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Abstract
We study the proper learnability of axis-parallel concept classes in the PAC-learning and exact-
learning models. These classes include union of boxes, DNF, decision trees and multivariate poly-
nomials.

For constant-dimensional axis-parallel conceptsC we show that the following problems have
time complexities that are within a polynomial factor of each other.

1. C is α-properly exactly learnable (with hypotheses of size at mostα times the target size)
from membership and equivalence queries.

2. C is α-properly PAC learnable (without membership queries) under any product distribu-
tion.

3. There is anα-approximation algorithm for the MINEQUIC problem (given ag∈C find a
minimal sizef ∈C that is logically equivalent tog).

In particular, if one has polynomial time complexity, they all do. Using this we give the first
proper-learning algorithm of constant-dimensional decision trees and the first negative results in
proper learning from membership and equivalence queries for many classes.

For axis-parallel concepts over a nonconstant dimension we show that with the equivalence
oracle(1) ⇒ (3). We use this to show that (binary) decision trees are not properly learnable in
polynomial time (assuming P6=NP) and DNF is notsε-properly learnable (ε < 1) in polynomial
time even with an NP-oracle (assumingΣP

2 6= PNP).
Keywords: PAC learning, exact learning, axis-parallel objects, minimizing formula size, Boolean
formulas.

1. Introduction

We study the proper learnability of axis-parallel concept classes in the PAC-learning model and
in the exact-learning model with membership and equivalence queries. A classN n

m-P Φ of axis-
parallel concepts is a class of Boolean formulasφ(T1,T2, . . . ,Tt) whereφ is from a class of Boolean
formulas Φ (such as monotone clauses, decision trees, etc.) and{Ti} are boxes inN n

m, where
Nm = {0, . . . ,m− 1}, that satisfy a certain propertyP (such as disjointness, squares, etc.). These
classes include union of boxes, union of disjoint boxes,XOR of boxes, decision tree partition, and for
the Boolean caseN n

2 , they include DNF, decision trees, disjoint DNF and multivariate polynomials.
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The termα-proper learning refers to learning where the final hypothesis and the intermediate
hypotheses used by the learner for equivalence queries, have size (number of boxesTi) at most
α times the size of the target formula. A class is properly learnable if it is 1-learnable. Table 1
summarizes the results for then-dimensional Boolean case.

Upper Bound Lower Bound
Type Complexity Source Type Condition Source

DNF Nonproper 2Õ(n1/3) Klivans and Proper P6=NP Pillaipakkamnatt
Servedio (2001) & Raghavan (1996)

Nonproper NP-oracle Bshouty et sε-Proper ΣP
2 6= PNP [ours]

al. (1996)

o(
√

n/ logn)-Proper
Hellerstein and

Raghavan (2002)
CDNF Nonproper poly(n) Bshouty (1995)

Proper ΣP
4-oracle Hellerstein

et al. (1996)
Proper poly(n) OPEN

Disj- Nonproper poly(n) Bergadano
DNF et al. (1996) Proper P6=NP OPEN

Proper ΣP
4-oracle OPEN

DT Nonproper poly(n) Bshouty (1995)
Proper P6=NP [ours]

Proper ΣP
4-oracle OPEN

MP Nonproper poly(n) Bergadano
et al. (1996) Proper P6=NP OPEN

Proper ΣP
4-oracle OPEN

MMP Proper poly(n) Schapire and
Sellie (1993)

Table 1: Result summary for the Boolean domain (m= 2).

Hellerstein et al. (1996) show that proper learnability of a classC, using a polynomial number of
membership and equivalence queries is possible in a machine with unlimited computational power
if and only if C haspolynomial certificates. They also show that ifC has a polynomial certificate
thenC is properly learnable using an oracle forΣP

4 (the classΣP
4 contains all languages of the form

{s | ∃w∀x∃y∀zφ(s,w,x,y,z)} whereφ is a predicate computable in time polynomial in|s|). They
then give a polynomial-size certificate for CDNF (a polynomial-size DNF that has a polynomial-
size CNF). This implies that CDNF is properly learnable using an oracle forΣP

4. For DNF, decision
trees (DT), disjoint DNF (DNF where the conjunction of every two terms is 0) and multivariate
polynomials with nonmonotone terms (MP), it is not known whether they have polynomial certifi-
cates. Therefore it is not known if they are properly learnable. Pillaipakkamnatt and Raghavan
(1996) showed that DNF is not properly learnable unless P=NP. On the other hand, Bshouty et al.
(1996) show that any circuit is (nonproperly) learnable with equivalence queries only and the aid of
an NP-oracle. The best algorithm today for learning DNF runs in time 2Õ(n1/3) (Klivans and Serve-
dio, 2001). Recently, Hellerstein and Raghavan (2002) show that DNF has no polynomial certificate
and is notf (n)-properly learnable for anyf (n) = o(

√
n/ logn).

CDNF, decision trees, disjoint DNF and multivariate polynomials overN n
2 are (nonproperly)

learnable in polynomial time from membership and equivalence queries (Bshouty, 1995; Bergadano
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et al., 1996; Beimel et al., 2000). Multivariate polynomials with monotone terms (MMP) are prop-
erly learnable (Schapire and Sellie, 1993).

In this paper we use a new technique for finding negative results for learning from membership
and equivalence queries (see Theorem 5). We use Theorem 5 and the result of Zantema and Bod-
laender (2000) to show that if a decision tree overN n

2 is properly learnable from membership and
equivalence queries then P=NP. We then use the result of Umans (1999) and show that if DNF over
N n

2 is sε-properly learnable with an NP-oracle, wheres is the size of the DNF, thenΣP
2 = PNP (the

classΣP
2 contains languages of the form{x | ∃y∀zφ(x,y,z)} whereφ is a predicate computable in

time polynomial in|x|). We show our results are still true even if the learner can use other oracles
such as subset, superset, disjointness, etc. Therefore, if P6=NP then decision trees and DNF are not
properly learnable from membership and equivalence queries (and all the other oracles defined in
Subsection 2.3).

We then consider classes overN n
m where the dimensionn is constant. Table 2 summarizes our

results for axis-parallel classes overN n
m for a constant dimensionn.

Learnable in Not Learnable
time poly(logm) if P 6=NP

Union of t Boxes logt-Proper Proper
Disjoint Union Boxes dim=2 Proper dim>2 Proper
Decision Tree Proper
XOR of Boxes α-Proper OPEN

Table 2: Our results for constant dimension (n constant).

