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ON THE PROPERTIES OF THE SECOND MOMENT OF SOLUTIONS
OF STOCHASTIC DIFFERENTIAL-FUNCTIONAL EQUATIONS

WITH VARYING COEFFICIENTS
UDC 519.21

V. K. YASINS’KĬI AND S. V. ANTONYUK

Abstract. Sufficient conditions for the mean square stability of solutions of linear
stochastic differential-functional Itô–Skorokhod equations with unbounded aftereffect
are obtained in the paper. The critical case is also studied.

1. Asymptotic mean square stability

Let (Ω,F , P) be a probability space and

{Ft, t ≥ 0}, Ft ⊂ F ,

a current of minimal σ-algebras. Further let R be the real one-dimensional Euclidean
space equipped with the norm | · |, and D0 the Skorokhod space of functions {ϕ(θ)} ⊂ R

defined on (−∞, 0]. Every function ϕ(θ) of D0 has no discontinuities of the second kind,
has the left limit at every point of discontinuity, is right continuous, and has the limit as
θ → −∞ [4].

Let {x(t) ≡ x (t, ω)} ⊂ R be a stochastic process defined for t ≥ 0 by the stochastic
differential-functional Itô–Skorokhod equation

dx(t) = a(t, xt) dt + b(t, xt) dw(t) +
∫

R

g(t, xt, u) v(dt, du),(1)

x(t) = ϕ(t) for all t ∈ (−∞, 0](2)

(see [1], [2], [5]) where ϕ ∈ D0; in what follows the trajectory {x (t)} ⊂ R up to the
moment t ≥ 0 is denoted by xt ≡ {x (t + θ) ,−∞ < θ ≤ 0}; {w(t) ≡ w (t, ω)} ⊂ R is
a one-dimensional Wiener process; v (t, A) ≡ v (t, A) − tΠ (A), A ⊂ R, is a centered
Poisson measure in R with parameter tΠ (A) ≡ E {ν (t, A)} where {w(t)} and {v (t, A)}
are independent and Ft-measurable for t ≥ 0.

The coefficients a, b, and g are linear functionals for any t ≥ 0 defined on R+ × D0,
R+ × D0, and R+ × D0 × R, respectively. We treat D0 as a metric space with the
Skorokhod metric ρD (see [4, Chapter VI, §5]).

To facilitate the discussion of the behavior of stochastic processes {x (t)} ⊂ R without
discontinuities of the second kind, a simpler metric is often considered (see [3]). This
metric is generated by the seminorm

(3) ‖ϕ‖∗ ≡
{∫ 0

−∞
|ϕ (θ)|2 K (dθ)

}1/2
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where K(·) is some finite measure defined on the Borel sets of (−∞, 0], that is,

K (−∞, 0) = K < ∞.

Definition 1. Let Lt be the σ-algebra of Borel sets on (−∞, t]. A separable stochastic
process {x (t)} ⊂ R defined by relation (2) for t ∈ (−∞, 0], measurable with respect to
the σ-algebra Ft × Lt, and satisfying for all t ≥ 0 the integral Itô–Skorokhod equation

(4) x(t) = ϕ(0) +
∫ t

0

a (s, xs) ds +
∫ t

0

b (s, xs) dw(s) +
∫ t

0

∫
R

g (s, xs, u) v (ds, du)

with probability one, is called a solution of the stochastic differential-functional equa-
tion (1) with initial condition (2).

We denote by H0 the space of F0-measurable functions ϕ : (−∞, 0]×Ω → R equipped
with the norm

(5) ‖ϕ‖0 ≡
{

sup
−∞<θ≤0

E
{
|ϕ (θ)|2

}}1/2

.

