
Journal of Machine Learning Research 17 (2016) 1-41 Submitted 6/15; Revised 2/16; Published 12/16

On the properties of variational approximations of Gibbs

posteriors

Pierre Alquier pierre.alquier@ensae.fr

James Ridgway james.ridgway@ensae.fr

Nicolas Chopin nicolas.chopin@ensae.fr

ENSAE

3 Avenue Pierre Larousse

92245 MALAKOFF, FRANCE

Editor: Yee Whye Teh

Abstract

The PAC-Bayesian approach is a powerful set of techniques to derive non-asymptotic
risk bounds for random estimators. The corresponding optimal distribution of estimators,
usually called the Gibbs posterior, is unfortunately often intractable. One may sample
from it using Markov chain Monte Carlo, but this is usually too slow for big datasets.
We consider instead variational approximations of the Gibbs posterior, which are fast
to compute. We undertake a general study of the properties of such approximations.
Our main finding is that such a variational approximation has often the same rate of
convergence as the original PAC-Bayesian procedure it approximates. In addition, we
show that, when the risk function is convex, a variational approximation can be obtained
in polynomial time using a convex solver. We give finite sample oracle inequalities for the
corresponding estimator. We specialize our results to several learning tasks (classification,
ranking, matrix completion), discuss how to implement a variational approximation in
each case, and illustrate the good properties of said approximation on real datasets.

1. Introduction

A Gibbs posterior, also known as a PAC-Bayesian or pseudo-posterior, is a probability
distribution for random estimators of the form:

ρ̂λ(dθ) =
exp[−λrn(θ)]
∫

exp[−λrn]dπ
π(dθ).

More precise definitions will follow, but for now, θ may be interpreted as a parameter (in a
finite or infinite-dimensional space), rn(θ) as an empirical measure of risk (e.g. prediction
error), and π(dθ) a prior distribution.

We will follow in this paper the PAC (Probably Approximatively Correct)-Bayesian
approach, which originates from machine learning (Shawe-Taylor and Williamson, 1997;
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McAllester, 1998; Catoni, 2004); see Catoni (2007) for an exhaustive study, and Jiang and
Tanner (2008); Yang (2004); Zhang (2006); Dalalyan and Tsybakov (2008) for related per-
spectives (such as the aggregation of estimators in the last three papers). There, ρ̂λ appears
as the probability distribution that minimizes the upper bound of an oracle inequality on
the risk of random estimators. The PAC-Bayesian approach offers sharp theoretical guar-
antees on the properties of such estimators, without assuming a particular model for the
data generating process.

The Gibbs posterior has also appeared in other places, and under different motivations:
in Econometrics, as a way to avoid direct maximization in moment estimation (Cher-
nozhukov and Hong, 2003); and in Bayesian decision theory, as a way to define a Bayesian
posterior distribution when no likelihood has been specified (Bissiri et al., 2013). Another
well-known connection, although less directly useful (for Statistics), is with thermodynam-
ics, where rn is interpreted as an energy function, and λ as the inverse of a temperature.

Whatever the perspective, estimators derived from Gibbs posteriors usually show excel-
lent performance in diverse tasks, such as classification, regression, ranking, and so on, yet
their actual implementation is still far from routine. The usual recommendation (Dalalyan
and Tsybakov, 2012; Alquier and Biau, 2013; Guedj and Alquier, 2013) is to sample from
a Gibbs posterior using MCMC (Markov chain Monte Carlo, see e.g. Green et al., 2015);
but constructing an efficient MCMC sampler is often difficult, and even efficient implemen-
tations are often too slow for practical uses when the dataset is very large.

In this paper, we consider instead VB (Variational Bayes) approximations, which have
been initially developed to provide fast approximations of ‘true’ posterior distributions
(i.e. Bayesian posterior distributions for a given model); see Jordan et al. (1999); MacKay
(2002) and Chap. 10 in Bishop (2006).

Our main results are as follows: when PAC-Bayes bounds are available - mainly, when
a strong concentration inequality holds - replacing the Gibbs posterior by a variational
approximation does not affect the rate of convergence to the best possible prediction, on
the condition that the Küllback-Leibler divergence between the posterior and the approx-
imation is itself properly controlled. Furthermore, for convex risks we show that one can
obtain polynomial time algorithms based on optimal convex solvers.

We also provide empirical bounds, which may be computed from the data to ascertain
the actual performance of estimators obtained by variational approximation. All the re-
sults gives strong incentives, we believe, to recommend Variational Bayes as the default
approach to approximate Gibbs posteriors. We also provide a R package1, written in C++
to compute a Gaussian variational approximation in the case of the hinge risk.

The rest of the paper is organized as follows. In Section 2, we present the notations and
assumptions. In Section 3, we introduce variational approximations and the corresponding
algorithms. The main results are provided in a general form in Section 4: in Subsection 4.1,
we give results under the assumption that a Hoeffding type inequality holds (slow rates) and

1. PACVB package: https://cran.r-project.org/web/packages/PACVB/index.html
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in Subsection 4.2, we give results under the assumption that a Bernstein type inequality
holds (fast rates). Note that for the sake of brevity, we will refer to these settings as
“Hoeffding assumption” and “Bernstein assumption” even though this terminology is non-
standard. We then apply these results in various settings: classification (Section 5), convex
classification (Section 6), ranking (Section 7), and matrix completion (Section 8). In each
case, we show how to specialise the general results of Section 4 to the considered application,
in order to obtain the properties of the VB approximation, and we also discuss its numerical
implementation. All the proofs are collected in the Appendix.

2. PAC-Bayesian framework

We observe a sample (X1, Y1), . . . , (Xn, Yn), taking values in X×Y, where the pairs (Xi, Yi)
have the same distribution P . We will assume explicitly that the (Xi, Yi)’s are independent
in several of our specialised results, but we do not make this assumption at this stage, as
some of our general results, and more generally the PAC-Bayesian theory, may be extended
to dependent observations; see e.g. Alquier and Li (2012). The label set Y is always a subset
of R. A set of predictors is chosen by the statistician: {fθ : X → R, θ ∈ Θ}. For example,
in linear regression, we may have: fθ(x) = 〈θ, x〉, the inner product of X = R

d, while in
classification, one may have fθ(x) = I〈θ,x〉>0 ∈ {0, 1}.

We assume we have at our disposal a risk function R(θ); typically R(θ) is a measure
of the prediction error. We set R = R(θ), where θ ∈ argminΘR; i.e. fθ is an optimal
predictor. We also assume that the risk function R(θ) has an empirical counterpart rn(θ),
and set rn = rn(θ). Often, R and rn are based on a loss function ℓ : R

2 → R; i.e.
R(θ) = E[ℓ(Y, fθ(X))] and rn(θ) = 1

n

∑n
i=1 ℓ(Yi, fθ(Xi)). (In this paper, the symbol E

will always denote the expectation with respect to the (unknown) law P of the (Xi, Yi)’s.)
There are situations however (e.g. ranking), where R and rn have a different form.

We define a prior probability measure π(·) on the set Θ (equipped with the standard
σ-algebra for the considered context), and we letM1

+(Θ) denote the set of all probability
measures on Θ.

Definition 2.1 We define, for any λ > 0, the pseudo-posterior ρ̂λ by

ρ̂λ(dθ) =
exp[−λrn(θ)]
∫

exp[−λrn]dπ
π(dθ).

The pseudo-posterior ρ̂λ (also known as the Gibbs posterior, Catoni (2004, 2007), or
the exponentially weighted aggregate, Dalalyan and Tsybakov (2008)) plays a central role
in the PAC-Bayesian approach. It is obtained as the distribution that minimizes the upper
bound of a certain oracle inequality applied to random estimators. Practical estimators
(predictors) may be derived from the pseudo-posterior, by e.g. taking the expectation, or
sampling from it. Of course, when exp[−λrn(θ)] may be interpreted as the likelihood of a
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certain model, ρ̂λ becomes a Bayesian posterior distribution, but we will not restrict our
attention to this particular case.

The following ‘theoretical’ counterpart of ρ̂λ will prove useful to state results.

Definition 2.2 We define, for any λ > 0, πλ as

πλ(dθ) =
exp[−λR(θ)]
∫

exp[−λR]dπ
π(dθ).

We will derive PAC-Bayesian bounds on predictions obtained by variational approxima-
tions of ρ̂λ under two types of assumptions: a Hoeffding-type assumption, from which we
may deduce slow rates of convergence (Subsection 4.1), and a Bernstein-type assumption,
from which we may obtain fast rates of convergence (Subsection 4.2).

