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Abstract. We analyze the local stability of the high-temperature fixed point of the

Loopy Belief Propagation (LBP) algorithm and how this relates to the properties of

the Bethe free energy which LBP tries to minimize. We focus on the case of binary

networks with pairwise interactions. In particular, we state sufficient conditions for

convergence of LBP to a unique fixed point and show that these are sharp for purely

ferromagnetic interactions. In contrast, in the purely anti-ferromagnetic case, the

undamped parallel LBP algorithm is suboptimal in the sense that the stability of the

fixed point breaks down much earlier than for damped or sequential LBP; we observe

that the onset of instability for the latter algorithms is related to the properties of the

Bethe free energy. For spin-glass interactions, damping LBP only helps slightly. We

estimate analytically the temperature at which the high-temperature LBP fixed point

becomes unstable for random graphs with arbitrary degree distributions and random

interactions.
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1. Introduction

Techniques that were originally developed in the statistical physics of lattice models are

nowadays increasingly often and successfully applied in diverse application areas such

as information theory, coding theory, combinatorial optimization and machine learning.

A prominent example is the Bethe-Peierls approximation [1, 2], an extension of the

ordinary Mean Field method that takes into account correlations between nearest-

neighbour sites. A more general and powerful approximation scheme, which is also

currently being used as a general inference tool in applications in the aforementioned

areas, is the Cluster Variation Method (CVM) [3, 4], also called Kikuchi approximation.

The CVM treats arbitrarily large clusters of sites exactly; the Bethe approximation can

be seen as the simplest nontrivial case (the pair approximation) of the Cluster Variation

Method.

The problems arising in the aforementioned application domains can often be

reformulated as inference problems on graphical models, i.e. as the calculation of

marginal probabilities of some probability distribution. Typically, this probability

distribution is proportional to a product of many factors, each factor depending on

only a few variables; this structure can be expressed in terms of a graph, hence the

name graphical model. An illustrative example can be found in image restoration [5],

where the 2D classical Ising model can be used to model features of monochromatic

images. The pixels in the image correspond to the Ising spins, the local external

fields correspond to observed, noisy pixels and the probability distribution over different

images corresponds to the equilibrium Boltzmann distribution of the Ising model. The

underlying graph is in this example the 2D rectangular lattice, and the interactions

between the nearest-neighbours correspond to factors in the probability distribution.

By taking the interactions to be of the ferromagnetic type, one can obtain a smoothing

filter.

In statistical physics, one is predominantly interested in the thermodynamic limit

of infinitely large systems, and furthermore, in the case of disordered systems, one

usually averages over a whole ensemble of such systems. In contrast, in the applications

in computer science the primary interest lies in the properties of individual, finite

systems—in the example above, one would be interested in individual images. Given

the probability distribution, the task is then to calculate marginal probabilities, which

in principle amounts to performing a summation or integral. Unfortunately, the

required computational time is generally exponential in the number of variables, and

the calculation quickly becomes infeasible for real-world applications.

Therefore, one is often forced to use approximative methods, such as Monte Carlo

methods or “deterministic approximations”. A prominent example of the latter category

is the successful Belief Propagation algorithm [6], which was originally developed as a

fast algorithm to calculate probabilities on graphical models without loops (i.e. on trees),

for which the results are exact. The same algorithm can also be applied on graphs

containing loops, in which case the results are approximative, and it is then often called
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Loopy Belief Propagation (LBP) to emphasize the fact that the graph may contain loops.

The results can be surprisingly good, even for small graphs with many short loops, e.g.

in the case of decoding error-correcting codes [7, 8]. An important discovery was that

the LBP algorithm in fact tries to minimize the Bethe free energy (more precisely, fixed

points of the LBP algorithm correspond to stationary points of the Bethe free energy)

[9]. This discovery has lead to renewed interest in the Bethe approximation and related

methods and to cross-fertilization between disciplines, a rather spectacular example of

which is the Survey Propagation (SP) algorithm, which is now the state of the art

solution method for some difficult combinatorial optimization problems [10]. Other

examples are the generalizations of LBP obtained by replacing the Bethe free energy

by the more complicated Kikuchi free energy, which has resulted in algorithms that are

much faster than the NIM algorithm developed originally by Kikuchi [4].

This article is organised as follows. We start in section 2 with a brief review

of the Bethe approximation and the Loopy Belief Propagation algorithm, trying to

combine the two different points of view, namely the statistical physicist’s perspective

and the one found in machine learning and computer science. A notorious problem

plaguing applications of LBP is the fact that it does not always converge to a fixed

point. With the aim of better understanding these convergence issues, in section 3 we

discuss the local stability of LBP fixed points, state “global” conditions for convergence

towards a unique fixed point, and discuss the stability of the high-temperature Bethe

free energy minimum. In section 4, we qualitatively discuss how these properties are

related and connect them with phase transitions in the thermodynamic limit. In section

5, we quantify the results of the previous section by estimating the phase transition

temperatures for random graphs with random interactions.