For axis-parallel classes over a constant dimension we show that these classes have polynomial
certificates. Therefore by the result of Hellerstein et al. (1996), they are properly learnable from
membership and equivalence queries using theΣP

4 oracle. We further investigate the learnability of
these classes and show that an NP-oracle is sufficient for proper learnability. We also show that the
following problems have time complexities within a polynomial factor (in the size of the target) of
each other.

1. C is α-properly exactly learnable from membership and equivalence queries.

2. C is α-properly PAC learnable (without membership queries) under any product distribution.

3. There is anα-approximation algorithm for the MINEQUIC problem (given ag ∈ C find a
minimal sizef ∈C that is equivalent tog).

4. C is exactly learnable with a learning algorithm that uses all the queries (membership and
nonproper equivalence, subset, superset, etc.) and outputs a hypothesis that has size at most
α times the target size.

There are some surprising results that follow from this. The first is (1)⇒(2). It is known that
(proper) learnability from equivalence and membership queries implies (proper) learnability in the
PAC model with membership queries (Angluin, 1987). Here we show that in the case of finite-
dimensional space and for the product distribution we can change a learner that depends on mem-
bership queries, to a learner that learns without membership queries. Another surprising result that

159



BSHOUTY AND BURROUGHS

we show from this is: a decision tree over any constant dimension isproperly learnablefrom mem-
bership and equivalence queries. This contrasts with the Boolean case for which proper learning
is NP-hard. Then we show that decision trees overN n

m for constantn are properly PAC learnable
under any distribution.

Our result also shows that union of disjoint DNF in two dimensions has a polynomial-time
proper-learning algorithm. On the other hand, union of boxes and disjoint union of boxes over
dimensions greater than two are properly learnable if and only if P=NP. Union of boxes is logt-
properly learnable wheret is the number of boxes, andXOR of boxes isα-properly learnable for
some constantα.

All the results in the literature for domains of constant dimension are for nonproper learning of
the above classes in the exact-learning model and there were no negative results for proper learning
of these classes from membership and equivalence queries.

Chen and Maass (1994) give a proper exact learning of one box from equivalence queries.
Beimel and Kushilevitz (1998) show thatN n

m disjoint DNF is (nonproperly) learnable from mem-
bership and equivalence queries, for any dimensionn. The output hypothesis is represented as a
N n

m multiplicity automaton. SinceN n
m multiplicity automaton contains the class ofN n

m multivari-
ate polynomials (Beimel et al., 2000), the class ofN n

m multivariate polynomials is (nonproperly)
learnable in polynomial time from membership and equivalence queries. Bshouty et al. (1998) give
a learning algorithm thatO(d ln t)-properly learns a union oft boxes ind-dimensional space. This
result is also implied by our work.

There are many algorithms in the literature that learn a union of boxes in constant-dimensional
space (Chen and Homer, 1996; Maass and Warmuth, 1998), and even any combination of thresholds
in constant-dimensional space from equivalence queries only (Ben-David et al., 1997; Bshouty,
1998). All of these algorithms are nonproper and return hypotheses that may be arbitrarily large.

2. Preliminaries

In this section we give some definitions and notation that we will use in the rest of the paper. We
also give some preliminary lemmas that will be used in subsequent sections.

2.1 Learning Models

The learning criteria we consider areexact learningandPAC learning.
In the exact-learning model there is a functionf called thetarget function f: N n

m → {0,1}
(whereNm = {0,1, . . . ,m−1}), which has a formula representation in a classC of formulas defined
over the variable setVn = {x1, . . . ,xn}. The goal of the learning algorithm is to halt and output a
formulah∈C that is logically equivalent tof .

To gain information aboutf , an exact-learning algorithm might make amembership queryby
sending an assignmenta∈ N n

m to amembership oracleMQ f which returns the value MQf (a) =
f (a). The learning algorithm may also perform anequivalence queryby sending a hypothesish∈C
to anequivalence oracleEQf which returns either “YES”, signifying thath is logically equivalent
to f , or acounterexample bsuch thath(b) 6= f (b).

We say that a classC of Boolean functions isα-properly exactly learnablein polynomial time
from membership and equivalence queries if there is a polynomial-time algorithmA such that for
any f : N n

m → {0,1} in C,
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• A makes a polynomial number of membership and equivalence queries (polynomial inn,
logmand| f |),

• all hypothesesh∈C that A uses for equivalence queries, have size at mostα times the size
of f ,

• A outputs a hypothesish∈C that is logically equivalent tof , and has size at mostα times
the size off .

If α = 1, we omit theα and simply say thatC is properly exactly learnable.
The PAC-learning model is as follows. There is a distributionD defined over the domainN n

m.
The goal of the learning algorithm is to halt and output a formulah that isε-close tof with respect
to the distributionD, that is,

Pr
D

[ f (x) = h(x)] ≥ 1− ε.

We say thath is anε-approximation off with respect to the distributionD. In the PAC orexample
querymodel, the learning algorithm asks for an example from theexample oracle, and receives an
example(a, f (a)) wherea is chosen fromN n

m according to the distributionD.
We say that a class of Boolean functionsC is α-properly PAC learnableunder the distribution

D in polynomial time if there is an algorithmA , such that for anyf ∈C overVn and anyε andδ,
algorithmA runs in polynomial time, asks a polynomial number of queries (polynomial inn, logm,
1/ε, 1/δ and the size of the target function) and with probability at least 1−δ outputs a hypothesis
h ∈C that is anε-approximation off with respect to the distributionD. The size ofh is at most
α times the size off . It is known (Angluin, 1987) that if a classC is α-properly exactly learnable
in polynomial time from equivalence queries (and membership queries) then it isα-properly PAC
learnable (with membership queries) in polynomial time under any distributionD.

We say that a distributionD is aproductdistribution overN n
m if

D(x1, . . . ,xn) = D1(x1)D2(x2) · · ·Dn(xn)

where eachDi is a distribution overNm.

2.2 Axis-Parallel Concept Classes

A Boolean functionover N n
m is a function f : N n

m → {0,1} on variablesVn = {x1, . . . ,xn}. The
elements ofN n

m are calledassignments. For an assignmenta∈N n
m, theith entry ofa will be denoted

ai , whereai ∈ Nm. This is the assignment for variablexi . Our results easily extend to Boolean
functions overNm1×·· ·×Nmn, but we will continue to useN n

m for its notational simplicity.
An N n

m literal is a function with either of the following forms.

[xi ≥ a] =
{

1 if xi ≥ a
0 otherwise,

[xi < a] =
{

1 if xi < a
0 otherwise,

wherei ∈ {1, . . . ,n} anda ∈ Nm∪{m}. The literal on the right is the negation of the one on the
left. A N n

m monotone literalrefers to one of type[xi ≥ a]. If m= 2, we have the familiar Boolean
variablesxi , xi and the constants 0,1.