Definition 2.3 We say that a Hoeffding assumption is satisfied for prior π when there is
a function f and an interval I ⊂ R

∗
+ such that, for any λ ∈ I, for any θ ∈ Θ,

π (E exp {λ[R(θ)− rn(θ)]})
π (E exp {λ[rn(θ)−R(θ)]})

}

≤ exp [f(λ, n)] . (1)

Inequality (1) can be interpreted as an integrated version (with respect to π) of Ho-
effding’s inequality, for which f(λ, n) ≍ λ2/n. In many cases the loss will be bounded
uniformly over θ; then Hoeffding’s inequality will directly imply (1). The expectation with
respect to π in (1) allows us to treat some cases where the loss is not upper bounded by
specifying a prior with sufficiently light tails.

Definition 2.4 We say that a Bernstein assumption is satisfied for prior π when there is
a function g and an interval I ⊂ R

∗
+ such that, for any λ ∈ I, for any θ ∈ Θ,

π
(

E exp
{

λ[R(θ)−R]− λ[rn(θ)− rn]
})

π
(

E exp
{

λ[rn(θ)− rn]− λ[R(θ)−R]
})

}

≤ π
(

exp
[

g(λ, n)[R(θ)−R]
])

. (2)

This assumption is satisfied for example by sums of i.i.d. sub-exponential random
variables, see Subsection 2.4 p. 27 in Boucheron et al. (2013), when a margin assumption
on the function R(·) is satisfied (Tsybakov, 2004). This is discussed in Section 4.2. Again,
extensions beyond the i.i.d. case are possible, see e.g. Wintenberger (2010) for a survey
and new results. In all these examples, the important feature of the function g that we
will use to derive rates of convergence is the fact that there is a constant c > 0 such that
when λ = cn, g(λ, n) = g(cn, n) ≍ n.

As mentioned previously, we will often consider rn(θ) =
1
n

∑n
i=1 ℓ(Yi, fθ(Xi)), however,

the previous assumptions can also be satisfied when rn(θ) is a U-statistic, using Hoeffd-
ing’s decomposition of U-statistics combined with the corresponding inequality for sums
of independent variables (Hoeffding, 1948). This idea comes from Clémençon et al. (2008)
and we will use it in our ranking application.
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Remark 2.1 We could consider more generally inequalities of the form

π
(

E exp
{

λ[R(θ)−R]− λ[rn(θ)− rn]
})

π
(

E exp
{

λ[rn(θ)− rn]− λ[R(θ)−R]
})

}

≤ π
(

exp
[

g(λ, n)[R(θ)−R]κ
])

that allow using the more general form of the margin assumption of Mammen and Tsybakov
(1999); Tsybakov (2004). PAC-Bayes bounds in this context are provided by Catoni (2007).
However, the techniques involved would require many pages to be described so we decided
to focus on the cases κ = 0 and κ = 1 to keep the exposition simple.

3. Numerical approximations of the pseudo-posterior

3.1 Monte Carlo

As already explained in the introduction, the usual approach to approximate ρ̂λ is MCMC
(Markov chain Monte Carlo) sampling. Ridgway et al. (2014) proposed tempering SMC
(Sequential Monte Carlo, e.g. Del Moral et al. (2006)) as an alternative to MCMC to sample
from Gibbs posteriors: one samples sequentially from ρ̂λt , with 0 = λ0 < · · · < λT = λ
where λ is the desired temperature. One advantage of this approach is that it makes
it possible to contemplate different values of λ, and choose one by e.g. cross-validation.
Another advantage is that such an algorithm requires little tuning; see Appendix B for
more details on the implementation of tempering SMC. We will use tempering SMC as our
gold standard in our numerical studies.

SMC and related Monte Carlo algorithms tend to be too slow for practical use in
situations where the sample size is large, the dimension of Θ is large, or fθ is expensive to
compute. This motivates the use of fast, deterministic approximations, such as Variational
Bayes, which we describe in the next section.

3.2 Variational Bayes

Various versions of VB (Variational Bayes) have appeared in the literature, but the main
idea is as follows. We define a family F ⊂ M1

+(Θ) of probability distributions that are
considered as tractable. Then, we define the VB-approximation of ρ̂λ: ρ̃λ.

Definition 3.1 Let
ρ̃λ = argmin

ρ∈F
K(ρ, ρ̂λ),

where K(ρ, ρ̂λ) denotes the KL (Küllback-Leibler) divergence of ρ̂λ relative to ρ: K(m,µ) =
∫

log[dmdµ ]dm if m≪ µ (i.e. µ dominates m), K(m,µ) = +∞ otherwise.

The difficulty is to find a family F (a) which is large enough, so that ρ̃λ may be close to
ρ̂λ, and (b) such that computing ρ̃λ is feasible. Moreover, even when there are algorithms
for ρ̃λ that are efficient in practice, we may, depending on the problem at hand, have more
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or less strong guarantees on the quality of the optimization. For example, while in Section 6
we consider a setting where an exact upper bound for the optimization error is available,
in Section 8 this is no longer the case.

We now review two types of families popular in the VB literature.

• Mean field VB: for a certain decomposition Θ = Θ1× . . .×Θd, F is the set of product
probability measures

FMF =

{

ρ ∈M1
+(Θ) : ρ(dθ) =

d
∏

i=1

ρi(dθi), ∀i ∈ {1, . . . , d}, ρi ∈M1
+(Θi)

}

. (3)

The infimum of the KL divergence K(ρ, ρ̂λ), relative to ρ =
∏

i ρi satisfies the follow-
ing fixed point condition (Parisi, 1988; Bishop, 2006, Chap. 10):

∀j ∈ {1, · · · , d} ρj(dθj) ∝ exp





∫

{−λrn(θ) + log π(θ)}
∏

i 6=j

ρi(dθi)



π(dθj). (4)

This leads to a natural algorithm were we update successively every ρj until stabi-
lization.

• Parametric family:

FP =
{

ρ ∈M1
+(Θ) : ρ(dθ) = f(θ;m)dθ,m ∈M

}

;

and M is finite-dimensional; say FP is the family of Gaussian distributions (of di-
mension d). In this case, several methods may be used to compute the infimum.
As above, one may used fixed-point iteration, provided an equation similar to (4)
is available. Alternatively, one may directly maximize

∫

log[exp[−λrn(θ)]dπdρ (θ)]ρ(dθ)
with respect to parameter m, using numerical optimization routines. This approach
was used for instance in Hoffman et al. (2013) with combination of some stochastic
gradient descent to perform inference on a latent Dirichlet allocation model. See also
e.g. Khan (2014); Khan et al. (2013) for efficient algorithms for Gaussian variational
approximation.

In what follows (Subsections 4.1 and 4.2) we provide tight bounds for the prediction
risk of ρ̃λ. This leads to the identification of a condition on F such that the risk of ρ̃λ is
not worse than the risk of ρ̂λ. We will make this condition explicit in various examples,
using either mean field VB or parametric approximations.

Remark 3.1 An useful identity, obtained by direct calculations, is: for any ρ≪ π,

log

∫

exp [−λrn(θ)]π(dθ) = −λ
∫

rn(θ)ρ(dθ)−K(ρ, π) +K(ρ, ρ̂λ). (5)
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Since the left hand side does not depend on ρ, one sees that ρ̃λ, which minimizes K(ρ, ρ̂λ)
over F , is also the minimizer of:

ρ̃λ = argmin
ρ∈F

{∫

rn(θ)ρ(dθ) +
1

λ
K(ρ, π)

}

This equation will appear frequently in the sequel in the form of an empirical upper bound.

4. General results

This section gives our general results, under either a Hoeffding Assumption (Definition
2.3) or a Bernstein Assumption (Definition 2.4), on risks bounds for the variational ap-
proximation, and how it relates to risks bounds for Gibbs posteriors. These results will be
specialised to several learning problems in the following sections.

4.1 Bounds under the Hoeffding assumption

4.1.1 Empirical bounds

Theorem 4.1 Under the Hoeffding assumption (Definition 2.3), for any ε > 0, with prob-
ability at least 1− ε we have simultaneously for any ρ ∈M1

+(Θ),

∫

Rdρ ≤
∫

rndρ+
f(λ, n) +K(ρ, π) + log

(

1
ε

)

λ
.

This result is a simple variant of a result in Catoni (2007) but for the sake of complete-
ness, its proof is given in Appendix A. It gives us an upper bound on the risk of both
the pseudo-posterior (take ρ = ρ̂λ) and its variational approximation (take ρ = ρ̃λ). These
bounds may be be computed from the data, and therefore provide a simple way to evaluate
the performance of the corresponding procedure, in the spirit of the first PAC-Bayesian
inequalities (Shawe-Taylor and Williamson, 1997; McAllester, 1998, 1999). However, these
bounds do not provide the rate of convergence of these estimators. For this reason, we also
provide oracle-type inequalities.