Assume that a, b : R+×D0 → R and g : R+×D0×R → R are functionals, measurable
with respect to all their arguments and such that

|a (t, ϕ)|2 + |b (t, ϕ)|2 +
∫

R

|g (t, ϕ, u)|2 Π(du) ≤ L

∫ 0

−∞

(
1 + |ϕ (θ)|2

)
dK (θ),(6)

|a (tϕ) − a (t, ψ)|2 + |b (t, ϕ) − b (t, ψ)|2 +
∫

R

|g (t, ϕ, u) − g (t, ψ, u)|2 Π(du)

≤ L

∫ 0

−∞

(
|ϕ (θ) − ψ (θ)|2

)
dK (θ)

(7)

for all t ≥ 0 where L > 0 is a constant.
Then according to [4, Chapter II, §1, Theorems 3 and 4] and [3, Theorem 6.2.1], in

the space D0 there exists a unique (up to stochastic equivalence) solution of the problem
(1), (2) such that

E

{
sup

0≤s≤T
|x (s)|2

/
Ft

}
≤ A

(
1 + ‖ϕ‖2

0

)
,

E

{
sup

t≤s≤t+h
|x(s) − x(t)|2

/
Ft

}
≤ B

(
1 + ‖ϕ‖2

0

)
h(8)

where A > 0 and B > 0 are constants depending on T > 0, L > 0, and K > 0.
Denote by {h(t, s)} ⊂ R the fundamental solution of the deterministic equation

(9) dy(t) = a(t, yt) dt

with the initial function η such that η(t) = 0 for t < s and η(t) = 1 for t = s. Using
{h(t, s)}, the solution of the problem (1), (2) can be rewritten in the integral form [8]:

(10) x(t) = y(t) +
∫ t

0

h(t, s)b(s, xs) dw(s) +
∫ t

0

∫
R

h(t, s)g(s, xs, u) v(ds, du)

where {y(t)} is a solution of equation (9) with nonrandom initial function {ϕ(t)} (see (2)).
Now we obtain sufficient conditions for the mean square asymptotic stability of the

trivial solution of the problem (1), (2).

Theorem 1. Assume that
1) the trivial solution of equation (9) is exponentially stable;
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2) the fundamental solution of equation (9) is such that

(11) d = lim
t→∞

d(t) = lim
t→∞

∫ t

0

[
b2(t, ht(θ, s)) +

∫
R

g2(t, ht(θ, s), u)Π(du)
]

ds < 1;

3) the functionals a(t, ·), b(t, ·), and g(t, ·, u) are uniformly bounded with respect to
t and u ∈ R in the norm (5) of the space D0 where Π(du) = du/|u|2.

Then the trivial solution of the problem (1), (2) is mean square asymptotically stable.

Proof. Using equation (10) at the moment t + θ and applying the linear operators b(t, ·)
and g(t, ·, u) [6] we obtain

b(t, xt) = b(t, yt) +
∫ t

0

b(t, ht(θ, s))b(s, xs) dw(s)

+
∫ t

0

∫
b(t, ht(θ, s))g(s, xs, u) v(ds, du),

g(t, xt, u) = g(t, yt, u) +
∫ t

0

g(t, ht(θ, s), u)b(s, xs) dw(s)

+
∫ t

0

∫
g(t, ht(θ, s), u)g(s, xs, u) v(ds, du).

Now we square both sides of the latter two equations, then take the mathematical ex-
pectation (E{·}), and use some properties of the stochastic integral [3]. As a result we
get

µb(t) = b2(t, yt) +
∫ t

0

b2(t, ht, (θ, s))µb(s) ds +
∫ t

0

∫
R

b2(t, ht(θ, s))µg(s, u)Π(du) ds,

∫
R

µg(t, u) Π(du) =
∫

R

g2(t, yt, u) Π(du) +
∫ t

0

∫
R

g2(t, ht(θ, s), u)µb(s) Π(du) ds

+
∫ t

0

∫
R

∫
R

g2(t, ht(θ, s), u)µg(s, u1) Π(du) Π(du1) ds

where
µb(t) ≡ E

{
b2 (t, xt)

}
, µg (t, u) ≡ E

{
g2 (t, xt, u)

}
.

After the summation of these equations we get

(12) m(t) = f(t) +
∫ t

0

[
b2(t, ht(θ, s)) +

∫
R

g2(t, ht(θ, s), u) Π(du)
]

m(s) ds

where

m(t) ≡ µb(t) +
∫

R

µg (t, u)Π(du), f(t) ≡ b2 (t, yt) +
∫

R

g2 (t, yt, u) Π(du).