An N n
m term is a product (conjunction) ofN n

m literals. For example, ifn = 3, then

T = [x1 ≥ 2]∧ [x1 < 5]∧ [x2 ≥ 9]
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is anN 3
11 term. Note that the conjunction of a term with literals of the form[xi ≥ 0] or [xi < m], is

logically equivalent to the term itself. Thus we may write

T = [2≤ x1 < 5]∧ [9≤ x2 < 11]∧ [0≤ x3 < 11],

where[a≤ xi < b]
de f
= [xi ≥ a][xi < b]. Therefore, every termN n

m term can be written as

Ti =
n∧

k=1

[ai,k ≤ xk < bi,k],

whereai,k,bi,k ∈Nm∪{m}.
Geometrically, each termT corresponds to a box inn-dimensional space. That is, the points

x ∈ N n
m on whichT(x) = 1 fall within an n-dimensional box whose sides are parallel to the axes.

For this reason, the classes built from these terms will be calledaxis-parallel concept classes.
An N n

m monotone termis anN n
m term that uses only monotoneN n

m literals. AnN n
m DNF is a

disjunction ofN n
m terms, and aN n

m monotone DNFis a disjunction ofN n
m monotone terms. AnN n

m
multivariate polynomialis a sum of terms (mod 2), and anN n

m disjoint DNF is anN n
m DNF where

the conjunction of every two terms is 0 (geometrically, the terms are represented byn-dimensional
boxes that do not overlap).

An N n
m decision tree(N n

m DT) is a full binary tree (that is, every parent node has two children)
whose nodes are labeled withN n

m literals and whose leaves are labeled with constants from{0,1}.
Each decision treeT represents a functionfT : N n

m → {0,1}. To computefT(a) we start from the
root of the treeT: if the root is labeled with the literall andl(a) = 1, thenfT(a) = fTR(a) whereTR is
the right subtree of the root (that is, the subtree of the right child of the root with all its descendents).
Otherwise,fT(a) = fTL(a) whereTL is the left subtree of the root. IfT is a leaf thenfT(a) is the
label of this leaf.

In general, for every set of Boolean functionsΦ (e.g.,XOR, OR, etc.) andproperty function
Pt : (N n

m-term)t →{0,1} that is computable in polynomial time, (e.g.,Pt(T1, . . . ,Tt) = 1 if T1, . . . ,Tt

are pairwise disjoint) we can build a concept overN n
m as follows. We define the axis-parallel

concept classP Φ[N n
m] to be the set of allφ(T1, . . . ,Tt) whereφ ∈ Φ and{Ti} areN n

m terms with
Pt(T1, . . . ,Tt) = 1. If Pt ≡ 1 then we writeΦ[N n

m].
For example, letΦ = {x1,x1∨x2,x1∨x2∨x3, · · · } be the set of monotone clauses and define the

property functionPt such thatPt(T1, . . . ,Tt) = 1 if and only if Ti ∧Tj = 0 for every 1≤ i < j ≤ t.
ThenP Φ[N n

2 ] is the set of disjoint DNF (in the Boolean domain) andP Φ[N 2
m] is the set of unions

of disjoint rectangles in two-dimensional space.
The size of a formulaf ∈ P Φ[N n

m], which we will denotesizeP Φ( f ), will be defined to be the
smallest number ofN n

m termsT1, . . . ,Tt such that for someh∈Φ, f ≡ h(T1, . . . ,Tt) andPt(T1, . . . ,Tt)=
1. For the class of decision trees, the size will be the minimum number of non-leaf nodes used by
anN n

m decision tree equivalent tof .
Our main result uses a technique in which we compress the domain of a function in an attempt to

extract its main features. That is, we will map a functionf : N n
m →{0,1} to f ′ : Nm1×·· ·×Nmn →

{0,1} for which eachmi ≤ m. We need such a mapping (called a projection) to retain its relative
ordering of points. Amonotone projectionfrom Nm′ to Nm is a functionM : Nm′ ∪{m′}→Nm∪{m}
such that for everyi, j ∈Nm′ wherei < j we haveM(i)≤M( j) andM(m′) = m. Extending this ton
dimensions, a monotone projectionM : (Nm′ ∪{m′})n→ (Nm∪{m})n is M = (M1, . . . ,Mn) where
eachMi : Nm′ ∪ {m′} → Nm∪{m} is a monotone projection. We say thatC = P Φ[N n

m] is closed
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under monotone projectionif for any monotone projectionM wheneverP (T1, . . . ,Tt) = 1 we also
haveP (T1M , . . . ,TtM ) = 1. A class with the property that the boxes be equilateral is an example
of a class not closed under monotone projection. Notice that iff = φ(T1, . . . ,Tt) ∈ Φ[N n

m] then
f M = φ(T1M , . . . ,TtM ) ∈Φ[N n

m′ ]. If the classC = P Φ[N n
m] is closed under monotone projection

then f M ∈ P Φ[N n
m′ ].

To map functions on compressed domains to functions on larger domains, we define thedual
monotone projection. For a monotone projectionM : Nm′ ∪ {m′} → Nm∪ {m} define the dual
monotone projectionM? : Nm∪{m} →Nm′ ∪{m′} whereM?(y) is the minimalx such thatM(x)≥
y. SinceM(m′) = m, the dual monotone projection is well defined. For a monotone projection
M = (M1, . . . ,Mn) we defineM ? = (M?

1, . . . ,M
?
n).

The monotone projection that we will use in this paper is thelattice projection. Since it will
be used for classes of constant dimension, we will used for the dimensionn. A lattice in N d

m is
L = L1×·· ·×Ld where eachLi ⊆Nm. Notice that a lattice represents a subsampling of the domain,
in which only certain rows (those inLi) are represented for each dimensioni.

Let f ∈ φ(T1, . . . ,Tt) ∈Φ[N d
m] whereφ ∈Φ and

Ti =
d∧

k=1

[ai,k ≤ xk < bi,k].

Let L = L1×·· ·×Ld be a lattice inN d
m. Fora,b∈ Nm define

bacLi = max({x∈ Li | x≤ a}∪{0}),

dbeLi = min({x∈ Li | x≥ b}∪{m}).
Note thatbacLi is a monotone projection, whiledbeLi is its dual monotone projection. For an assign-
mentv∈N d

m we definebvcL = (bv1cL1, . . . ,bvdcLd). Define

TL
i =

d∧
k=1

[dai,keLk ≤ xk < dbi,keLk]

and f L = φ(TL
1 , . . . ,TL

t ). We call f L the lattice projectionof f on L. Some useful properties of the
lattice projection are given by the next lemma.