4.1.2 Oracle-type inequalities

Another way to use PAC-Bayesian bounds is to compare
∫

Rdρ̂λ to the best possible risk,
thus linking this approach to oracle inequalities. This is the point of view developed
in Catoni (2004, 2007); Dalalyan and Tsybakov (2008).

Theorem 4.2 Assume that the Hoeffding assumption is satisfied (Definition 2.3). For
any ε > 0, with probability at least 1− ε we have simultaneously

∫

Rdρ̂λ ≤ Bλ(M1
+(Θ)) := inf

ρ∈M1
+(Θ)

{

∫

Rdρ+ 2
f(λ, n) +K(ρ, π) + log

(

2
ε

)

λ

}
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and
∫

Rdρ̃λ ≤ Bλ(F) := inf
ρ∈F

{

∫

Rdρ+ 2
f(λ, n) +K(ρ, π) + log

(

2
ε

)

λ

}

.

Moreover,

Bλ(F) = Bλ(M1
+(Θ)) +

2

λ
inf
ρ∈F
K(ρ, πλ

2
)

where we remind that πλ is defined in Definition 2.2.

In this way, we are able to compare
∫

Rdρ̂λ to the best possible aggregation procedure
inM1

+(Θ) and
∫

Rdρ̃λ to the best aggregation procedure in F . More importantly, we are
able to obtain explicit expressions for the right-hand side of these inequalities in various
models, and thus to obtain rates of convergence. This will be done in the remaining
sections. This leads to the second interest of this result: if there is a λ = λ(n) that leads
to Bλ(M1

+(Θ)) ≤ R + sn with sn → 0 for the pseudo-posterior ρ̂λ, then we only have to
prove that there is a ρ ∈ F such that K(ρ, πλ)/λ ≤ csn for some constant c > 0 to ensure
that the VB approximation ρ̃λ also reaches the rate sn.

We will see in the following sections several examples where the approximation does not
deteriorate the rate of convergence. But first let us show the equivalent oracle inequality
under the Bernstein assumption.

4.2 Bounds under the Bernstein assumption

In this context the empirical bound on the risk would depend on the minimal achievable
risk r̄n, and cannot be computed explicitly. We give the oracle inequality for both the
Gibbs posterior and its VB approximation in the following theorem.

Theorem 4.3 Assume that the Bernstein assumption is satisfied (Definition 2.4). Assume
that λ ∈ I satisfies λ− g(λ, n) > 0. Then for any ε > 0, with probability at least 1− ε we
have simultaneously:

∫

Rdρ̂λ −R ≤ Bλ
(

M1
+(Θ)

)

,
∫

Rdρ̃λ −R ≤ Bλ(F),

where, for either A =M1
+(Θ) or A = F ,

Bλ(A) =
1

λ− g(λ, n)
inf
ρ∈A

{

[λ+ g(λ, n)]

∫

(R−R)dρ+ 2K(ρ, π) + 2 log

(

2

ε

)

}

.

In addition,

Bλ(F) = Bλ
(

M1
+(Θ)

)

+
2

λ− g(λ, n)
inf
ρ∈F
K
(

ρ, πλ+g(λ,n)
2

)

.
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The main difference with Theorem 4.2 is that the function R(·) is replaced by R(·)−R.
This is well known way to obtain better rates of convergence.

5. Application to classification

5.1 Preliminaries

In all this section, we assume that Y = {0, 1} and we consider linear classification: Θ =
X = R

d, fθ(x) = 1〈θ,x〉≥0. We put rn(θ) =
1
n

∑n
i=1 1{fθ(Xi) 6=Yi}, R(θ) = P(Y 6= fθ(X)) and

assume that the [(Xi, Yi)]
n
i=1 are i.i.d. In this setting, it is well-known that the Hoeffding

assumption always holds. We state as a reminder the following lemma.

Lemma 1 Hoeffding assumption (1) is satisfied with f(λ, n) = λ2/(2n), λ ∈ R+.

The proof is given in Appendix A for the sake of completeness.
It is also possible to prove that Bernstein assumption (2) holds in the case where the

so-called margin assumption of Mammen and Tsybakov is satisfied. This condition we use
was introduced by Tsybakov (2004) in a classification setting, based on a related definition
in Mammen and Tsybakov (1999).

Lemma 2 Assume that Mammen and Tsybakov’s margin assumption is satisfied: i.e.
there is a constant C such that

E[(1fθ(X) 6=Y − 1f
θ
(X) 6=Y )

2] ≤ C[R(θ)−R].

Then Bernstein assumption (2) is satisfied with g(λ, n) = Cλ2

2n−λ .

Remark 5.1 We refer the reader to Tsybakov (2004) for a proof that

P(0 < |
〈

θ,X
〉

|≤ t) ≤ C ′t

for some constant C ′ > 0 implies the margin assumption. In words, when X is not likely
to be in the region

〈

θ,X
〉

≃ 0, where points are hard to classify, then the problem becomes
easier and the classification rate can be improved.

We propose in this context a Gaussian prior: π = Nd(0, ϑ
2Id), and we consider a

VB approach based on Gaussian families. The corresponding optimization problem is not
convex, but remains feasible as we explain below.
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5.2 Three sets of Variational Gaussian approximations

Consider the three following Gaussian families

F1 =
{

Φ
m,σ2 , m ∈ R

d, σ2 ∈ R
∗
+

}

,

F2 =
{

Φ
m,σ2 , m ∈ R

d,σ2 ∈ (R∗
+)

d
}

(mean field approximation),

F3 =
{

Φm,Σ, m ∈ R
d,Σ ∈ Sd+

}

(full covariance approximation),

where Φ
m,σ2 is Gaussian distribution Nd(m, σ2Id), Φm,σ2 is Nd(m, diag(σ2)), and Φm,Σ is

Nd(m,Σ). Obviously, F1 ⊂ F2 ⊂ F3 ⊂M1
+(Θ), and

Bλ(M1
+(Θ)) ≤ Bλ(F3) ≤ Bλ(F2) ≤ Bλ(F1). (6)

Note that, for the sake of simplicity, we will use the following classical notations in the
rest of the paper: ϕ(·) is the density of N (0, 1) w.r.t. the Lebesgue measure, and Φ(·) the
corresponding c.d.f. The rest of Section 5 is organized as follows. In Subsection 5.3, we
calculate explicitly Bλ(F2) and Bλ(F1). Thanks to (6) this also gives an upper bound on
Bλ(F3) and proves the validity of the three types of Gaussian approximations. Then, we
give details on algorithms to compute the variational approximation based on F2 and F3,
and provide a numerical illustration on real data.

5.3 Theoretical analysis

We start with the empirical bound for F2 (and F1 as a consequence), which is a direct
corollary of Theorem 4.1.

Corollary 5.1 For any ε > 0, with probability at least 1 − ε we have, for any m ∈ R
d,

σ
2 ∈ (R+)

d,

∫

RdΦ
m,σ2 ≤

∫

rndΦm,σ2 +
λ

2n
+

1
2

∑d
i=1

[

log
(

ϑ2

σ2
i

)

+
σ2
i

ϑ2

]

+ ‖m‖2
2ϑ2 − d

2 + log
(

1
ε

)

λ
.

We now want to apply Theorem 4.2 in this context. In order to do so, we introduce an
additional assumption.

Definition 5.1 We say that Assumption A1 is satisfied when there is a constant c > 0
such that, for any (θ, θ′) ∈ Θ2 with ‖θ‖= ‖θ′‖= 1, P(〈X, θ〉 〈X, θ′〉 < 0) ≤ c‖θ − θ′‖.

This is not a strong assumption. It is satisfied when X has an isotropic distribution, and
more generally when X/‖X‖ has a bounded density on the unit sphere2. The intuition

2. If the density of X/‖X‖ with respect to the uniform measure on the unit sphere is upper bounded by

B then P(〈X, θ〉 〈X, θ′〉 < 0) ≤ B
2π

arccos(〈θ, θ′〉) ≤ B
2π

√

5− 5 〈θ, θ′〉 ≤ B
2π

√

5
2
‖θ − θ′‖.
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beyond A1 is that for a “typical” X, a very small change in θ will only induce a change
in sign(〈X, θ〉) with a small probability. When it is not satisfied, two parameters θ and
θ′ very close to each other can lead to very different predictions, and thus, whatever the
accuracy of an approximation of θ̄, it might still lead to poor predictions.

Corollary 5.2 Assume that the VB approximation is done on either F1, F2 or F3. Take
λ =
√
nd and ϑ = 1√

d
. Under Assumption A1, for any ε > 0, with probability at least 1− ε

we have simultaneously

∫

Rdρ̂λ
∫

Rdρ̃λ

}

≤ R+

√

d

n
log (4ne) +

c√
n
+

1

4n

√

d

n
+

2 log
(

2
ε

)

√
nd

.