According to the definition of sup, for a given ε > 0 we find T > 0 such that
sups≥T d(s) ≤ d + ε for t ≥ T . Put

M(t, T ) ≡ max
T≤s≤t

m(s).

Taking into account (11) we obtain

M(t, T ) ≤ max
T≤τ≤t

f(τ ) + max
T≤τ≤t

∫ T

0

[
b2(τ, hτ (θ, s)) +

∫
R

g2(τ, hτ (θ, s), u) Π(du)
]

m(s) ds

+ max
T≤τ≤t

d(τ )M(t, T ).
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The contraction principle [6] implies that

lim
t→∞

M(t, T ) < ∞.

Relation (11) yields

(13)
m(t) ≤ f(t) +

∫ T1

0

[
b2(t, ht(θ, s)) +

∫
R

g2(t, ht(θ, s), u) Π(du)
]

ds

+ sup
τ≥T1

d(τ )M(t, T1)

for all t and T1 such that t ≥ T1.
The assumptions of Theorem 1 allow one to apply the Lebesgue dominated convergence

theorem [6], since m(t) < ∞. Thus

lim
t→∞

{
f(t) +

∫ T1

0

[
b2 (t, ht(θ, s)) +

∫
R

g2(t, ht(θ, s), u) Π(du)
]}

ds = 0.

Relation (12) implies that

lim
t→∞

m(t) ≤ (d + ε) lim
t→∞

M (t, T1) ≤ (d + ε) lim
t→∞

m(t).

If ε > 0 is sufficiently small, then it follows from (11) that limt→∞ m(t) = 0.
Now equation (10) yields

E
{
x2(t)

}
= y2(t) +

∫ t

0

h2(t, s)m(s) ds.

It is clear that for any ε > 0 there exists T > 0 such that m(t) < ε for all t ≥ T . Thus
assumption 2) of Theorem 1 implies that

E
{
x2(t)

}
≤ y2(t) +

∫ T

0

h2(t, s)m(s) ds + pε.

Now, using assumption 1) of Theorem 1, we pass to the limit in the last inequality and
obtain

lim
t→∞

E
{
x2(t)

}
≤ pε,

which means that limt→∞ E
{
x2(t)

}
= 0.

Note that E
{
x2(t)

}
continuously depends on the initial function {ϕ(θ)}, since the

operators defined by the integral equation for E
{
x2(t)

}
are bounded (see [6]). This

completes the proof of Theorem 1. �

2. The critical case

The critical case is considered in [1, 2, 8] for the solution of a stochastic differential-
functional equation with aftereffect. Consider the problem of the mean square stability
of a trivial solution of the stationary stochastic differential-functional equation with un-
bounded aftereffect:

(14) dz(t) = a(zt) dt + b(zt) dw(t) +
∫

g(zt, u) v(dt, du)

for the critical case

(15)
∫ ∞

0

[
b2(ht) +

∫
R

g2(ht, u) Π(du)
]

dt = 1.
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It is known [10] that there exists an initial function {ϕ(θ)} for the stochastic differential-
functional equation (14) such that

lim
t→∞

E
{
x2(t)

}
	= 0 ( 	= ∞).

Let a stochastic process x ∈ R be defined by the equation

dx(t) = a(xt) dt + (1 + β(t))b(xt) dw(t) +
∫

R

(1 + γ(t))g(xt, u) v(dt, du),(16)

x(θ) = ϕ(θ) for all θ ∈ (−∞, 0] ,(17)

where ϕ ∈ D0; a, b, and g are functionals defined on D0 and D0 × R, respectively;
{w(t)} is a homogeneous Wiener process; and v (t, A) is a centered Poisson measure with
parameter tΠ (A). We assume that w(t) and v are independent.

We denote by N1 the set of scalar functions {α(t)} continuous on [0,∞) and such that∫ ∞
0

∣∣2α(t) + α2(t)
∣∣ dt < ∞, and by N2, the set of scalar functions ∆ (t) ≥ 0 continuous

on [0,∞) and such that
∫ ∞
0

(
2∆(t) + ∆2(t)

)
dt = ∞.

Theorem 2. Assume that
1) the trivial solution of equation (9) is exponentially stable;
2) condition (15) holds.