Lemma 1

1. fL(u) = f (bucL) = f L(bucL).

2. sizeP Φ( f L)≤ sizeP Φ( f ).

3. LetP Φ[N d
m ] be closed under monotone projection. For any function f∈ P Φ[N d

m] and lattice
L we have fL ∈ P Φ[N d

m ].

4. Let f = φ(T1, . . . ,Tt) whereφ ∈Φ and Ti = ∧d
k=1[ai,k ≤ xk < bi,k]. If for every i and k we have

ai,k,bi,k ∈ Lk then fL ≡ f .
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Proof. For (1) it is enough to examine the literals. Forf L(u) the literals are[daeLk ≤ uk < dbeLk],
which (sincebacLk is a monotone projection), is equivalent to

[
bdaeLkcLk

≤ bukcLk < bdbeLkcLk

]
= [daeLk ≤ bukcLk < dbeLk]

which is the corresponding literal inf L(buc). Similarly, f (bucL) has literals[a≤ bukcLk < b], which
(sincedbeLk is a monotone projection), is equivalent to

[daeLk ≤ dbul cLke< dbeLk] = [daeLk ≤ bukcLk < dbeLk ]

which is also the corresponding literal inf L(buc).
Since the lattice projection does not increase the number of terms (although it may render some

terms redundant), (2) follows.
For item (3), note that the lattice projection does not change the domain. Also, ifPt(T1, . . . ,Tt) =

1 thenPt(TL
1 , . . . ,TL

t ) = 1. Thus f L remains in the same class asf .
Item (4) follows from the fact that ifai,k,bi,k ∈ Lk thendai,keLk = ai,k anddbi,keLk = bi,k, which

impliesTL
i = Ti and hencef L = φ(TL

1 , . . . ,TL
t ) = φ(T1, . . . ,Tt) = f . 2

It is not necessary that each dimension have the same size. All the results in this paper are also
true for the classP Φ[Nm1 × ·· ·×Nmn]. In that case a monotone projection isM = (M1, . . . ,Mn)
whereMi : Nm′

i
→ Nmi and for f ∈ P Φ[Nm1 ×·· ·×Nmn] we havef M ∈ P Φ[Nm′

1
×·· ·×Nm′

n
].

Constructiveness Assumption:We assume that there is an algorithm “Construct” such that for any
functionψ : Nm1×·· ·×Nmn →{0,1} that is computable in polynomial time, Construct(ψ) runs in
time poly(∏mi) and returns some formulaf ∈ P Φ[Nm1×·· ·×Nmn] that is equivalent toψ, if there
exists such a formula, and returns “error” otherwise. Such algorithms exist (and are in fact very
trivial) for all the classes presented in this paper.

2.3 Oracles

In addition to the example, membership and equivalence oracles, we will also consider the following
oracles defined by Angluin (1987).

• Subset oracle. Subf (h) for h ∈C. This oracle returns ‘YES’ ifh⇒ f and returns a coun-
terexamplea such thath(a) = 1 and f (a) = 0 otherwise.

• Superset oracle. Supf (h) for h ∈ C. This oracle returns ‘YES’ ifh ⇐ f and returns a
counterexamplea such thath(a) = 0 and f (a) = 1 otherwise.

• Disjointness oracle. Dis j f (h) for h∈C. This oracle returns ‘YES’ ifh∧ f = 0 and returns a
counterexamplea such thath(a) = 1 and f (a) = 1 otherwise.

• Exhaustiveness oracle. Exhf (h) for h∈C. This oracle returns ‘YES’ ifh∨ f = 1 and returns
a counterexamplea such thath(a) = 0 and f (a) = 0 otherwise.

Given a set of oraclesO, we say thatO is easy(resp. NP-easy) forC if every oracle inO can be
simulated in polynomial time forC (resp. simulated in polynomial time using an NP-oracle), where
the simulation uses the target functionf .
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Lemma 2 Let Φ be a set of Boolean functions. For a constant dimension d, membership and
equivalence oracles and all the above oracles (subset, superset, etc.) are easy forΦ[N d

m ].

Proof. Suppose we have a targetf and wish to simulate an oracleRf (h). Given a hypothesish,
we take all the literals[xiQa] for Q ∈ {≥,<} in the terms of the targetf and the formulah. Let
A be the set of all thea’s in those terms and the two constants 0 andm. SupposeA = {0 = a1 <
a2 < · · · < at = m}. Notice thatt ≤ 2d(sh + sf + 2) wheresh andsf are the number of terms inh
and f , respectively. It is easy to see that the functionsh and f are constant functions 0 or 1 in each
subdomain[ai1,ai1+1)×·· ·× [aid ,aid+1). Thus we only need to comparef andh on a single point
in each subdomain. The number of subdomains is(t−1)d which is polynomial for any constantd.
2

2.4 Polynomial Certificates

Following the definition of Hellerstein et al. (1996), the classC = P Φ[N n
m] has polynomial certifi-

cates if for everyf ∈C of sizet there areq = poly(t,n) assignmentsA = {af
1, . . . ,af

q} such that for
everyg∈C of size less thant, g is not consistent withf onA. That is,g(a) 6= f (a) for somea∈ A.

Lemma 3 Let d be constant. If C= P Φ[N d
m ] is closed under monotone projection then it has

polynomial certificates.

Proof. Let f = φ(T1, . . . ,Tt) whereφ ∈ Φ andTi = ∧d
k=1 [ai,k ≤ xk < bi,k]. Let Lk = {ai,k,bi,k | i =

1, . . . , t} andL = L1×·· ·×Ld. Notice that|L| ≤ (2t)d = poly(t) for constantd. We now show that
if g∈ P Φ[N d

m] is consistent withf on L thensizeP Φ(g)≥ t.
Sinceg is consistent withf on L, by Lemma 1 parts 1 and 4, we havegL(x) = g(bxcL) =

f (bxcL) = f L(x) = f (x). By Lemma 1 part 3 we havegL ∈ P Φ[N d
m ]. Therefore, by Lemma 1 part

2 we havesizeP Φ(g)≥ sizeP Φ(gL) = sizeP Φ( f ). 2

It follows from Hellerstein et al. (1996) that ifC= P Φ[N d
m ] is closed under monotone projection

thenC is learnable from membership and equivalence queries using an oracle forΣP
4. In this paper

we will show that an NP-oracle is sufficient.