See the appendix for a proof. Note also that the values λ =
√
nd and ϑ = 1√

d
allow to

derive this almost optimal rate of convergence, but are not necessarily the best choices in
practice.

Remark 5.2 Note that Assumption A1 is not necessary to obtain oracle inequalities on
the risk integrated under ρ̂λ. We refer the reader to Chapter 1 in Catoni (2007) for such
assumption-free bounds. However, it is clear that without this assumption the shape of ρ̂λ
and ρ̃λ might be very different. Thus, it seems reasonable to require that A1 is satisfied for
the approximation of ρ̂λ by ρ̃λ to make sense.

We finally provide an application of Theorem 4.3. Under the additional constraint that
the margin assumption is satisfied, we obtain a better rate.

Corollary 5.3 Assume that the VB approximation is done on either F1, F2 or F3. Un-
der Assumption A1 (Definition 5.1 page 10), and under Mammen and Tsybakov margin
assumption, with λ = 2n

C+2 and ϑ > 0, for any ε > 0, with probability at least 1− ε,

∫

Rdρ̂λ
∫

Rdρ̃λ

}

≤ R̄+
(C + 2)(C + 1)

2

{

d log n
ϑ

n
+

dϑ

n2
+

1

ϑ
− d

ϑn
+

2

n
log

2

ε

}

+

√
d2c(2C + 1)

n
.

It is possible to minimze the bound with respect to ϑ explicitely, this choice or any
constant instead will lead to a rate in d log(n)/n. Note that the rate d/n is minimax-
optimal in this context. This is, for example, a consequence of more general results in Lecué
(2007) under a general form of the the margin assumption. See the Appendix for a proof.

5.4 Implementation and numerical results

For family F2 (mean field), the variational lower bound (5) equals

Lλ,ϑ(m,σ) = −λ

n

n
∑

i=1

Φ

(

−Yi
Xim

√

Xidiag(σ2)Xt
i

)

− mTm

2ϑ
+

1

2

d
∑

k=1

(

log σ2
k −

σ2
k

ϑ

)

,
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while for family F3 (full covariance), it equals

Lλ,ϑ(m,Σ) = −λ

n

n
∑

i=1

Φ

(

−Yi
Xim

√

XiΣXt
i

)

− mTm

2ϑ
+

1

2

(

log|Σ|− 1

ϑ
trΣ

)

.

Both functions are non-convex, but the multimodality of the latter may be more se-
vere due to the larger dimension of F3. To address this issue, we recommend using the
reparametrization of Opper and Archambeau (2009), which makes the dimension of the
latter optimization problem O(n); see Khan (2014) for a related approach. In both cases,
we found that deterministic annealing to be a good approach to optimize such non-convex
functions. We refer to Appendix B for more details on deterministic annealing and on our
particular implementation.

We now compare the numerical performance of the mean field and full covariance VB
approximations to the Gibbs posterior (as approximated by SMC, see Section 3.1) for the
classification of standard datasets; see Table 1. The datasets are all available in the UCI
repository3 except for the DNA dataset which is part of the R package mlbench by Leisch
and Dimitriadou (2010). When no split between the training sample is provided we split
the data in half. The design matrices are centered and scaled before being used. For the
Glass dataset we compare the “silicon” class against the other classes.

We also include results for a linear SVM (support vector machine) and a radial kernel
SVM; the latter comparison is not entirely fair, since this is a non-linear classifier, while all
the other classifiers are linear. Except for the Glass and DNA datasets, the full covariance
VB approximation performs as well as or better than both SMC and SVM (while being
much faster to compute, especially compared to SMC). Note that some high errors for the
VB approximations can be due to the fact that the optimization of the objective is harder
(we address this issue in next section).

Interestingly, VB outperforms SMC in certain cases. This might be due to the fact
that a VB approximation tends to be more concentrated around the mode than the Gibbs
posterior it approximates. Mean field VB does not perform so well on certain datasets
(e.g. Indian). This may due either to the approximation family being too small, or to the
corresponding optmisation problem to be strongly multi-modal. We address this issue in
next section.

6. Application to classification under convexified loss

Compared to the previous section, the advantage of convex classification is that the cor-
responding variational approximation will amount to minimizing a convex function. This

3. https://archive.ics.uci.edu/ml/datasets.html
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Dataset Covariates Mean Field (F2) Full cov. (F3) SMC
SVM
radial

SVM
linear

Pima 7 31.0 21.3 22.3 30.4 21.6
German
Credit

60 32.0 33.6 32.0 32.0 33.2

DNA 180 23.6 23.6 23.6 3.5 5.1
SPECTF 22 08.0 06.9 08.5 10.1 21.4
Glass 10 34.6 19.6 23.3 4.7 6.5
Indian 11 48.0 25.5 26.2 26.8 25.3
Breast 10 35.1 1.1 1.1 1.7 1.7

Table 1: Comparison of misclassification rates (%).
Misclassification rates for different datasets and for the proposed approximations of the Gibbs posterior. The
last two columns are the missclassification rate given by a SVM with radial kernel and a linear SVM. The hyper-
parameters are chosen by cross-validation.

means that (a) the minimization problem will be easier to deal with; and (b) we will
be able to compute a bound for the integrated risk after a given number of steps of the
minimization procedure.

The setting is the same as in the previous section, except that for convenience we now
take Y = {−1, 1}, and the risk is based on the hinge loss,

rHn (θ) =
1

n

n
∑

i=1

max(0, 1− Yi〈θ,Xi〉).

We will write RH for the theoretical counterpart and R̄H for its minimum in θ. We
keep the superscript H in order to allow comparison with the risk R under the 0-1 loss. We
assume in this section that the Xi are uniformly bounded, that is, we have almost surely
‖Xi‖∞= maxj |Xi,j |< cx for some cx > 0. Note that we do not require an assumption of
the form (A1) to obtain the results of this section, as we rely directly on the Lipschitz
continuity of the hinge risk.

6.1 Theoretical Results

Contrary to the previous section, the risk is not bounded in θ, and we must specify a prior
distribution for the Hoeffding assumption to hold.

Lemma 3 Under an independent Gaussian prior π such that each component is N(0, ϑ2),

and for λ < 1
cx

√

n
ϑ
2 and with bounded design |Xij |< cx, Hoeffding assumption (1) is

satisfied with f(λ, n) = λ2/(4n)− 1
2 log

(

1− ϑ2λ2c2x
2n

)

.
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The main impact of such a bound is that the prior variance cannot be taken too big
relative to λ.

Corollary 6.1 Assume that the VB approximation is done on either F1, F2 or F3. Take
λ = 1

cx

√

n
ϑ2 and ϑ = 1√

d
. For any ε > 0, with probability at least 1− ε we have simultane-

ously

∫

RHdρ̂λ
∫

RHdρ̃λ

}

≤ R
H
+

cx
2

√

d

n
log

n

d
+ cx

d

n

√

d

n
+

1√
nd

(

2c2x + 1

2cx
+ 2cx log

2

ǫ

)

The oracle inequality in the above corollary enjoys the same rate of convergence as the
equivalent result in the preceding section. In the following we link the two results.

Remark 6.1 As stated in the beginning of the section we can use the estimator specified
under the hinge loss to bound the excess risk of the 0-1 loss. We write R⋆ and RH⋆ the
respective risk for their corresponding Bayes classifiers. From Zhang (2004) (section 3.3)
we have the following inequality, linking the excess risk under the hinge loss and the 0-1
loss,

R(θ)−R⋆ ≤ RH(θ)−RH⋆

for every θ ∈ R
p. By integrating with respect to ρ̃H (the VB approximation on any

F1,F2,F3 of the Gibbs posterior for the hinge risk) and making use of Corollary 6.1 we
have with high probability,

ρ̃H (R(θ))−R⋆ ≤ inf
θ∈Rp

RH(θ)−RH⋆ +O
(
√

d

n
log
(n

d

)

)

.

6.2 Numerical application

We have motivated the introduction of the hinge loss as a convex upper bound. In the
sequel we show that the resulting VB approximation also leads to a convex optimization
problem. This has the advantage of opening a range of possible optimization algorithms
(Nesterov, 2004). In addition we are able to bound the error of the approximated measure
after a fixed number of iterations (see Theorem 6.2).

Under the model F1 each individual risk is given by:

ρm,σ(ri(θ)) = (1− Γim) Φ

(

1− Γim

σ‖Γi‖2

)

+ σ‖Γi‖ϕ
(

1− Γim

σ‖Γi‖2

)

:= Ξi

((

m
σ

))

,

writing Γi := YiXi.
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Hence the lower bound to be maximized is given by

L(m, σ) = −λ

n

{

n
∑

i=1

(1− Γim) Φ

(

1− Γim

σ‖Γi‖2

)

+

n
∑

i=1

σ‖Γi‖ϕ
(

1− Γim

σ‖Γi‖2

)

}

− ‖m‖
2
2

2ϑ
+

d

2

(

log σ2 − ϑ

σ2

)

.