This article is written primarily for statistical physicists, but we tried to make

it also understandable for readers with a background in computer science, which may

explain some seemingly redundant remarks.

2. The Bethe approximation and the LBP algorithm

2.1. The graphical model

Let G = (V,B) be an undirected labelled graph without self-connections, defined by a

set of vertices V = {1, . . . , N} and a set of edges B ⊆ {(i, j) | 1 ≤ i < j ≤ N}. The

adjacency matrix M corresponding to G is defined as follows: Mij = 1 if (ij) ∈ B or

(ji) ∈ B and 0 otherwise. Denote by Ni the set of neighbours of vertex i, and the degree

(connectivity) of vertex i by di := |Ni| =
∑

j∈V Mij.

To each vertex i ∈ V we associate a random variable si (called a “spin”), taking

values in {−1,+1}. We put weights Jij on the edges (ij): let J be a symmetric N ×N
matrix that is compatible with the adjacency matrix M , i.e. Jij = 0 if Mij = 0. Let

θ ∈ RN be local “fields” (local “evidence”) acting on the vertices. We will study the
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Boltzmann distribution corresponding to the Hamiltonian

H = −
∑

(i,j)∈B

Jijsisj −
∑
i

θisi = −1

2

∑
i,j

JijMijsisj −
∑
i

θisi, (1)

i.e. the probability of the configuration s = (s1, . . . , sN) ∈ {−1,+1}N is given by:

P (s) =
1

Z
exp

β ∑
(i,j)∈B

Jijsisj + β
∑
i

θisi

 (2)

with β > 0 the inverse temperature and Z a normalization constant. The problem that

we would like to solve is calculating the first and second moments 〈si〉 and 〈sisj〉 under

this distribution. In general, this is an NP-complete problem, so in practice we often

have to settle for approximations of these quantities.

The general model class that we have described above has been the subject of

numerous investigations in statistical physics. There one often takes a lattice as the

underlying graph G, or studies an ensemble of random graphs (including the fully-

connected SK model as a limiting case). The weights Jij and the local fields θi are often

taken to be i.i.d. according to some probability distribution (a special case is where this

probability distribution is a delta function—this corresponds to uniform, deterministic

interactions). In these cases one can take the thermodynamic limit N → ∞, which

is the subject of investigation of the major part of statistical physics studies (except

for the studies of “finite size effects”). Depending on these weight distributions and on

the graph structure, macroscopic order parameters can be identified that distinguish

between different phases, e.g. the ferromagnetic phase for large positive weights or a

spin-glass phase for weights that are distributed around zero.

The probability distribution (2) is a special case of the class of probability

distributions over N discrete random variables {Xi}Ni=1, with Xi taking values in some

finite set Xi, that factorize as a product of factors ψ (often called “potentials” in

computer science literature—not to be confused with the potentials in statistical physics,

which are the logarithms of the factors) in the following way:

P (X = x) =
1

Z

∏
(ij)∈B

ψij(xi, xj)
∏
i∈V

ψi(xi) (3)

with Z the normalization constant. These probability distributions are known in

machine learning as undirected graphical models (in this case consisting of N nodes with

pairwise potentials) or as Markov Random Fields. In fact, it is easy to see that (2) is

equivalent to (3) when all variables are binary (and the factors are positive); in this case,

(2) can obviously be written in the form of (3), but the converse also holds. Applications

include decoding of error-correcting codes [7], artificial vision [11] and medical diagnosis

[12]. In contrast with statistical physics studies, the number of variables is usually finite

and one is interested in a single instance instead of the properties of an ensemble of

instances.
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In the following three subsections, we describe the LBP algorithm and the Bethe

approximation for the graphical model (3), and what is known about the relation

between the two.

2.2. Bethe approximation

The calculation of properties such as marginals P (si) of the probability distribution (2)

is an NP-complete problem. Only in cases with much symmetry (e.g. when all weights

Jij are equal and the field is uniform, i.e. θi = θ, and the graph has a high permutation

symmetry, such as e.g. translation symmetry in case of a 2D rectangular lattice), or

if N is small, or if the graph contains no cycles, it is possible to calculate marginals

exactly. In other cases, one has to use approximate methods, such as Monte Carlo

methods or “deterministic” approximation methods, the simplest of which is the well-

known Mean Field method. An extension of the Mean Field method that treats pairs of

neighbouring spins exactly is the Bethe approximation, also known as the Bethe-Peierls

approximation [1, 2].