2.5 Approximation Algorithms

We assume the reader is familiar with approximation algorithms,α-approximation and some of the
basic concepts in approximation theory and complexity theory. For a problem in which we seek to
minimize the size of a formula equivalent to a functionf , anα-approximation algorithm (forα≥ 1)
returns a formulah≡ f that has size at mostα times the size of the smallest formula equivalent to
f . Given a classC = P Φ[N n

m], we define the optimization problem Minimal Equivalent Formula
(MINEQUIC) to be the following.

MINEQUIC
Given a formula f∈C = P Φ[N n

m].
Find a minimal size h∈C that is equivalent to f .

We expect an algorithm for MINEQUIC to run in time polynomial inn and the size off .
In some cases the functionf is given as ann-dimensionalm1×m2× ·· · ×mn matrix and an

algorithm is expected to find a minimal sizeh∈C in time polynomial in∏mi . We call the matrix
theunary representationof f . Then MINEQUIC for unary inputs is defined as follows.
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MINEQUICU

Given an m1×·· ·×mn matrix A representing a formula in C= P Φ[Nm1 ×·· ·×Nmn].
Find a minimal size h∈C that represents A.

A generalization of this problem is the MINEQUI?CU problem. For MINEQUI?CU the input is given
in its unary representation, but the matrix may contain? entries which denote unspecified values.

MINEQUI?CU

Given an m1× ·· · ×mn matrix A with entries0,1 and ?, representing a function in C=
P Φ[Nm1 ×·· ·×Nmn].
Find a minimal size h∈C that is equivalent to f on the specified values.

Another problem that is related to the latter problem is the minimal-size consistency problem.

MINEQUI?C
Given a set S= {(a1, f (a1)), · · · ,(at , f (at))} where f∈C = P Φ[N n

m].
Find a minimal-size h∈C that is consistent with S. That is, h(ai) = f (ai) for all i.

Some of these problems appear in the literature. For example, MINEQUI N 2
m DNFU is the task of

covering orthogonal polygons by rectangles. MINEQUI N 2
m Disj-DNFU is the problem of partition-

ing orthogonal polygons into rectangles.
Next we show that MINEQUIC and MINEQUICU are equivalent for the constant-dimensional

domain.

Lemma 4 Let C= P Φ[N d
m] for a constant d, be closed under monotone projection. Then

1. MINEQUIC has a polynomial-timeα-approximation algorithm if and only if
MINEQUICU has a polynomial-timeα-approximation algorithm.

2. MINEQUI?C has a polynomial-timeα-approximation algorithm if and only if
MINEQUI?CU has a polynomial-timeα-approximation algorithm.

Proof. We prove (1). The proof of (2) is similar. LetA be a polynomial-timeα-approximation
algorithm for MINEQUICU . We will describe an approximation algorithmB for MINEQUIC. Let
f ∈C be represented aŝφ(T̂1, . . . , T̂t ′) whereφ̂ ∈ Φ and T̂i =

∧d
k=1[ai,k ≤ xk < bi,k]. Algorithm B

builds the sets

Lk = {ai,k,bi,k | i = 1, . . . , t ′,k = 1, . . . ,d}= {c1,k < c2,k < .. . < cmk,k}

and defines the latticeL = L1× ·· · × Ld. By Lemma 1 we havef L(x) = f (x) = f (bxcL) which
implies that all features off are captured by the lattice. NowB builds anm1×·· ·×md matrix A
that stores the values off on the lattice. That is,A[i1, . . . , id] = f (ci1,1, · · · ,cid,d). Matrix A represents
a function f M in which M compresses the domain off by mapping eachcik,k in Nm to its ordinal
ik ∈ {1, . . . ,mk}. That is,M (ci1,1, . . . ,cid,d) = (i1, . . . , id). Clearly this is a monotone projection, as
is its inverseM −(i1, . . . , id) = (ci1,1, . . . ,cid,d). The size of matrixA is at most∏mi ≤ (2t ′)d which
is polynomial for constantd. Algorithm B now usesA(A) to find aφ ∈Φ andT1, . . . ,Tt such that

Pt(T1, . . . ,Tt) = 1, f M = φ(T1, . . . ,Tt) and t ≤ α ·sizeP Φ( f M ).
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Algorithm B then uses the inverseM − and returns

g = φ(T1M −, . . . ,TtM −).

SinceC is closed under monotone projection andM − is a monotone projection we know that
Pt(T1M −, . . . ,TtM −) = 1. Therefore,g∈ P Φ[N d

m ]. We also have by Lemma 1,

sizeP Φ(g)≤ t ≤ α ·sizeP Φ( f M )≤ α ·sizeP Φ( f ).

Finally, we have

g(x) = φ(T1M −, . . . ,TtM −) = ( f M )(M −(x)) = f (bxcL) = f (x).

For the other direction, suppose that we have an algorithm for MINEQUIC. Given anm1×·· ·×
md matrix A, by the constructiveness assumption we can build a formulaf ∈ P Φ[Nm1 ×·· ·×Nmd]
that representsA in time poly(∏mi) and then using the algorithm for MINEQUIC we get the desired
representation. 2

3. Approximation Algorithms and Learning

In this section we show the connection between approximation and learning.

Theorem 5 If C is α-properly exactly learnable from a setO of oracles andO is easy (resp., NP-
easy) for C thenMINEQUIC has anα-approximation algorithm (resp., with the aid of an NP-
oracle).

Proof. Let A be a learning algorithm that uses the oracles inO to learn a hypothesis of size at
mostα times the size of the target. SinceO is easy forC, all the oracles inO can be simulated in
polynomial time forC. So we can run algorithmA and simulate all the oracles in polynomial time.
Since the learning algorithm isα-proper, the output hypothesis has size less thanα times the size of
the target. 2

The next theorem follows from Lemma 4 and the Occam Theorem (Blumer et al., 1987), which
shows that one can PAC learn by taking a sufficiently-large (but polynomial) sample and finding a
hypothesis consistent with the sample.

Theorem 6 Let C= P Φ[N d
m ] for a constant d be closed under monotone projection. The following

three problems have time complexities within a polynomial factor (in the target size) of each other.

1. C isα-properly PAC learnable.

2. There is anα-approximation algorithm forMINEQUI?C.

3. There is anα-approximation algorithm forMINEQUI?CU.

We now demonstrate a connection betweenα-proper learning in the PAC and exact models, and
α-approximation of MINEQUIC, for classes of constant dimension.

Theorem 7 Let C= P Φ[N d
m ] for a constant d be closed under monotone projection. The following

problems have time complexities within a polynomial factor of each other.
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1. C isα-properly exactly learnable from membership and equivalence queries.