It is easy to see that the function is convex in (m, σ), first note that the map

Ψ :

(

x
y

)

7→ xΦ

(

x

y

)

+ yϕ

(

x

y

)

,

is convex and note that we can write Ξi

((

m
σ

))

= Ψ

(

A

(

x
y

)

+ b

)

hence by compo-

sition of convex function with linear mappings we have the result. Similar reasoning could
be held for the case F2 and F3, where in later the parametrization should be done in C
such that Σ = CCt. The bound is however not universally Lipschitz in σ, this impacts
the optimization algorithms. In Theorem 6.2 we define a ball around the optimal value
of the objective, containing the initial values. We denote it’s radius by M . On this ball
the objective is Lipschitz (with coefficient L) and optimal convex solvers can be used (e.g.
Nesterov (2004) section 3.2.3).

On the class of function F0 =
{

Φ
m, 1

n
,m ∈ R

d
}

, for which our Oracle inequalities

still hold we could get faster numerical algorithms. The objective function has Lipschitz
continuous derivatives and we would get a rate of L

(1+k)2
.

Other convex loss could be considered which could lead to convex optimization prob-
lems. For instance one could consider the exponential loss.

Theorem 6.2 Assume that the VB approximation is based on either F1,F2 or F3. Denote
by ρ̃k(dθ) the VB approximated measure after the kth iteration of an optimal convex solver
using the hinge loss. Fix M > 0 large enough so that the optimal approximated mean and
variance m̄,Σ̄ are at distance at most M from the initial value used by the solver. Take
λ =
√
nd and ϑ = 1√

d
then under the hypothesis of Corollary 6.1 with probability 1− ǫ

∫

RHdρ̃k ≤ R
H
+

LM√
1 + k

+
cx
2

√

d

n
log

n

d
+ cx

d

n

√

d

n
+

1√
nd

(

2c2x + 1

2cx
+ 2cx log

2

ǫ

)

where L is the Lipschitz coefficient on a ball of radius M defined above.

Note that this result is stronger and more practical than the previous ones: it ensures
a certain error level (with fixed probability 1 − ǫ) for the k-th iterate of the optimization
algorithm, for a known value of k. In contrast, previous results applied to the output of
the optimizer ”for k large enough”.

We find that on average the misclassification error (Table 2) is lower than for the 0-1
loss where we have no guaranties that the maximum is attained.
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Dataset Covariates Hinge loss SMC

Pima 7 19.5 22.3
Credit 60 26.2 32.0
DNA 180 4.2 23.6
SPECTF 22 10.1 08.5
Glass 10 2.8 23.3
Indian 11 25.5 25.5
Breast 10 0.5 1.1

Table 2: Comparison of misclassification rates (%).
Misclassification rates for different datasets and for the proposed approximations of the Gibbs
posterior. The hyperparameters are chosen by cross-validation. This is to be compared
to Table 1. The variational Bayes approximation was computed using the R package we
developed (see the introduction for a reference).

7. Application to ranking

7.1 Preliminaries

We now focus on the ranking problem. We follow Clémençon et al. (2008) for the definitions
of the basic concepts: Y = {0, 1}, Θ = X = R

d and fθ : X 2 → {−1,+1} for θ ∈ Θ;
fθ(x, x

′) = 1 (resp. −1) means that x is more (resp. less) likely to correspond to label 1
than x′. The natural risk function is then

R(θ) = P [(Y1 − Y2)fθ(X1, X2) < 0]

and the empirical risk

rn(θ) =
1

n(n− 1)

∑

1≤i 6=j≤n

1{(Yi−Yj)fθ(Xi,Xj)<0}.

Again, we recall classical results.

Lemma 4 The Hoeffding-type assumption is satisfied with f(λ, n) = λ2

n−1 .

The variant of the margin assumption adapted to ranking was established by Robbiano
(2013) and Ridgway et al. (2014).

Lemma 5 Assume the following margin assumption:

E[(1fθ(X1,X2)[Y1−Y2]<0 − 1fθ(X1,X2)[Y1−Y2]<0)
2] ≤ C[R(θ)−R].

Then Bernstein assumption (2) is satisfied with g(λ, n) = Cλ2

n−1−4λ .
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We focus on linear classifiers, fθ(x, x
′) = −1+2×1〈θ,x〉>〈θ,x′〉. Like in the classification

setting, 〈x, θ〉 is interpreted as a score related to the probability that Y = 1|X = x. We
consider a Gaussian prior

π(dθ) =

d
∏

i=1

ϕ(θi; 0, ϑ
2)dθi

and the approximation families will be the same as in Section 5: F1 = {Φm,σ2 ,m ∈ R
d, σ2 ∈

R
∗
+}, F2 = {Φm,σ2 ,m ∈ R

d,σ2 ∈ (R∗
+)

2} and F3 = {Φm,Σ,m ∈ R
d,Σ ∈ Sd+}.

7.2 Theoretical study

Here again, we start with the empirical bound.

Corollary 7.1 For any ε > 0, with probability at least 1 − ε we have, for any m ∈ R
d,

σ2 ∈ (R+)
d,

∫

RdΦ
m,σ2 ≤

∫

rndΦm,σ2 +
λ

n− 1
+

1
2

∑d
j=1

[

log
(

ϑ2

σ2
i

)

+
σ2
i

ϑ2

]

+ ‖m‖2
2ϑ2 − d

2 + log
(

1
ε

)

λ
.

In order to derive a theoretical bound, we introduce the following variant of Assump-
tion A1.

Definition 7.1 We say that Assumption A2 is satisfied when there is a constant c > 0 such
that, for any (θ, θ′) ∈ Θ2 with ‖θ‖= ‖θ′‖= 1, P(〈X1 −X2, θ〉 〈X1 −X2, θ

′〉 < 0) ≤ c‖θ−θ′‖.
Assumption A2 is just Assumption A1 applied to the distribution of (X1−X2). Intuitively,
it means that two parameters close to each other rank X1 and X2 in the same way (with
large probability).

Corollary 7.2 Use either F1, F2 or F3. Take λ =

√

d(n−1)
2 and ϑ = 1. Under (A2), for

any ε > 0, with probability at least 1− ε,

∫

Rdρ̂λ
∫

Rdρ̃λ

}

≤ R+

√

2d

n− 1

(

1 +
1

2
log (2d(n− 1))

)

+
c
√
2√

n− 1
+

1

(n− 1)3/2
√
2d

+
2
√
2 log

(

2e
ε

)

√

(n− 1)d
.

Finally, under an additional margin assumption, we have:

Corollary 7.3 Under Assumption A2 and the margin assumption of Lemma (5), for λ =
n−1
C+5 and ϑ > 0, for any ε > 0, with probability at least 1− ε,

∫

Rdρ̂λ
∫

Rdρ̃λ

}

≤ R̄+
(C + 5)(C + 1)

2

{

d log n
ϑ

n− 1
+

dϑ

n(n− 1)
+

1

ϑ
− d

ϑn− 1
+

2

n− 1
log

2

ε

}

+

√
d4c(C + 1)

n
.
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It is possible to optimize the bound with respect to ϑ. The proof is similar to the ones
of Corollaries 5.2, 5.3 and 7.2.

As in the case of classification, ranking under an AUC loss can be done by replacing
the indicator function by the corresponding upper bound given by an hinge loss. In this
case we can derive similar results as for the convexified classification in particular we can
get a convex minimization problem and obtain result without requiring assumption (A2).

7.3 Algorithms and numerical results

As an illustration we focus here on family F2 (mean field). In this case the VB objective
to maximize is given by:

L(m, σ2) = − λ

n+n−

∑

i:yi=1,j:yj=0

Φ



− Γijm
√

∑d
k=1(γ

k
ij)

2σ2
k



− ‖m‖
2
2

2ϑ
+

1

2

d
∑

k=1

[

log σ2
k −

σ2
k

ϑ

]

,

(7)
where Γij = Xi − Xj , n+ = card{1 ≤ i ≤ n : Yi = 1}, n− = n − n+ = card{1 ≤ i ≤ n :
Yi = 0} and where (γkij)k are the elements of Γ.

This function is expensive to compute, as it involves n+n− terms, the computation of
which is O(p).

We propose to use a stochastic gradient descent in the spirit of Hoffman et al. (2013).
The model we consider is not in an exponential family, meaning we cannot use the trick
developed by these authors. We propose instead to use a standard descent.

The idea is to replace the gradient by a unbiased version based on a batch of size B
as described in Algorithm 4 in the Appendix. Robbins and Monro (1951) show that for
a step-size (λt)t such that

∑

t λ
2
t < ∞ and

∑

t λt = ∞ the algorithm converges to a local
optimum.