Then the trivial solution of the stochastic differential-functional equation (15) is
I) mean square stable if α(t) ≡ max{β(t), γ(t)} ∈ N1 is decreasing;

II) mean square unstable if α(t) ≡ min{β(t), γ(t)} ∈ N2 is increasing.
The symbol max{β(t), γ(t)} stands for the supremum of functions {α(t)} such that

α(t) ≥ β(t) and α(t) ≥ γ(t) for all t ≥ 0,

while min{β(t), γ(t)} stands for the infimum of functions {α(t)} such that

α(t) ≤ β(t) and α(t) ≤ γ(t) for all t ≥ 0.

Proof. Let β ∈ N1 ∨ N2. If {h(t)} is the fundamental solution of equation (9), then a
solution of problem (16), (17) can be represented in the form

x(t) = y(t) +
∫ t

0

h(t − s)(1 + β(s))b(xs) dw(s)

+
∫ t

0

∫
R

h(t − s)(1 + γ(s))g(xs, u) v(ds, du)
(18)

(see [1]) where {y(t)} is a solution of stationary equation (9) constructed for initial
condition (17).

We apply the operators (1 + β(t)) b (·) and (1 + γ(t)) g (·, u) to both sides of equa-
tion (16). Then we proceed in the way that led to equation (11) and obtain for all t ≥ 0
that

(19) m(t) = f(t) +
∫ t

0

[
(1 + β(t))2b2(ht−s) + (1 + γ(t))2

∫
R

g2(ht−s, u) Π(du)
]

m(s) ds

where

m(t) ≡ (1 + β(t))2µb(t) + (1 + γ(t))2
∫

R

µg(t, u) Π(du);

µb(t) ≡ E
{
b2(xt)

}
; µg(t, u) ≡ E

{
g2(xt, u)

}
;

f(t) ≡ (1 + β(t))2b2(yt) + (1 + γ(t))2
∫

R

g2(yt, u) Π(du).
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I) Let β ∈ N1 and γ ∈ N1 be decreasing. We check that {m(t)} is bounded. First we
show that {m(t)} is bounded and is a solution of the equation

(20) m(t) = f(t) +
∫ t

0

(1 + α(s))2k(t − s)m(s) ds

where α(t) ≡ max{β(t), γ(t)} for all t ≥ 0, and k(t) ≡ b2(ht) +
∫

R
g2(ht, u) Π(du). It is

clear that solutions of equations (19) and (20) are such that m(t) ≤ m(t). Further, in
view of the first assumption of Theorem 2 the functions {f(t)} and {k(t)} are such that

(21) f(t) + k(t) ≤ Ne−εt for all t ≥ 0

where N > 0 and ε > 0 are some constants.
Applying the Laplace transform we rewrite equation (17) as follows:

(22) m(t) = f(t) +
∫ t

0

H(t − s)H(t − s)f(s) ds +
∫ t

0

H(t − s)τ (s)m(s) ds

(see [7]) where τ (s) = 2α(s) + α2(s),

H(t) ≡ k(t) +
∫ t

0

k(t − s)k(s) ds +
∫ t

0

∫ s

0

k(t − s)k(s − s1)k(s1) ds ds1 + · · · .

Indeed, applying the Laplace transform to equation (22) we obtain

M(λ) = F (λ) + K(λ)M(λ) + K(λ)L {τ (s)m(s)}
(see [7]) where K and m are the Laplace transforms of K and m, respectively. Thus

M(λ) =
F (λ)

1 − K(λ)
+

K (λ)
1 − K(λ)

L {τ (s)m(s)} .

Expanding the fraction 1/(1−K(λ)) into the series for λ 	= 0 we obtain from assump-
tion 2) of Theorem 2 that

M(λ) = F (λ) + F (λ) [K(λ) + K
2
(λ) + · · · ] + L {τ (s)m(s)} [K(λ) + K(λ) + · · · ].

Applying the inverse Laplace transform we reduce m (t) to the right-hand side of (22).
Since

∫ ∞
0

k(t) dt = 1, we apply the Laplace transform and show that H(t) = C + δ(t)
where C = const > 0 and {δ(t)} is a continuous function on [0,∞) such that

(23) lim
t→∞

δ(t) = 0.