The Bethe approximation consists of minimizing the Bethe free energy, which for

the factorizing probability distribution (3) is defined as the following functional [9]:

FBethe({bi, bij}) =
∑

(ij)∈B

∑
xi,xj

bij(xi, xj) log
bij(xi, xj)

ψij(xi, xj)ψi(xi)ψj(xj)
(4)

−
∑
i

(di − 1)
∑
xi

bi(xi) log
bi(xi)

ψi(xi)
. (5)

Its arguments, called beliefs, are single-node marginals bi(xi) and pairwise marginals

bij(xi, xj). The Bethe approximation is obtained by minimizing the Bethe free energy

with respect to the beliefs under the following normalization and consistency constraints∑
xi

bi(xi) = 1 for all i ∈ V , (6)∑
xi

bij(xi, xj) = bj(xj) for all (ij) ∈ B. (7)

The values of these variables at the minimum of FBethe are then taken as approximations

for the marginal distributions P (xi) and P (xi, xj). The beliefs are the exact marginals

when the underlying graph G contains no cycles [13]. The rationale for minimizing the

Bethe free energy is that the Bethe free energy is an approximate Gibbs free energy with

an exact energy term, but in which the entropy term is approximated by only the single-

node and pairwise entropies. Minimizing the exact Gibbs free energy would recover

the exact marginal distributions P (xi) and P (xi, xj), but is infeasible; minimizing its

approximation, the Bethe free energy, gives approximations bi and bij to the exact

marginal distributions [14].



Properties of Bethe approximation and LBP on binary networks 6

2.3. LBP algorithm

A popular and efficient algorithm for obtaining the Bethe approximation is Loopy Belief

Propagation (LBP), also known under the names Sum-Product Algorithm [15] or simply

Belief Propagation [6]. The adjective “Loopy” is used to emphasize the fact that the

graph may contain cycles, i.e. that the beliefs are only approximations of the exact

marginals.

The LBP algorithm consists of the iterative updating of a set of messages {µij :

(ij) ∈ B ∨ (ji) ∈ B}. The new message µnew
ij that vertex i sends to its neighbour j is

given in terms of all incoming messages by the following update rule [9]:‡

µnew
ij (xj) ∝

∑
xi

ψij(xi, xj)ψi(xi)
∏

k∈Ni\j

µki(xi), (8)

where one usually normalizes messages such that
∑

xj
µnew
ij (xj) = 1. The update

schedule can be chosen to be parallel (“flooding schedule”), sequential (“serial schedule”)

or random; the update schedule influences convergence properties.

When the messages µij have converged to some fixed point µ∞ij , the approximate

marginal distributions (beliefs) {bi}i∈V and {bij}(ij)∈B are calculated by

bi(xi) ∝ ψi(xi)
∏
k∈Ni

µ∞ki (xi), (9)

bij(xi, xj) ∝ ψij(xi, xj)ψi(xi)ψj(xj)

 ∏
k∈Ni\j

µ∞ki (xi)

 ∏
k∈Nj\i

µ∞kj(xj)

 . (10)

Note that these beliefs satisfy the normalization and consistency constraints (6) and (7).

Unfortunately, LBP does not always converge. It can get trapped in limit cycles,

or it can wander around chaotically, depending on the problem instance. This non-

robust behaviour hampers application of LBP as a “black box” inference algorithm.

Furthermore, there is some empirical evidence that if LBP does not converge, the quality

of the Bethe approximation (which can also be obtained by using double-loop algorithms

[16] that are guaranteed to converge, but are slower than LBP) is low. The analysis

that we will perform in subsequent sections should be seen as first steps in obtaining a

better understanding of these issues.

2.4. The connection between LBP and the Bethe approximation

Using Lagrange multipliers, one can prove [9] that the beliefs b(µ∞) corresponding to a

LBP fixed point µ∞ are a stationary point of the Bethe free energy under the constraints

(6) and (7). Conversely, a set of messages µ for which the corresponding beliefs b(µ)

are a stationary point of the constrained Bethe free energy, are a fixed point of LBP. In

other words: stationary points of the Bethe free energy correspond one-to-one to fixed

points of LBP.

‡ Here and in the following, if X is a set, we write X \ i as a shorthand notation for X \ {i}.
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It takes considerably more effort to prove that (locally) stable LBP fixed points

are (local) minima of the constrained Bethe free energy [17]. The converse does not

necessarily hold (as was already observed by Heskes [17]), i.e. a minimum of the Bethe

free energy need not be a stable fixed point of LBP. In that case, LBP cannot be used

to obtain the Bethe approximation. We will see examples of this in section 4.

3. Stability analysis for binary variables

From now on, we consider the special case (2) for which all variables are binary. In this

section, we derive conditions for the local stability of fixed points of parallel LBP, in the

undamped and damped cases. We state sufficient conditions for the uniqueness of the

fixed point and “global” convergence properties of parallel, undamped LBP. Finally, we

discuss the properties of Bethe energy minima for binary variables. In section 4 we will

study the relations between those properties. We will start with reformulating LBP for

the case of binary variables.