2. C isα-properly PAC learnable (without membership queries) under any product distribution.

3. There is anα-approximation algorithm for theMINEQUIC problem.

Proof. We first show(1)≡ (3). By Theorem 5 and since by Lemma 2 the oracles are easy, we have
(1)⇒ (3). Now we show(3)⇒ (1). Let A be anα-approximation algorithm for MINEQUIC. Let
f = φ(T1, . . . ,Tt) be the target function whereφ ∈Φ, f ∈ P Φ[N d

m ] and

Ti =
d∧

k=1

[ai,k ≤ xk < bi,k].

We now give a learning algorithm that uses a technique similar to one used by Bshouty et al. (1998).
However, where that learning algorithm was nonproper, ours isα-proper. This learning algorithm
works as follows. At each stage it holdsd setsL1, . . . ,Ld whereLk⊆ ({ai,k,bi,k | i = 1, . . . , t}∪{0}).
Lk is initially {0}. The elements ofLk are sorted in an increasing order:

Lk = {c1,k < c2,k < · · ·< cik,k}.

From the latticeL = L1× ·· · × Ld, the learning algorithm then builds the functionf L. It saves
a tableA of size ∏d

k=1(|Lk|+ 1) whereA[ j1, . . . , jd] = f (cj1,1, . . . ,cjd,d). The table can be filled
in using the membership oracle. Now,f L can be defined using this table byf L(u) = f (bucL) =
A[ j1, . . . , jd] wherebuicLi = cji for i = 1, . . . ,d. Since f L ∈ P Φ[N d

m] (the class is closed under
monotone projection), we can use algorithmA and construct a formulah that is equivalent tof L

and has size at mostα times the size off L. Since the size off L is at most the size off , the size of
h is at mostα times the size off .

After we constructh ≡ f L(x), we ask the equivalence query EQ(h(x)). Let v be the coun-
terexample. That is,f L(v) = h(v) 6= f (v). Then by Lemma 1f (bvcL) = f L(bvcL) = f L(v) 6= f (v).
Intuitively, since f (bvcL) 6= f (v), the straight line that connects the two pointsv andbvcL hits the
“boundary” of f . Now we give an algorithm to find a point close to this boundary and using this
point we will add a new point to the latticeL that is equal to one newai, j or bi, j .

The algorithm works as follows. It first finds the smallest valuek (or somek using binary search)
such that

f (bv1cL1, . . . ,bvk−1cLk−1,vk,vk+1, . . . ,vd) 6= f (bv1cL1, . . . ,bvk−1cLk−1,bvkcLk,vk+1, . . . ,vd).

Such ak exists sincef (bvcL) 6= f (v). Then (again with a binary search) the algorithm finds an
integerc such thatbvkcLk < c≤ vk where

f (bv1cL1, . . . ,bvk−1cLk−1,c−1,vk+1, . . . ,vd) 6= f (bv1cL1, . . . ,bvk−1cLk−1,c,vk+1, . . . ,vd).

Now we prove the following.

Claim 8 We have c∈ {ai,k,bi,k} for some i, and c6∈ Lk.

Proof of Claim 8. Let θ(xk) = f (bv1cL1, . . . ,bvk−1cLk−1,xk,vk+1, . . . ,vd). Herevi are constant so the
functionθ is a function on one variablexk. Soθ(xk) = φ(T̂1, . . . , T̂m) where eacĥTi is either 0, 1 or
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[ai,k ≤ xk < bi,k]. Sinceθ(c−1) 6= θ(c) we must have somei where eitherai,k ≤ c andai,k > c−1, or
c−1< bi,k andc≥ bi,k. In the first casec= ai,k and in the second casec= bi,k. Thusc∈ {ai,k,bi,k}.

Now notice thatbvkcLk 6= vk andbvkcLk < c≤ vk. Therefore,c was not inLk. 2

We addc to Lk and update the table by adding all the missing valuesf (v) wherev∈ L1×·· ·×Ld.
We now show that this algorithm runs in polynomial time. Notice that the number of equivalence
queries is at most

d

∑
k=1

|{ai,k,bi,k | i = 1, . . . , t}∪{0}| ≤ (2t +1)d,

and the number of membership queries is at most the size of the table which is(2t + 1)d plus the
number of membership queries needed for the binary search. We do one binary search for each
equivalence query. Therefore the algorithm uses at most(2t + 1)d +(2t + 1)d2 logm membership
queries.

We now give the proof that (2) is equivalent to (3).
To prove(2) ⇒ (3), we use the following standard argument (see for example Haussler et al.,

1991). SupposeC is α-properly PAC learnable under any product distribution. We show that (3)
is true for MINEQUICU . Then by Lemma 4 the result follows. LetA be anm1×·· ·×md matrix,
an instance for MINEQUICU . Define the product distributionD(i1, . . . , id) = 1/(∏d

i=1 mi) (uniform
overNm1 ×·· ·×Nmd). We now run algorithmA with errorε = 1/(2∏d

i=1 mi). The hypothesis we
get is consistent withA with probability at least 1−δ and has size at mostα times the target size.

To prove(3)⇒ (2), let A be anα-approximation algorithm for MINEQUIC. Let r(1/ε,1/δ) be
the number of examples needed to learnC, assuming we have unlimited computational power. This
r is polynomial and can be upper bounded by the VC-dimension Theorem (Blumer et al., 1989).
Let B be a polynomial-time (nonproper) PAC-learning algorithm forC under any distributionD.
Such an algorithm exists (Bshouty, 1998). The idea of the proof is very simple. Since we cannot
use membership queries, we learn a nonproper hypothesisĥ that is close to the target functionf and
then usêh for membership queries. We do that by first runningB to nonproperly learn the target
function with a small error. AlgorithmB will output some hypothesiŝh. Then we use the hypothesis
ĥ to simulate membership queries off . We show that if the distribution is the product distribution
then with high probabilitŷh simulates membership queries off .

We define the following algorithm to learnf .

Proper Learning
1. RunB with ε̂ = δ/(3rd) wherer = r(1/ε,3/δ) andδ̂ = δ/3.

Let ĥ be the output hypothesis.
2. Getr = r(1/ε,3/δ) examples(x(1), f (x(1))), . . . ,(x(r), f (x(r))).
3. DefineLi = {x( j)

i | j = 1, . . . , r} andL = L1×·· ·×Ld.

4. Define am̂1×·· ·× m̂d matrix A with m̂i = |Li| andA[i1, . . . , id] = ĥ(x(i1)
1 , . . . ,x(id)

d ).
5. RunA on A and leth : Nm̂1×·· ·×Nm̂d →{0,1} be the output.