In our case we propose to sample pairs of data with replacement and use the unbiased
version of the derivative of the risk component. We use a simple gradient descent without
any curvature information. One could also use recent research on stochastic quasi Newton-
Raphson (Byrd et al., 2014).

For illustration, we consider a small dataset (Pima), and a larger one (Adult). Both
datasets are available in the UCI repository4. As for the previous experiment the data
is scaled and centered. The latter is already quite challenging with n+n− = 193, 829, 520
pairs to compare. In both cases with different size of batches convergence is obtained with
a few iterations only and leads to acceptable bounds.

In Figure 1 we show the empirical bound on the AUC risk as a function of the iteration
of the algorithm, for several batch sizes. The bound is taken for 95% probability, the
batch sizes are taken to be B = 1, 10, 20, 50 for the Pima dataset, and 50 for the Adult
dataset. The figure shows an additional feature of VB approximation in the context of

4. https://archive.ics.uci.edu/ml/datasets.html
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Figure 1: Error bound at each iteration, stochastic descent, Pima and Adult
datasets.

Stochastic VB with fixed temperature λ = 100 for Pima and λ = 1000 for adult. The left panel shows
several curves that correspond to different batch sizes; these curves are hard to distinguish. The right panel
is for a batch size of 50. The adult dataset has n = 32556 observation and n+n− = 193829520 possible
pairs. The convergence is obtained in order of seconds. The bounds are the empirical bounds obtained in
Corollary 7.1 for a probability of 95%.

Gibbs posterior: namely the possibility of computing the empirical upper bound given
by Corollary 7.1. That is we can check the quality of the bound at each iteration of the
algorithm, or for different values of the hyperparameters.

8. Application to matrix completion

The matrix completion problem has received increasing attention recently, partly due to
spectacular theoretical results (Candès and Tao, 2010), and to challenging applications
like the Netflix challenge (Bennett and Lanning, 2007). In the perspective of this paper,
the specific interest of this application is twofold. First, this is a case where the family of
approximations is not parametric, but rather of the form (3), i.e. the family of products
of independent components. Then, there is no known theoretical result for the Gibbs
estimator in the considered model, yet we can still directly bound the loss induced by the
variational approximation.
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We observe i.i.d. pairs ((Xi, Yi))
n
i=1 where Xi ∈ {1, . . . ,m1} × {1, . . . ,m2}, and we

assume that there is a m1×m2-matrix M such that Yi = MXi
+ εi and the εi are centred.

Assuming that Xi is uniform on {1, . . . ,m1} × {1, . . . ,m2}, that fθ(Xi) = θXi
, and taking

the quadratic risk, R(θ) = E
[

(Yi − θXi
)2
]

, we have that

R(θ)−R =
1

m1m2
‖θ −M‖2F

where ‖·‖F stands for the Frobenius norm.
A common way to parametrize the problem is

Θ = {θ = UV T , U ∈ R
m1×K , V ∈ R

m2×K}

where K is large; e.g. K = min(m1,m2). Following Salakhutdinov and Mnih (2008), we
define the following prior distribution: U·,j ∼ N (0, γjI), V·,j ∼ N (0, γjI) where the γj ’s
are i.i.d. from an inverse gamma distribution, γj ∼ IΓ(a, b).

Note that VB algorithms were used in this context by Lim and Teh (2007) (with a
slightly simpler prior however: the γj ’s are fixed rather than random). Since then, this
prior and variants were used in several papers (e.g. Lawrence and Urtasun, 2009; Zhou
et al., 2010). Until now, no theoretical results were proved to the best of our knowledge.
Two papers prove minimax-optimal rates for slightly modified estimators (by truncation),
for which efficient algorithms are unknown (Mai and Alquier, 2015; Suzuki, 2014). However,
using Theorems 4.2 and 4.3 we are able to prove the following: if there is a PAC-Bayesian
bound leading to a rate for ρ̂λ in this context, then the same rate holds for ρ̃λ. In other
words: if someone proves the conjecture that the Gibbs estimator is minimax-optimal (up
to log terms) in this context, then the VB approximation will enjoy automatically the same
property.

We propose the following approximation:

F =







ρ(d(U, V )) =

m1
∏

i=1

ui(dUi,·)
m2
∏

j=1

vj(dVj,·)







.

Theorem 8.1 Assume that M = UV T with |Ui,k|, |Vj,k|≤ C. Assume that rank(M) = r so
that we can assume that U·,r+1 = · · · = U·,K = V·,r+1 = · · · = V·,K = 0 (note that the prior π
does not depend on the knowledge of r though). Choose the prior distribution on the hyper-
parameters γj as inverse gamma Inv−Γ(a, b) with b ≤ 1/[2β(m1 ∨m2) log(2K(m1 ∨m2))].
Then there is a constant C(a, C) such that, for any β > 0,

inf
ρ∈F
K(ρ, πβ) ≤ C(a, C)

{

r(m1 +m2) log [βb(m1 +m2)K] +
1

β

}

.

See the Appendix for a proof.
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For instance, in Theorem 4.3, in classification and ranking we had λ, λ − g(λ, n) and
λ+ g(λ, n) of order O(n). In this case we would have:

2

λ− g(λ, n)
inf
ρ∈F
K
(

ρ, πλ+g(λ,n)
2

)

= O
(C(a, C)r(m1 +m2) log [nb(m1 +m2)K]

n

)

,

and note that in this context it is know that the minimax rate is at least r(m1 + m2)/n
(Koltchinskii et al., 2011).

8.1 Algorithm

As already mentioned, the approximation family is not parametric in this case, but rather
of type mean field. The corresponding VB algorithm amounts to iterating equation (4),
which takes the following form in this particular case:

uj(dUj,.) ∝ exp

{

−λ

n

∑

i

EV,U−j

[

(YXi
− (UV T )Xi

)2
]

−
K
∑

k=1

Eγj

[

1

2γk

]

U2
jk

}

vj(dVj,.) ∝ exp

{

−λ

n

∑

i

EV−j ,U

[

(YXi
− (UV T )Xi

)2
]

−
K
∑

k=1

Eγj

[

1

2γk

]

V 2
jk

}

p(γk) ∝ exp







− 1

2γk





∑

j

EUU
2
kj +

∑

i

EV V
2
ik



+ (α+ 1) log
1

γk
− β

γk







where the expectations are taken with respect to the thus defined variational approxi-
mations. One recognises Gaussian distributions for the first two, and an inverse Gamma
distribution for the third. We refer to Lim and Teh (2007) for more details on this al-
gorithm and for a numerical illustration. However, we point out that in this case, while
the algorithm seems to work well in practice, there is no theoretical guarantee that it will
converge to the global minimum of the problem.

9. Discussion

We showed in several important scenarios that approximating a Gibbs posterior through
VB (Variational Bayes) techniques does not deteriorate the rate of convergence of the
corresponding procedure. We also described practical algorithms for fast computation of
these VB approximations, and provided empirical bounds that may be computed from
the data to evaluate the performance of the so-obtained VB-approximated procedure. We
believe these results provide a strong incentive to recommend VB as the default approach
to approximate Gibbs posteriors, in lieu of Monte Carlo methods. We also developed a R
package5 for convexified losses (classification and bipartite ranking), applying the ideas of
Section 6.

5. PACVB package: https://cran.r-project.org/web/packages/PACVB/index.html
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We hope to extend our results to other applications beyond those discussed in this
paper, such as regression. One technical difficulty with regression is that the risk function
is not bounded, which makes our approach a bit less direct to apply. In many papers on
PAC-Bayesian bounds for regression, the noise can be unbounded (usually, it is assumed
to be sub-exponential), but one assumes that the predictors are bounded, see e.g. Alquier
and Biau (2013). However, using the robust loss function of Audibert and Catoni, it is
possible to relax this assumption (Audibert and Catoni, 2011; Catoni, 2012). This requires
a more technical analysis, which we leave for further work.

Appendix A. Proofs

A.1 Preliminary remarks

Direct calculation yields, for any ρ≪ π with
∫

rndρ <∞,

K(ρ, π[rn]) = λ

∫

rndρ+K(ρ, π) + log

∫

exp(−h)dπ.

Two well known consequences are

π[h] = arg min
ρ∈M1

+(Θ)

{∫

hdρ+K(ρ, π)
}

,

− log

∫

exp(−h)dπ = min
ρ∈M1

+(Θ)

{∫

hdρ+K(ρ, π)
}

.