Then

m(t) ≤ B + A

∫ t

0

|τ (s)|m(s) ds for all t ≥ 0

where B ≡ supt≥0

∫ t

0
H(t − s)f(s) ds ∈ (0,∞) and A ≡ supt≥0 H(t) ∈ (0,∞). It follows

from the Gronwall–Bellman lemma [4] that

m(t) ≤ B exp
{

A

∫ t

0

|τ (s)| ds

}
for all t ≥ 0.

Let α ∈ N1. Then ∫ ∞

0

|τ (s)| ds < ∞,

whence supt≥0 m(t) < +∞ and supt≥0 m(t) < +∞. Squaring both sides of equation (16)
and applying the operator of the mathematical expectation we get

(24) µ(t) = y2(t) +
∫ t

0

h2(t − s)m(s) ds for all t ≥ 0
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where µ(t) ≡ E
{
x2(t)

}
and {m(t)} is the function defined above. Note that

(25) y2(t) + h2(t) ≤ E exp(−ε1t) for all t ≥ 0

for some positive constants M > 0 and ε1 > 0.
According to (20), supt≥0 m(t) < ∞ and

∫ ∞
0

|τ (s)| ds < ∞. Relation (24) implies that
supt≥0 µ(t) < ∞. This completes the proof of the first part of the theorem, since the
function ϕ ∈ D0 is arbitrary and the mean square stability of solutions of linear systems
is equivalent to the mean square boundedness of every solution (see [2]).

II) Consider the increasing function α(t) ≡ min {β(t), γ(t)} ∈ N2. We show that the
function {m(t)} defined by equation (19) is unbounded. First we check that the function
m(t) ≤ m(t) is unbounded and is a solution of the equation

m(t) = f(t) +
∫ t

0

(1 + α(s))2 k(t − s)m(s) ds

or, equivalently, of the equation

(26) m(t) = f(t) +
∫ t

0

H(t − s)f(s) ds +
∫ t

0

H(t − s)τ (s)m(s) ds

where {f(t)}, {τ (t)}, {k(t)}, and {H(t)} are defined above.
Using assumption 2) we first consider the initial deterministic function ϕ ∈ D0 for the

solution {y(t)} of equation (9) such that

(27)
∫ ∞

0

f(t) dt > 0.

Consider equation (26). Using (18), (19), and (27) we get

lim
t→∞

∫ t

0

H(t − s)f(s) ds > 0,

whence

(28) lim
t→∞

∫ t

0

H(t − s)τ (s)
[∫ s

0

H(s − s1)f(s1) ds1

]
ds = ∞,

since
∫ ∞
0

τ (s) ds = ∞ (the latter integral is infinite in view of α ∈ N2).
Taking (27) and integral equality (26) into account we obtain

m(t) ≥
∫ t

0

H(t − s)f(s) ds +
∫ t

0

H(t − s)τ (s)
[∫ s

0

H(s − s1)f(s1) ds1

]
ds

for all t ≥ 0.
Then it follows from (28) that limt→∞ m(t) = ∞. Hence limt→∞ m(t) = ∞, since

m ≤ m(t). Relation (24) leads to limt→∞ µ(t) = ∞, which completes the proof of part
2) of Theorem 2. �
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2. V. E. Slyusarchuk and V. K. Yasins’kĭı, Stability of solutions of stochastic functional-differential
equations in the critical case, Izv. AN BSSR Ser. fiz.-mat. nauk (1977), 109–115. (Russian)

3. A. V. Skorokhod, Studies in the Theory of Random Processes, Kiev University, Kiev, 1961; Eng-
lish transl., Addison-Wesley Publishing Co. Inc., Reading, Mass., 1965. MR0185620 (32:3082a);
MR0185620 (32:3082b)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0331514
http://www.ams.org/mathscinet-getitem?mr=0331514
http://www.ams.org/mathscinet-getitem?mr=0185620
http://www.ams.org/mathscinet-getitem?mr=0185620
http://www.ams.org/mathscinet-getitem?mr=0185620
http://www.ams.org/mathscinet-getitem?mr=0185620
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