6. Defineg = hM ? whereM ?(x) = M −1(bxcL) andM −1(x(i1)
1 , . . . ,x(id)

d ) = (i1, . . . , id).
7. Output (g)

In algorithm Proper Learning, step 1 learns some function̂h. Steps 2-3 take examples and
build a latticeL. Since we do not have membership queries to find the value of the target on this
lattice we use instead̂h to find the values. Steps 4-6 build a consistent hypothesis.
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We now show that with probability at least 1−δ all of the membership queries that are simulated
by ĥ give a correct answer. Notice that since the distribution is the product distribution,x(i1)

1 , . . . ,x(id)
d

are chosen independently. Therefore,

Pr[ĥ(x(i1)
1 , . . . ,x(id)

d ) 6= f (x(i1)
1 , . . . ,x(id)

d )]≤ ε̂

and

Pr[∃x∈ L : ĥ(x) 6= f (x)] ≤ ε̂|L| ≤ ε̂rd =
δ
3
.

Since the learning algorithmsB andA also have failure probability at mostδ/3, we are guaranteed
that algorithmProper Learning succeeds with probability at least 1−δ. This completes the proof
of Theorem 7. 2

As a corollary, it follows that for classes with constant dimension that are closed under monotone
projection, aΣP

4 oracle is not required for proper learning. An NP-oracle is sufficient.

Corollary 9 Let C= P Φ[N d
m ] for a constant d be closed under monotone projection. Then C is

properly learnable from membership and equivalence queries using an oracle for NP.

Proof. Since MINEQUICU can be solved in polynomial time using an NP-oracle, by Theorem 7,C
is properly learnable from membership and equivalence queries using an oracle for NP. 2

Let C = P Φ[N d
m ] for a constantd be closed under monotone projection. Consider these prob-

lems:

1. C is exactly learnable with a learning algorithm that uses oracles that are easy forC, and
outputs a hypothesis of size at mostα times the target size.

2. C is exactly learnable with a learning algorithm that uses equivalence queries only. The
hypotheses given to the equivalence oracle may have size larger thanα times the target size,
but the output hypothesis has size at mostα times the target size.

Since all the oracles forC = P Φ[N d
m ] are easy, both problems give anα-approximation algorithm

for MINEQUIC. Therefore they are equivalent to the problems in Theorem 7.
This shows that a negative result for theα-approximation of MINEQUIC will give a negative

result for theα-proper learnability ofC from all of the oracles mentioned in Section 2.3.

4. Positive and Negative Results for Proper Learning

In this section we will prove positive and negative results for theα-proper learning of different
axis-parallel classes.

4.1 Decision Trees

In this subsection we give our results for decision trees.
We first show the following.

Lemma 10 The class of decision trees is easy for all the oracles.
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Proof. For anyφ : {0,1}2 → {0,1}, and decision treesTf for f and Tg for g, let φ( f ,g)(x) =
φ( f (x),g(x)) (for example,φ may compute theXOR of the two trees). We show that for any such
φ, there is a polynomial-time algorithmA such thatA can decide in polynomial time ifφ( f ,g) ≡ 0
and if φ( f ,g) 6≡ 0 thenA finds an assignmentx0 such thatφ( f (x0),g(x0)) = 1.

The algorithm takes the decision treeTf and replaces each leafv in Tf by a decision treeTv
g ≡Tg.

It then takes each leafu in Tv
g and labels it withφ(lv, lu) wherelv is the label ofv in Tf andlu is the

label ofu in Tv
g . It is easy to see that this new tree computesφ( f ,g). We will call this treeT ′.

Each path in the treeT ′ from its root to a leaf labeled with 1, defines a term. If all such terms
are identically 0 then there is no assignment that gives value 1 inT ′ and thereforeφ( f ,g) ≡ 0.
Otherwise, there is a term that is 1 for some assignmentx0 and then the algorithm returnsx0. 2

Theorem 11 If there is a proper-learning algorithm forN n
2 decision trees from membership and

equivalence queries (and other oracles) then P= NP.

Proof. Decision tree is easy for all the oracles. Then, this result follows from Theorem 5 because
MINEQUI N n

2 decision tree is NP-complete (Zantema and Bodlaender, 2000). 2

Theorem 12 There is a proper-learning algorithm forN d
m decision trees over constant dimension

d, from membership and equivalence queries.

Proof. We describe an algorithm for MINEQUICU whereC is the class ofN 2
m decision trees. The

algorithm easily generalizes to other constant dimensionsd. Let A be anm×mbinary matrix. Each
nodev of the decision tree forA partitions a submatrix ofA into two submatrices, which are passed
to the left and right subtreesv. The partitioning continues until each submatrix contains only 0s, or
only 1s, and the corresponding path in the decision tree terminates with a leaf. DefineS(a,b,x,y)
to be the size (number of non-leaf nodes) of a minimum decision tree that partitions the submatrix
with rowsa throughx and columnsb throughy. Then

S(a,b,x,y) =




0 if the submatrix is all 0 or all 1,

1+min

{
mina<i≤x(S(a,b, i−1,y)+S(i,b,x,y)),
minb< j≤y(S(a,b,x, j−1)+S(a, j,x,y))

}
otherwise.

There are at mostO(m4) submatrices, so the number of subproblems is polynomial, andS(0,0,m−
1,m−1) can be computed in timeO(m5). The subproblems also provide information to build the
minimal tree. For generald, the algorithm has time-complexityO(dm2d+1) which is polynomial for
constantd. 2

Theorem 13 There is a proper-PAC-learning algorithm forN d
m decision trees for constant d.

Proof. The same algorithm above will also solve MINEQUI?CU . By Theorem 6 the result follows.
2

4.2 DNF and Union of Boxes

In this subsection we give the results for DNF, union of boxes and disjoint union of boxes. We first
prove the following.
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Theorem 14 There is anε < 1 such that: If the classN n
m DNF is sε-properly learnable with mem-

bership and equivalence oracles (and all the other oracles) where s is the size of the DNF, then
ΣP

2 = PNP.

Proof. The oracles are NP-easy forN n
2 DNF and approximating MINEQUI N n

2 DNF within sε is
ΣP

2-hard (Umans, 1999). Then the result follows from Theorem 5. 2

For union of boxes in a constant dimension we have the following.

Theorem 15 For union of boxes over constant dimension d (N d
m DNF) we have

1. There is a O(d logt)-proper-learning algorithm for union of boxes over dimension d from
membership and equivalence queries, where t is the optimal number of boxes required.