3.1. LBP for binary variables

In the case of binary variables, we can parameterize each message µij by a single real

number. A canonical choice is to transform to the variables νij defined by

νij := tanh−1
(
µij(sj = 1)− µij(sj = −1)

)
. (11)

The LBP update equations (8) can be written in terms of these new messages as:

tanh(νnewij ) = tanh(βJij) tanh(βhi\j), (12)

where we defined the “cavity field” hi\j by

βhi\j := βθi +
∑
k∈Ni\j

νki. (13)

Our usage of the term “cavity field” corresponds to that in [18] and is motivated by the

fact that hi\j is the effective field that acts on spin i in the absence of spin j (under the

assumption that the spins k ∈ Ni are independent in the absence of spin j).

The single-node beliefs bi(si) can be parameterized by their means (“magnetiza-

tions”)

mi := 〈si〉bi =
∑
si

sibi(si), (14)

and the pairwise beliefs bij(si, sj) can be parameterized by mi, mj and the second order

moment (“correlation”)

χij := 〈sisj〉bij =
∑
si,sj

sisjbij(si, sj). (15)

The beliefs (9) and (10) at a fixed point ν∞ can then simply be written as:

mi = tanh(βh∞i\j + ν∞ji ), (16)

χij = tanh
(
βJij + tanh−1 ( tanh(βh∞i\j) tanh(βh∞j\i))

)
. (17)
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3.2. Local stability of undamped, parallel LBP fixed points

For the parallel update scheme, we can consider the update mapping F : ν 7→ νnew

written out in components in (12). Its derivative (“Jacobian”) is given by:

F ′(ν) =
∂νnewij

∂νkl
=

1− tanh2(βhi\j)

1− tanh2(βJij) tanh2(βhi\j)
tanh(βJij)1Ni\j(k) δi,l (18)

where 1 is the indicator function (i.e. 1X(x) = 1 if x ∈ X and 0 otherwise) and δ the

Kronecker delta function.

Let ν be a fixed point of parallel LBP. We call ν locally stable if starting close

enough to the fixed point, LBP will converge to it. A fixed point ν is locally stable if

all eigenvalues of the Jacobian F ′(ν) lie inside the unit circle in the complex plane [19]:

ν is locally stable ⇐⇒ σ(F ′(ν)) ⊆ {λ ∈ C : |λ| < 1}, (19)

where σ(F ′) denotes the spectrum (set of eigenvalues) of the matrix F ′. If at least one

eigenvalue lies outside the unit circle, the fixed point is unstable.

3.3. Local stability conditions for damped, parallel LBP

The LBP equations can in certain cases lead to oscillatory behaviour, which may be

remedied by damping the update equations. This can be done by replacing the update

map F : ν 7→ ν by the convex combination Fε := (1− ε)F + εI of F and the identity I,

for damping strength 0 ≤ ε < 1. Fixed points of F are also fixed points of Fε and vice

versa. The spectrum of the local stability matrix of the damped LBP update mapping

becomes:

σ(F ′ε(ν)) = (1− ε)σ(F ′(ν)) + ε.

In words, all eigenvalues of the local stability matrix without damping are simply

interpolated with the value 1 for damped LBP. It follows that the condition for (local)

stability of a fixed point ν under arbitrarily large damping is given by

ν is stable under Fε for some damping ε ⇐⇒ σ(F ′(ν)) ⊆ {λ ∈ C : <λ < 1}, (20)

i.e. all eigenvalues of F ′(ν) should have real part smaller than 1.

Note that conditions (19) and (20) do not depend on the chosen parameterization of

the messages. In other words, the local stability of the LBP fixed points does not depend

on whether one uses µij messages or νij messages, or some other parameterization, i.e. the

choice made in (11) has no influence on the results, but it does simplify the calculations.

3.4. Uniqueness of LBP fixed points and convergence

The foregoing conditions are local and by themselves are not strong enough for drawing

conclusions about global behaviour, i.e. whether or not LBP will converge for any initial

set of messages.
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In [20] we have derived sufficient conditions for the uniqueness of the LBP fixed

point and convergence of undamped, parallel LBP to the unique fixed point, irrespective

of the initial messages. For the binary case, our result can be stated as follows:§

Theorem 1 If the spectral radius‖ of the square matrix

Bij,kl := tanh(β |Jij|)δi,l1Ni\j(k) (21)

is strictly smaller than 1, undamped parallel LBP converges to a unique fixed point,

irrespective of the initial messages.

Proof. See [20]. �

Note that the matrix B, and hence the sufficient condition, depends neither on the

fields θi, nor on the sign of the weights Jij.

These conditions are sufficient, but by no means necessary, as we will see in the next

section. However, for ferromagnetic interactions without local fields, they are sharp, as

we will prove later on. First we discuss some properties of the Bethe free energy that

we will need in section 4.

