NP-complete and does
not admit an approximation scheme unless\P (Berman and DasGupta, 1992). Then both parts
follow from Theorem 7 and Lemma 4. O

For union of disjoint boxesN,;, disjoint DNF) we have the next theorem.
Theorem 16 We have

1. There is a proper-learning algorithm for union of disjoint boxes over dimension 2 from mem-
bership and equivalence queries.

2. There is a proper-learning algorithm for union of disjoint boxes over dimension 3 from mem-
bership and equivalence queries if and only E=INP.

Proof. This follows from Theorem 7 and Lemma 4, and the fact that EQu Nrﬁ disjoint DNFy

is the same as the problem of partitioning a (set of) orthogonal polygons into a minimum number
of boxes. This problem is in P for dimensidn= 2 (Lipski Jr. et al., 1979), and NP-complete for
dimensiond = 3 (Dielissen and Kaldewaij, 1991). O

4.3 Multivariate Polynomials and XOR of Boxes

In this subsection we investigate the learnability of multivariate polynomials.
For multivariate polynomials with monotone terms we have the next theorem.

Theorem 17 For any constant d, there is a proper-learning algorithm K monotone multivari-
ate polynomial from membership and equivalence queries.

Proof. We give an algorithm to optimally solve theINEQUICy problem whereC is the class of
N,2 monotone multivariate polynomialx©r of monotone rectangles). A monotone tefxp >
a[x2 > b] in the polynomial is a rectangle with lower left cornix;b), and covering all the points
(c,d) with (a,b) < (c,d) (that is,a < candb < d ora < candb < d). Any nonzero input matrix
A = (&j) over{0,1} will have a pointp = (c,d) such thatA[p] = 1 andA[g] = 0 for all g < p.
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Then an optimal cover must use the monotone rectaRgtdx; > c|[x, > d] to coverp. We update

the matrix by settingAfi, j] = 1 — AJi, j] for all points (i, j) covered byR. Repeating the process
until A is the zero matrix will yield the minimum number of rectangles. This algorithm for the
2-dimensional case generalizegdtdimensions for any constadt O

Before giving our result for multivariate polynomials with nonmonotone terms, we consider
first “almost monotone” multivariate polynomials. An almost-monotone multivariate polynomial is
a sum of terms that contain literals of the fopn> a] fori =1,...,d and[x; < B] (only x; may be
negated).

Lemma 18 There is a proper-learning algorithm fod ¢ almost-monotone multivariate polynomial
from membership and equivalence queries.

Proof. We consider the two dimensional case and note that it generalizéslitmensions. An
almost-monotone rectang[g; > a|[x; < &][xz > b] covers all pointgc,d) with a < c < & and
d > b. Suppose that we have two poiries b), (&’,b) such thatA[c,d] = O for all (c,d) with d < b,
Alc,b] =0forc=4 and allc < a, andA[c,b] =1fora<c<&. Thenforf =Ty +To+---+T; that
represent#\, we havef = [x, > b]f and therefore without loss of generality, no tefncontains a
literal [xo > d] with d < b.

Now consider the row of that corresponds t&, = b. Letk be the number of transition points
a for which Ala,b] # Ala+ 1,b]. Thenf must have at leagik/2] rectanglesl; covering this row
(since a rectangle has two vertical edges, it can cover just two transitions). So without loss of
generality we may assume that consecutive 1s are covered by their own rectangle, and the points
(a,b) < (c,b) < (a,b) are covered bR = [x; > a][x; < &][x2 > b] in an optimal cover.

So the algorithm works as follows. It finds the two poifésb) and (&', b) as described above.
It adds rectangl® = [x; > aJ[x1 < &][x2 > b] to the cover. It then toggles the matrix entries that are
covered byR, and recurses. O

Theorem 19 There is &9~ 1-proper-learning algorithm foN, multivariate polynomial from mem-
bership and equivalence queries.

Proof. To prove the theorem we show that ev&ty multivariate polynomialf containingt terms
can be written as a sunx©¢R) of at most 2t almost-monotoné\, terms. Thus the algorithm
to find an optimal-size almost-monotoig! multivariate polynomial, is a® -approximation al-
gorithm for finding aN,¢ multivariate polynomial of minimum size. Lét=T; +---+ T; be aNd
multivariate polynomial. We change each term to a sum of almost-monotone terms as follows:

—Je

To= [ = aiK X <big
k=1
d
= [xa>ai][x <bii] rL([Xk > aj k] + X > bi])
k=
= > - X1 > aa][x1 < bia][x2 > c2l[xs > c3] -+ [xa >
cocfai2,bi2}  cac{aa,bia}
So f is a sum of at most® 't almost-monoton®," terms. O
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5. Conclusion and Open Problems

We have shown that for axis-parallel concept clags@sth constant dimensiorgy-proper learning

in the exact model with membership and equivalence queriesx-gmdper PAC learning with just
example queries, are roughly as hard as finding-@pproximation algorithm for the MIEQuUIC
problem. This allows us to apply some positive and negative results in approximation to the learning
of axis-parallel concepts. For axis-parallel concept claGsgih variable dimension, we show that

an a-proper-exact-learning algorithm f@ can be used to give am-approximation algorithm for
MINEQUIC. Thus any negative results for tieeapproximation of MNEQUIC, gives a negative
result fora-proper exact learning @.

Several problems remain open. It is unknown whether one can properly-learn Disj-DNF with
variable dimension, given the aid of?@ oracle. We also do not yet know of any value oof
such that Disj-DNF for dimension greater than two is aqtroperly learnable unlessPNP. For
multivariate polynomials with variable dimension, it remains open whether theredssanh that
MP is nota-properly learnable unlessPNP.
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