2. There is anα such that there is anα-proper-learning algorithm for union of boxes over
dimension 2 from any set of oracles if and only if P= NP.

Proof. Part 1 uses the fact that MINEQUI N d
m DNFU reduces to an instance of Set Cover of size

(2t)2d as described by Bshouty et al. (1998), allowing theO(ln(2t)2d)-approximation algorithm for
Set Cover to be used. Part 2 uses the result that MINEQUI N 2

m DNFU is NP-complete and does
not admit an approximation scheme unless P=NP (Berman and DasGupta, 1992). Then both parts
follow from Theorem 7 and Lemma 4. 2

For union of disjoint boxes (N n
m disjoint DNF) we have the next theorem.

Theorem 16 We have

1. There is a proper-learning algorithm for union of disjoint boxes over dimension 2 from mem-
bership and equivalence queries.

2. There is a proper-learning algorithm for union of disjoint boxes over dimension 3 from mem-
bership and equivalence queries if and only if P= NP.

Proof. This follows from Theorem 7 and Lemma 4, and the fact that MINEQUI N d
m disjoint DNFU

is the same as the problem of partitioning a (set of) orthogonal polygons into a minimum number
of boxes. This problem is in P for dimensiond = 2 (Lipski Jr. et al., 1979), and NP-complete for
dimensiond = 3 (Dielissen and Kaldewaij, 1991). 2

4.3 Multivariate Polynomials and XOR of Boxes

In this subsection we investigate the learnability of multivariate polynomials.
For multivariate polynomials with monotone terms we have the next theorem.

Theorem 17 For any constant d, there is a proper-learning algorithm forN d
m monotone multivari-

ate polynomial from membership and equivalence queries.

Proof. We give an algorithm to optimally solve the MINEQUICU problem whereC is the class of
N 2

m monotone multivariate polynomials (XOR of monotone rectangles). A monotone term[x1 ≥
a][x2 ≥ b] in the polynomial is a rectangle with lower left corner(a,b), and covering all the points
(c,d) with (a,b) ≺ (c,d) (that is,a < c andb≤ d or a≤ c andb < d). Any nonzero input matrix
A = (ai j ) over {0,1} will have a pointp = (c,d) such thatA[p] = 1 andA[q] = 0 for all q≺ p.
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Then an optimal cover must use the monotone rectangleR= [x1 ≥ c][x2 ≥ d] to coverp. We update
the matrix by settingA[i, j] = 1−A[i, j] for all points (i, j) covered byR. Repeating the process
until A is the zero matrix will yield the minimum number of rectangles. This algorithm for the
2-dimensional case generalizes tod dimensions for any constantd. 2

Before giving our result for multivariate polynomials with nonmonotone terms, we consider
first “almost monotone” multivariate polynomials. An almost-monotone multivariate polynomial is
a sum of terms that contain literals of the form[xi ≥ α] for i = 1, . . . ,d and[x1 < β] (only x1 may be
negated).

Lemma 18 There is a proper-learning algorithm forN d
m almost-monotone multivariate polynomial

from membership and equivalence queries.

Proof. We consider the two dimensional case and note that it generalizes tod dimensions. An
almost-monotone rectangle[x1 ≥ a][x1 < a′][x2 ≥ b] covers all points(c,d) with a≤ c < a′ and
d≥ b. Suppose that we have two points(a,b), (a′,b) such thatA[c,d] = 0 for all (c,d) with d < b,
A[c,b] = 0 for c= a′ and allc< a, andA[c,b] = 1 for a≤ c< a′. Then for f = T1+T2+ · · ·+Tt that
representsA, we havef = [x2 ≥ b] f and therefore without loss of generality, no termTi contains a
literal [x2 ≥ d] with d < b.

Now consider the row ofA that corresponds tox2 = b. Let k be the number of transition points
a for which A[a,b] 6= A[a+ 1,b]. Then f must have at leastdk/2e rectanglesTi covering this row
(since a rectangle has two vertical edges, it can cover just two transitions). So without loss of
generality we may assume that consecutive 1s are covered by their own rectangle, and the points
(a,b) ≤ (c,b) < (a′,b) are covered byR= [x1 ≥ a][x1 < a′][x2 ≥ b] in an optimal cover.

So the algorithm works as follows. It finds the two points(a,b) and(a′,b) as described above.
It adds rectangleR= [x1 ≥ a][x1 < a′][x2 ≥ b] to the cover. It then toggles the matrix entries that are
covered byR, and recurses. 2

Theorem 19 There is a2d−1-proper-learning algorithm forN d
m multivariate polynomial from mem-

bership and equivalence queries.

Proof. To prove the theorem we show that everyN n
m multivariate polynomialf containingt terms

can be written as a sum (XOR) of at most 2d−1t almost-monotoneN n
m terms. Thus the algorithm

to find an optimal-size almost-monotoneN n
m multivariate polynomial, is a 2d−1-approximation al-

gorithm for finding aN d
m multivariate polynomial of minimum size. Letf = T1 + · · ·+Tt be aN d

m
multivariate polynomial. We change each term to a sum of almost-monotone terms as follows:

Ti =
d

∏
k=1

[xk ≥ ai,k][xk < bi,k]

= [x1 ≥ ai,1][x1 < bi,1]
d

∏
k=2

([xk ≥ ai,k]+ [xk ≥ bi,k])

= ∑
c2∈{ai,2,bi,2}

· · · ∑
cd∈{ai,d,bi,d}

[x1 ≥ ai,1][x1 < bi,1][x2 ≥ c2][x3 ≥ c3] · · · [xd ≥ cd]

So f is a sum of at most 2d−1t almost-monotoneN n
m terms. 2
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5. Conclusion and Open Problems

We have shown that for axis-parallel concept classesC with constant dimension,α-proper learning
in the exact model with membership and equivalence queries, andα-proper PAC learning with just
example queries, are roughly as hard as finding anα-approximation algorithm for the MINEQUIC
problem. This allows us to apply some positive and negative results in approximation to the learning
of axis-parallel concepts. For axis-parallel concept classesC with variable dimension, we show that
an α-proper-exact-learning algorithm forC can be used to give anα-approximation algorithm for
MINEQUIC. Thus any negative results for theα-approximation of MINEQUIC, gives a negative
result forα-proper exact learning ofC.

Several problems remain open. It is unknown whether one can properly-learn Disj-DNF with
variable dimension, given the aid of aΣP

4 oracle. We also do not yet know of any value ofα
such that Disj-DNF for dimension greater than two is notα-properly learnable unless P= NP. For
multivariate polynomials with variable dimension, it remains open whether there is anα such that
MP is notα-properly learnable unless P= NP.
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