3.5. Properties of the Bethe free energy for binary variables

For the case of binary variables, the Bethe free energy (4) can be parameterized in terms

of the means mi = 〈si〉bi and correlations χij = 〈sisj〉bij ; it becomes:

FBe(m,χ) :=−β
∑

(ij)∈B

βJijχij − β
∑
i

θimi

+
N∑
i=1

(1− di)
∑
si=±1

η

(
1 +misi

2

)
+
∑

(ij)∈B

∑
si,sj=±1

η

(
1 +misi +mjsj + sisjχij

4

) (22)

where η(x) := x log x. The normalization and consistency constraints (6) and (7) are

satisfied automatically; however now we need to enforce positivity constraints

− 1 ≤ mi ≤ 1

− 1 ≤ χij ≤ 1

1 +miσ +mjσ
′ + χijσσ

′ ≥ 0 for all σ, σ′ = ±1

which guarantee that the beliefs {bi}i∈V and {bij}(ij)∈B are positive. The stationary

points of the Bethe free energy (22) are the points where the derivative of (22) vanishes;

§ An equivalent result but formulated in terms of an algorithm was derived independently in [21].
‖ The spectral radius ρ(B) of a matrix B is defined as ρ(B) := sup |σ(B)|, i.e. it is the largest absolute

value of the eigenvalues of B.
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this yields the following equations:

0 =
∂FBe
∂mi

= −βθi + (1− di) tanh−1mi +

+
∑
j∈Ni

1
4

log
(1 +mi +mj + χij)(1 +mi −mj − χij)
(1−mi +mj − χij)(1−mi −mj + χij)

.
(23)

0 =
∂FBe
∂χij

= −βJij + 1
4

log
(1 +mi +mj + χij)(1−mi −mj + χij)

(1 +mi −mj − χij)(1−mi +mj − χij)
. (24)

The last equation has a unique solution χij as a function of mi and mj [22].

From now on we consider the special case of vanishing local fields (i.e. θi = 0)

in the interest of simplicity. Note that in this case, the LBP update equations (12)

have a trivial fixed point, namely νij = 0. The corresponding beliefs have mi = 0 and

χij = tanh(βJij), as follows directly from (16); of course, this also follows from (23) and

(24). We call this fixed point the paramagnetic fixed point (or the high-temperature fixed

point to emphasize that it exists for high enough temperature, i.e. for β small enough).

Whether the paramagnetic stationary point of the Bethe free energy is indeed a

minimum depends on whether the Hessian of FBe is positive-definite. The Hessian at

the paramagnetic stationary point is given by:

∂2FBe
∂mj∂mi

= δij

(
1 +

∑
k∈Ni

χ2
ik

1− χ2
ik

)
+Mij

−χij
1− χ2

ij

=: Uij, (25)

∂2FBe
∂mk∂χij

= 0,

∂2FBe
∂χkl∂χij

= δ(ij),(kl)
1

1− χ2
ij

.

The Hessian is of block-diagonal form; the χ-block is always positive-definite, hence the

Hessian is positive-definite if and only if the the m-block (Uij) is positive-definite. This

depends on the weights Jij and on the graph structure; for β small enough (i.e. high

temperature), this is indeed the case. A consequence of the positive-definiteness of the

Hessian of the Bethe free energy is that the approximate covariance matrix, given by

U−1, is also positive-definite.

4. Phase transitions

In this section we discuss various phase transitions that may occur, depending on the

distribution of the weights Jij. We take the local fields θi to be zero. Our usage of the

term “phase transition” is somewhat inaccurate, since we actually mean the finite-N

manifestations of the phase transition in the Bethe approximation and in the dynamical

behaviour of the LBP algorithm, instead of the common usage of the word, which refers

to the N → ∞ behaviour of the exact probability distribution. We conjecture though,

that at least for the ferromagnetic and spin-glass phase transitions, these different

notions coincide in the N →∞ limit.
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4.1. Ferromagnetic interactions

Consider the case of purely ferromagnetic interactions, by which we mean that all

interactions Jij are positive. In that case, the local LBP stability matrix F ′(0) at

the trivial fixed point, given by

F ′(0) = tanh(βJij)1Ni\j(k)δi,l (26)

is equal to the matrix B in Theorem 1. For high temperature (i.e. small β), the

paramagnetic fixed point is locally stable, as is evident from (26). Theorem 1 guarantees

that this is the only LBP fixed point and that parallel undamped LBP will converge to

it. When we gradually lower the temperature (i.e. increase β), at a sudden point the

paramagnetic LBP fixed point generally becomes unstable. This seems to hold for all

graphs that have more than one cycle. By a generalization of Perron’s theorem (Theorem

3 in the Appendix), the eigenvalue of the matrix F ′(0) (which has positive entries) with

the largest absolute value is actually positive. This property of the spectrum can be

clearly seen in figure 1.I(a), where most eigenvalues are distributed in a roughly circular

form, except for one outlier on the positive real axis. Thus the onset of instability

of the paramagnetic LBP fixed point coincides with this outlier crossing the complex

unit circle; the paramagnetic fixed point bifurcates and two new stable fixed points

arise, describing the two ferromagnetic states. Since B = F ′(0), we conclude that the

sufficient condition in Theorem 1 for convergence to a unique fixed point is sharp in this

case.