We will use these inequalities many times in the followings. The most frequent application
will be with h(θ) = λrn(θ) (in this case π[λrn] = ρ̂λ) or h(θ) = ±λ[rn(θ)−R(θ)], the first
case leads to

K(ρ, ρ̂λ) = λ

∫

rndρ+K(ρ, π) + log

∫

exp(−λrn)dπ, (8)

ρ̂λ = arg min
ρ∈M1

+(Θ)

{

λ

∫

rndρ+K(ρ, π)
}

, (9)

− log

∫

exp(−λrn)dπ = min
ρ∈M1

+(Θ)

{

λ

∫

rndρ+K(ρ, π)
}

. (10)

We will use (8), (9) and (10) several times in this appendix.

A.2 Proof of the theorems in Subsection 4.1

Proof of Theorem 4.1. This proof follows the standard PAC-Bayesian approach (see Catoni
(2007)). Apply Fubini’s theorem to the first inequality of (1):

E

∫

exp {λ[R(θ)− rn(θ)]− f(λ, n)}π(dθ) ≤ 1
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then apply the preliminary remark with h(θ) = λ[rn(θ)−R(θ)]:

E exp

{

sup
ρ∈M1

+(Θ)

∫

λ[R(θ)− rn(θ)]ρ(dθ)−K(ρ, π)− f(λ, n)

}

≤ 1.

Multiply both sides by ε and use E[exp(U)] ≥ P(U > 0) for any U to obtain:

P

[

sup
ρ∈M1

+(Θ)

∫

λ[R(θ)− rn(θ)]ρ(dθ)−K(ρ, π)− f(λ, n) + log(ε) > 0

]

≤ ε.

Then consider the complementary event:

P

[

∀ρ ∈M1
+(Θ), λ

∫

Rdρ ≤ λ

∫

rndρ+ f(λ, n) +K(ρ, π) + log

(

1

ε

)]

≥ 1− ε.

�

Proof of Theorem 4.2. Using the same calculations as above, we have, with probability at
least 1− ε, simultaneously for all ρ ∈M1

+(Θ),

λ

∫

Rdρ ≤ λ

∫

rndρ+ f(λ, n) +K(ρ, π) + log

(

2

ε

)

(11)

λ

∫

rndρ ≤ λ

∫

Rdρ+ f(λ, n) +K(ρ, π) + log

(

2

ε

)

. (12)

We use (11) with ρ = ρ̂λ and (9) to get

λ

∫

Rdρ̂λ ≤ inf
ρ∈M1

+(Θ)

{

λ

∫

rndρ+ f(λ, n) +K(ρ, π) + log

(

2

ε

)}

and plugging (12) into the right-hand side, we obtain

λ

∫

Rdρ̂λ ≤ inf
ρ∈M1

+(Θ)

{

λ

∫

Rdρ+ 2f(λ, n) + 2K(ρ, π) + 2 log

(

2

ε

)}

.

Now, we work with ρ̃λ = argminρ∈F K(ρ, ρ̂λ). Plugging (8) into (11) we get, for any ρ,

λ

∫

Rdρ ≤ f(λ, n) +K(ρ, ρ̂λ)− log

∫

exp(−λrn)dπ + log

(

2

ε

)

.

By definition of ρ̃λ, we have:

λ

∫

Rdρ̃λ ≤ inf
ρ∈F

{

f(λ, n) +K(ρ, ρ̂λ)− log

∫

exp(−λrn)dπ + log

(

2

ε

)}
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and, using (8) again, we obtain:

λ

∫

Rdρ̃λ ≤ inf
ρ∈F

{

λ

∫

rndρ+ f(λ, n) +K(ρ, π) + log

(

2

ε

)}

.

We plug (12) into the right-hand side to obtain:

λ

∫

Rdρ̃λ ≤ inf
ρ∈F

{

λ

∫

Rdρ+ 2f(λ, n) + 2K(ρ, π) + 2 log

(

2

ε

)}

.

This proves the second inequality of the theorem. In order to prove the claim

Bλ(F) = Bλ(M1
+(Θ)) +

2

λ
inf
ρ∈F
K(ρ, πλ

2
),

note that

Bλ(F) = inf
ρ∈F

{

∫

Rdρ+
2f(λ, n)

λ
+

2K(ρ, π)
λ

+
2 log

(

2
ε

)

λ

}

= inf
ρ∈F

{

− 2

λ
log

∫

exp

(

−λ

2
R

)

dπ +
2f(λ, n)

λ
+

2K(ρ, πλ
2
)

λ
+

2 log
(

2
ε

)

λ

}

= − 2

λ
log

∫

exp

(

−λ

2
R

)

dπ +
2f(λ, n)

λ
+

2 log
(

2
ε

)

λ
+

2

λ
inf
ρ∈F
K(ρ, πλ

2
)

= Bλ(M1
+(Θ)) +

2

λ
inf
ρ∈F
K(ρ, πλ

2
).

This ends the proof. �

A.3 Proof of Theorem 4.3 (Subsection 4.2)

Proof of Theorem 4.3. As in the proof of Theorem 4.1, we apply Fubini, then (10) to the
first inequality of (2) to obtain

E exp

{

sup
ρ

∫

[

λ[R(θ)−R]− λ[rn(θ)− rn]− g(λ, n)[R(θ)−R]
]

ρ(dθ)−K(ρ, π)
}

≤ 1

and we multiply both sides by ε/2 to get

P

{

sup
ρ

[

[λ− g(λ, n)]

[∫

Rdρ−R

]

≥ λ

[∫

rndρ− rn

]

+K(ρ, π) + log

(

2

ε

)

]}

≤ ε

2
. (13)

We now consider the second inequality in (2):

E exp
{

λ[rn(θ)− rn]− λ[R(θ)−R]− g(λ, n)[R(θ)−R]
}

≤ 1.
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The same derivation leads to

P

{

sup
ρ

[

[λ− g(λ, n)]

[∫

rndρ− rn

]

≥ λ

[∫

Rdρ−R

]

+K(ρ, π) + log

(

2

ε

)

]}

≤ ε

2
. (14)

We combine (13) and (14) by a union bound argument, and we consider the complementary
event: with probability at least 1− ε, simultaneously for all ρ ∈M1

+(Θ),

[λ− g(λ, n)]

[∫

Rdρ−R

]

≤ λ

[∫

rndρ− rn

]

+K(ρ, π) + log

(

2

ε

)

, (15)

λ

[∫

rndρ− rn

]

≤ [λ+ g(λ, n)]

[∫

Rdρ−R

]

+K(ρ, π) + log

(

2

ε

)

. (16)

We now derive consequences of these two inequalities (in other words, we focus on the
event where these two inequalities are satisfied). Using (9) in (15) yields

[λ− g(λ, n)]

[∫

Rdρ̂λ −R

]

≤ inf
ρ∈M1

+(Θ)

{

λ

[∫

rndρ− rn

]

+K(ρ, π) + log

(

2

ε

)}

.

We plug (16) into the right-hand side to obtain:

[λ− g(λ, n)]

[∫

Rdρ̂λ −R

]

≤ inf
ρ∈M1

+(Θ)

{

[λ+ g(λ, n)]

[∫

Rdρ−R

]

+ 2K(ρ, π) + 2 log

(

2

ε

)

}

.

Now, we work with ρ̃λ. Plugging (8) into (13) we get

[λ− g(λ, n)]

[∫

Rdρ−R

]

≤ K(ρ, ρ̂λ)− log

∫

exp[−λ(rn − rn)]dπ + log

(

2

ε

)

.

By definition of ρ̃λ, we have:

[λ− g(λ, n)]

[∫

Rdρ̃λ −R

]

≤ inf
ρ∈F

{

K(ρ, ρ̂λ)− log

∫

exp[−λ(rn − rn)]dπ + log

(

2

ε

)}

.

Then, apply (8) again to get:

[λ− g(λ, n)]

[∫

Rdρ̃λ −R

]

≤ inf
ρ∈F

{

λ

∫

(rn − rn)dρ+K(ρ, π) + log

(

2

ε

)}

.
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Plug (16) into the right-hand side to get

[λ− g(λ, n)]

[∫

Rdρ̃λ −R

]

≤ inf
ρ∈F

{

[λ+ g(λ, n)]

∫

(R−R)dρ+ 2K(ρ, π) + 2 log

(

2

ε

)}

.

�

A.4 Proofs of Section 5

Proof of Lemma 1. Combine Theorem 2.1 p. 25 and Lemma 2.2 p. 27 in Boucheron et al.
(2013). �
Proof of Lemma 2. Apply Theorem 2.10 in Boucheron et al. (2013), and plug the margin
assumption. �
Proof of Corollary 5.2. We remind that thanks to (6) it is enough to prove the claim for
F1. We apply Theorem 4.2 to get:

Bλ(F1) = inf
(m,σ2)

{

∫

RdΦ
m,σ2 +

λ

n
+ 2
K(Φ

m,σ2 , π) + log
(

2
ε

)

λ

}

= inf
(m,σ2)







∫

RdΦ
m,σ2 +

λ

n
+ 2

d
[

1
2 log

(

ϑ2

σ2

)

+ σ2

2ϑ2

]

+ ‖m‖2
2ϑ2 − d

2 + log
(

2
ε

)

λ







.