At high temperature, the corresponding stationary point of the Bethe free energy

is a minimum. However, as illustrated in figure 1.II(a), at a certain critical temperature

the Hessian is no longer positive-definite. In the Appendix, we prove the following

theorem:

Theorem 2 For Jij ≥ 0 and θi = 0, the critical temperature at which the paramagnetic

Bethe free energy minimum disappears is equal to the critical temperature at which the

paramagnetic LBP fixed point becomes unstable.

Proof. See Appendix. �

Beyond the transition temperature, LBP converges to either of the two new fixed

points describing the two ferromagnetic phases. As can be seen in figure 1.I(c), the

number of LBP iterations needed for convergence has a peak precisely at the critical

temperature; far from the phase transition, LBP converges rapidly to a stable fixed

point.

4.2. Anti-ferromagnetic interactions

For purely anti-ferromagnetic interactions, i.e. all Jij < 0, the situation is different.

Again, for high temperature, the paramagnetic fixed point is the unique fixed point, is

locally stable and has the complete message space as an attractor. Since the local

stability matrix F ′(0) is exactly the same as in the ferromagnetic case, except for
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Figure 1. From top to bottom: (I) spectrum of the local LBP stability matrix F ′ at the

trivial fixed point ν = 0, for β = 1; (II) minimal eigenvalue of Uij = ∂2FBe/∂mi∂mj

at the paramagnetic solution, as a function of inverse temperature β; (III) number

of undamped, parallel LBP iterations needed for convergence as a function of inverse

temperature β (dotted line in antiferromagnetic case shows the number of iterations for

a sequential update scheme). From left to right: (a) ferromagnetic interactions J = M

(b) antiferromagnetic interactions J = −M ; (c) spin-glass interactions J = ±M with

equal probability for positive or negative interaction.

The underlying graph G is a random graph with Poissonian degree distribution,

N = 50 and average degree d = 4; the local fields are zero.

the minus sign (as can be seen in figure 1.I(b)), the local stability of the trivial fixed

point is invariant under a sign change J 7→ −J . Hence the paramagnetic fixed point

becomes locally unstable for undamped LBP exactly at the same temperature as in

the ferromagnetic case, for fixed weight strengths |Jij|. However, the spectral radius

of F ′(0) is now determined by a negative eigenvalue. Hence in this case damping

helps to some extent. Empirically, we find that also changing the update scheme from

parallel to sequential helps, as illustrated by the dotted line in figure 1.III(b). Note

that the temperature where sequential LBP stops converging roughly coincides with the

minimum of the smallest eigenvalue of U (compare figure 1.II(b) and 1.III(b)). This

observation seems to be generic, i.e. not just a coincidence for the particular instance

in figure 1. We have no theoretical explanation for this at the moment, but it might be

possible to get such an explanation by relating U with F ′(0), using a technique similar

to the one applied in the proof of Theorem 2 given in the Appendix.
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4.3. Spin-glass interactions

Now consider spin-glass interactions, i.e. all Jij are distributed around 0 such that

〈Jij〉 ≈ 0. This case is illustrated in figure 1(c). Here the eigenvalues of the local

stability matrix are distributed in a roughly circular form, without an outlier with a

large absolute value. Note the suprising similarity between the spectra in the different

cases; we have no explanation for this similarity, nor for the roughly circular form of the

distribution of the majority of the eigenvalues.

Although the paramagnetic Bethe free energy minimum generally does not

disappear when lowering the temperature, LBP does not converge anymore once the

trivial fixed point becomes unstable, despite the possible existence of other, stable,

fixed points. Neither damping nor changing the update scheme seems to help in this

case. Empirically we find that the temperature at which the trivial LBP fixed point

becomes locally unstable roughly coincides with the temperature at which the lowest

eigenvalue of U attains its minimal value [23]. Again, we have no theoretical explanation

for this observation.

5. Estimates of the phase transition temperatures

In this section we estimate the critical temperatures corresponding to the onset of

instability of the LBP paramagnetic fixed point (which we discussed qualitatively in the

previous section) for a random graph with random interactions. The method is closely

related to the cavity method at the replica-symmetric level (see e.g. [24, 18, 25]). A

similar analysis of the stability of the LBP paramagnetic fixed point has been done by

Kabashima [26]; however, the results reported in that work are limited to the case of

infinite connectivity (i.e. the limit N → ∞, d → ∞). In this case, the results turn out

to be identical to the condition of replica symmetry breaking derived by Almeida and

Thouless (the “AT line”) [27]. The analysis we present below essentially extends the

analysis of [26] to the larger class of arbitrary degree distribution random graphs, which

includes Erdős-Rényi graphs (with Poissonian degree distribution, as well as fixed degree

random graphs) and power-law graphs (which have power-law degree distributions),

amongst others.

5.1. Random graphs with arbitrary degree distributions

We consider arbitrary degree distribution random graphs [28]. This class of random

graphs has a prescribed expected degree distribution P (d); apart from that they are

completely random. Given an expected degree distribution P (d) and the number of

nodes N , a particular sample of the corresponding ensemble of random graphs can

be constructed as follows: for each node i, independently draw an expected degree δi
from the degree distribution P (d). Then, for each pair of nodes (i, j), independently

connect them with probability δiδj/
∑

i δi; the expected degree of node i is then indeed



Properties of Bethe approximation and LBP on binary networks 14

〈di〉 = δi. We define the average degree 〈d〉 :=
∑

d P (d)d and the second moment

〈d2〉 :=
∑

d P (d)d2.

We consider the case of vanishing local fields (i.e. θi = 0) and draw the weights

Jij independently from some probability distribution P (J). We also assume that the

weights are independent of the graph structure.

5.2. Estimating the PA-FE transition temperature

Assume P (d) to be given and N to be large. Assume that x is an eigenvector with

eigenvalue 1 of A := F ′(0), the Jacobian of the parallel LBP update at the paramagnetic

fixed point ν = 0. Using (18):

xij =
∑
kl

Aij,klxkl = tanh(βJij)
∑
k∈Ni\j

xki. (27)

Consider an arbitrary spin i; conditional on the degree di of that spin, we can calculate

the expected value of xij as follows:

E (xij | di) = E
(

tanh(βJij)
∑

k∈Ni\j xki | di
)

(28a)

= E (tanh(βJij))E
(∑

k∈Ni\j xki | di
)

(28b)

= 〈tanh βJ〉 (di − 1)
∑
dk

P (dk | di, k ∈ Ni)E (xki | di, dk) (28c)

≈ 〈tanh βJ〉 (di − 1)
∑
dk

P (dk | di, k ∈ Ni)E (xki | di) (28d)

using, subsequently: (a) equation (27); (b) the independence of the weights from the

graph structure; (c) conditioning on the degree dk of spin k and the equivalence of the

various k ∈ Ni \ j; and finally, (d) neglecting the correlation between xki and dk, given

di. We have no formal argument for the validity of this approximation, but the result

accurately describes the outcomes of numerical experiments.

For arbitrary degree distribution random graphs, the probability of dk given the

degree di and the fact that k is a neighbour of i is given by (see [28]):

P (dk | di, k ∈ Ni) =
dkP (dk)

〈d〉
.

Hence we obtain the relation

E (xij | di) = 〈tanh βJ〉 (di − 1)
∑
dk

dkP (dk)

〈d〉
E (xki | dk) (29)

A self-consistent nontrivial solution of these equations is E (xij | di) ∝ (di− 1), provided

that

1 = 〈tanh βJ〉
(
〈d2〉
〈d〉
− 1

)
. (30)

which gives us the critical temperature at which the paramagnetic–ferromagnetic phase

transition occurs, or in other words, where the paramagnetic LBP fixed point undergoes
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a pitchfork bifurcation. This result is identical to the one obtained by the replica method

in the replica-symmetric setting [29] and to the one found by applying the cavity method

[25], as expected. Figure 2 illustrates the estimate; note that the accuracy is quite high

already for low N (N = 50 in this case), for higher N it becomes even better.

Extending the analysis to the case of non-vanishing local fields does not appear

to be straightforward, since in that case the value of the fixed point ν is not known.

However, since the elements of A are upper bounds for the elements of F ′(ν), we can at

least qualitatively conclude that in the case of non-vanishing local fields, the transition

temperature will be lower.

5.3. The antiferromagnetic case

This is similar to the ferromagnetic case, however the eigenvalue is now −1 instead of

+1. This yields the following equation for the transition temperature:

1 = 〈tanh(−βJ)〉
(
〈d2〉
〈d〉
− 1

)
. (31)

Again the prediction turns out to be quite accurate (see figure 2), as was to be expected.

5.4. Estimating the PA-SG transition temperature

For the paramagnetic–spin-glass phase transition, we can perform a similar calculation,

now assuming that x is an eigenvector with eigenvalue λ on the complex unit circle:

E
(
|xij|2 | di

)
= E

(
|tanh(βJij)|2

∣∣∣∑k∈Ni\j xki

∣∣∣2 | di)
=
〈
tanh2(βJ)

〉
E

(∣∣∣∑k∈Ni\j xki

∣∣∣2 | di)
≈
〈
tanh2(βJ)

〉
E
(∑

k∈Ni\j |xki|
2 | di

)
≈
〈
tanh2(βJ)

〉
(di − 1)

∑
dk

P (dk | di, k ∈ Ni)E
(
|xki|2 | di

)
,

where, in addition to the assumptions in the PA-FE case, we assumed that the

correlations between the various xki’s can be neglected. Again, we can only motivate

this assumption in that it appears to give correct results.

Using relation (29), we find a nontrivial self-consistent solution E
(
|xij|2 | di

)
∝

(di − 1), if the following equation holds:

1 =
〈
tanh2(βJ)

〉(〈d2〉
〈d〉
− 1

)
. (32)

This result is again identical to the one obtained by the cavity method [25], as expected.

As illustrated in figure 2 (the dashed line), the accuracy is somewhat less than that of

the ferromagnetic transition, but is nevertheless quite good, even for N = 50.

For completeness we would like to state that the numerical results reported in

[23], in which we numerically studied the behaviour of the lowest eigenvalue of U , are
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Figure 2. Onset of instability of the paramagnetic LBP fixed point, for random graphs

with N = 50 and a Poissonian degree distribution with d = 10. The weights Jij are

independently drawn from a Gaussian distribution with mean J0 and variance J2.

The solid thick lines show the expected value for the (anti)ferromagnetic transitions

(30) and (31), the dashed thick line for the spin-glass transition (32). The dots show

for individual instances at which temperature the paramagnetic fixed point becomes

unstable, for undamped LBP (left) and for damped LBP (right). The lines in the

right graph (the damped case) are for reference only, they should not be interpreted

as theoretical predictions, except for the ferromagnetic transition (the solid line on the

right-hand side).

accurately described by the predictions (30) and (32), which supports the hypothesis

that these notions coincide in the N →∞ limit.

6. Conclusions

We have derived conditions for the local stability of parallel LBP fixed points, both

in the undamped and damped case for binary networks with pairwise interactions.

We have shown how these relate to the sufficient conditions for uniqueness of the

LBP fixed point and convergence to this fixed point. In particular, we have shown

that these sufficient conditions are sharp in the ferromagnetic case, exactly describing

the pitchfork bifurcation of the paramagnetic fixed point into two ferromagnetic fixed

points. For undamped LBP, the local stability of the paramagnetic fixed point (for

vanishing local fields) is invariant under a sign change of the interactions. For anti-

ferromagnetic interactions, parallel undamped LBP stops converging at the PA-FE

transition temperature. Damping or using a sequential update scheme remedy this

defect. However, although the paramagnetic minimum of the Bethe free energy does

not disappear, the trivial fixed point becomes locally unstable even for damped LBP at

roughly the PA-SG transition temperature. Finally, for interactions that are dominantly

of the spin-glass type, using damping only marginally extends the domain of convergence

of LBP.

We estimated the PA-FE transition temperature and the PA-SG transition

temperature for arbitrary degree distribution random graphs. The results are in good
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agreement with numerical simulations. How this relates to the AT line is an open

question and beyond the scope of this work.

We believe that the case that we have considered in detail in this work, namely

vanishing local fields θi = 0, is actually the worst-case scenario: numerically it turns

out that adding local fields helps LBP to converge more quickly. We have no proof for

this conjecture at the moment; the local fields make an analytical analysis more difficult

and we have not yet been able to extend the analysis to this more general setting. We

leave the generalization to non-zero local fields as possible future work.
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Appendix: Proof of Theorem 2

For a square matrix B, we write B ≥ 0 iff all entries of B are non-negative. σ(B) is the

set of all eigenvalues of B, ρ(B) is the spectral radius of B, i.e. ρ(B) := max |σ(B)|. We

will use the following generalization of Perron’s theorem:

Theorem 3 If B ≥ 0, then the spectral radius ρ(B) ∈ σ(B) and there exists an

associated eigenvector x ≥ 0 such that Bx = ρ(B)x.

Proof. See [30, p. 670]. �

Applying this theorem to the matrix B defined in (21), we deduce the existence of

an eigenvector x ≥ 0 with Bx = ρ(B)x. Writing Cij := tanh(β |Jij|) and λ := ρ(B), we

derive:

xij = λ−1Cij

(∑
k∈Ni

xki − xji

)

= λ−1Cij

∑
k∈Ni

xki − λ−1Cji

∑
k∈Nj

xkj − xij

 .

Defining Xi :=
∑

k∈Ni
xki, we obtain by summing over i ∈ Nj:

Xj =
∑
i∈Nj

λ
Cij

λ2 − CijCji
Xi −

∑
i∈Nj

CijCji
λ2 − CijCji

Xj,

i.e. X is an eigenvector with eigenvalue 1 of the matrix

Mij
ρ(B) tanh(β |Jij|)

ρ(B)2 − tanh2(β |Jij|)
− δij

∑
k∈Ni

tanh2(β |Jik|)
ρ(B)2 − tanh2(β |Jik|)

(A.1)
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Now, if all Jij are positive, and if ρ(B) = 1, this matrix is exactly I − U , where

Uij is defined in (25). Hence, since in this case B = F ′(0), the critical temperature at

which the paramagnetic LBP fixed point becomes unstable coincides with the matrix

I − U having an eigenvalue 1, or in other words U having eigenvalue 0. Thus the onset

of instability of the paramagnetic LBP fixed point in this case exactly coincides with

the disappearance of the paramagnetic Bethe free energy minimum.
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