Note that the minimizer of R, θ, is not unique (because fθ(x) does not depend on ‖θ‖) and
we can chose it in such a way that ‖θ‖= 1. Then

R(θ)−R = E

[

1〈θ,X〉Y <0 − 1〈θ,X〉Y <0

]

≤ E

[

1〈θ,X〉〈θ,X〉<0

]

= P
(

〈θ,X〉
〈

θ,X
〉

< 0
)

≤ c

∥

∥

∥

∥

θ

‖θ‖ − θ

∥

∥

∥

∥

≤ 2c‖θ − θ‖.

So:

Bλ(F1) ≤ R+ inf
(m,σ2)

{

2c

∫

‖θ − θ‖Φ
m,σ2(dθ)

+
λ

n
+ 2

d
[

1
2 log

(

ϑ2

σ2

)

+ σ2

2ϑ2

]

+ ‖m‖2
2ϑ2 − d

2 + log
(

2
ε

)

λ

}

.

We now restrict the infimum to distributions ν such that m = θ:

B(F1) ≤ R+ inf
σ2







2c
√
dσ +

λ

n
+

d log
(

ϑ2

σ2

)

+ dσ2

ϑ2 + 1
ϑ2 − d+ 2 log

(

2
ε

)

λ







.
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We put σ = 1
2λ and substitute 1√

d
for ϑ to get

B(F1) ≤ R+
λ

n
+

c
√
d+ d log(4λ2

d ) + d2

4λ2 + 2 log
(

2
ε

)

λ
.

Substitute
√
nd for λ to get the desired result. �

Proof of Corollary 5.3. We apply Theorem 4.3:

∫

(R−R)dρ̃λ

≤ inf
m,σ2

{

λ+ g(λ, n)

λ− g(λ, n)

∫

(R− R̄)dΦ
m,σ2 +

1

λ− g(λ, n)

(

2K(Φ
m,σ2 , π) + 2 log

2

ǫ

)}

where λ < 2n
C+1 . Computations similar to those in the the proof of Corollary 5.2 lead to

∫

Rdρ̃λ ≤ R+ inf
m,σ2

{

2c
λ+ g(λ, n)

λ− g(λ, n)

∫

‖θ − θ‖Φ
m,σ2(dθ)

+ 2

1
2

∑d
j=1

[

log
(

ϑ2

σ2

)

+ σ2

ϑ2

]

+ ‖m‖2
2ϑ2 − d

2 + log
(

2
ε

)

λ− g(λ, n)

}

.

taking m = θ̄ and λ = 2n
C+2 , we get the result. �

A.5 Proofs of Section 6

Proof of Lemma 3. For fixed θ we can upper bound the individual risk such that:

0 ≤ max(0, 1− < θ,Xi > Yi) ≤ 1 + |< θ,Xi > |

such that we can apply Hoeffding’s inequality conditionally on Xi and fixed θ.
We get,

E
[

exp
(

λ(RH − rHn )
)

|X1, · · · , Xn

]

≤ exp

{

λ2

8n2

n
∑

i=1

(1 + |< θ,Xi > |)2
}

≤ exp

{

λ2

4n
+

λ2c2x
4n
‖θ‖2

}

where the last inequality stems from the fact that (a+ b)2 ≤ 2
(

a2 + b2
)

and the fact that
we have supposed the Xi to be bounded. We can take the expectation of this term with
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respect to the Xi’s and with respect to our Gaussian prior.

π
{

E
[

exp
(

λ(RH − rHn )
)]}

≤
exp

(

λ2

4n

)

(2π)
d
2

√
ϑ2

∫

exp

(

λ2c2x
4n
‖θ‖2− 1

2ϑ2
‖θ‖2

)

dθ

≤
exp

(

λ2

4n

)

(2π)
d
2

√
ϑ2

∫

exp

(

−1

2

[

1

ϑ2
− λ2c2x

2n

]

‖θ‖2
)

dθ

The integral is a properly defined Gaussian integral under the hypothesis that 1
ϑ2− λ2c2x

2n > 0

hence λ < 1
cx

√

n
ϑ
2. The integral is proportional to a Gaussian and we can directly write:

π
{

E
[

exp
(

λ(RH − rHn )
)]}

≤
exp

(

λ2

4n

)

√

1− ϑ2λ2c2x
2n

writing everything in the exponential gives the desired result. �
Proof of Corollary 6.1. We apply Theorem 4.2 to get:

Bλ(F1) = inf
(m,σ2)

{

∫

RHdΦ
m,σ2 +

λ

2n
− 1

λ
log

(

1− ϑ2λ2c2x
2n

)

+ 2
K(Φ

m,σ2 , π) + log
(

2
ε

)

λ

}

= inf
(m,σ2)







∫

RHdΦ
m,σ2 +

λ

2n
− 1

λ
log

(

1− ϑλ2c2x
2n

)

+ 2

1
2

∑d
j=1

[

log
(

ϑ2

σ2

)

+ σ2

ϑ2

]

+ ‖m‖2
2ϑ2 − d

2 + log
(

2
ε

)

λ







.

We use the fact that the hinge loss is Lipschitz and that the (Xi) are uniformly bounded
‖X‖∞< cx. We get RH(θ) ≤ R̄H + cx

√
d‖θ− θ̄‖ and restrict the infemum to distributions

ν such that m = θ:

B(F1) ≤ R
H
+inf

σ2







cxdσ
2 +

λ

2n
− 1

λ
log

(

1− ϑ2λ2c2x
2n

)

+
d log

(

ϑ2

σ2

)

+ dσ2

ϑ2 + 1
ϑ2 − d+ 2 log

(

2
ε

)

λ







.

We specify σ2 = 1√
dn

and λ = cx
√

n
ϑ2 such that we get:

B(F1) ≤ RH+cx

√

d

n
+

√
ϑ2

2cx
√
n
−cx

√

ϑ2

n
log

(

1− 1

2

)

+d
cxϑ√
n
log
(

ϑ2
√
nd
)

+cxϑ
d

nϑ2 + 1
ϑ2 − d+ 2 log

(

2
ε

)

√
n

.

To get the correct rate we take the prior variance to be ϑ2 = 1
d by replacing in the above

equation we get the desired result.
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�

Proof of Theorem 6.2. From Nesterov (2004) (th. 3.2.2) we have the following bound on
the objective function minimized by VB, (the objective is not uniformlly Lipschitz)

ρk(rHn ) +
1

λ
K(ρk, π)− inf

ρ∈F1

{

ρ(rHn ) +
1

λ
K(ρ, π)

}

≤ LM√
1 + k

. (17)

We have from equation (11) specified for measures ρk probability 1− ε,

λ

∫

rHn dρk ≤ λ

∫

RHdρk + f(λ, n) +K(ρk, π) + log

(

1

ε

)

Combining the two equations yields,

∫

RHdρk ≤ LM√
1 + k

+
1

λ
f(n, λ) + inf

ρ∈F1

{

ρ(rHn ) +
1

λ
K(ρ, π)

}

+
1

λ
log

1

ε

We can therefore write for any ρ ∈ F1,

∫

RHdρk ≤ LM√
1 + k

+
1

λ
f(n, λ) + ρ(rHn ) +

1

λ
K(ρ, π) + 1

λ
log

1

ε

Using equation (11) a second time we get with probability 1− ε

∫

RHdρk ≤ LM√
1 + k

+
2

λ
f(n, λ) + ρ(RH) +

2

λ
K(ρ, π) + 2

λ
log

2

ε

Because this is true for any ρ ∈ F1 in 1−ε we can write the bound for the smallest measure
in F1.

∫

RHdρk ≤ LM√
1 + k

+
2

λ
f(n, λ) + inf

ρ∈F1

{

ρ(RH) +
2

λ
K(ρ, π)

}

+
2

λ
log

2

ε

By taking the Gaussian measure with variance 1
n and mean θ in the infimum and taking

λ = 1
cx

√
nd and ϑ = 1

d , we can use the results of Corollary 6.1 to get the result.�

A.6 Proofs of Section 7

Proof of Lemma 4. The idea of the proof is to use Hoeffding’s decomposition of U-statistics
combined with Hoeffding’s inequality for iid random variables. This was done in ranking
by Clémençon et al. (2008), and later in Robbiano (2013); Ridgway et al. (2014) for ranking
via aggregation and Bayesian statistics. The proof is as follows: we define

qθi,j = 1(Yi−Yj)fθ(Xi,Xj)<0 −R(θ)
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so that

Un :=
1

n(n− 1)

∑

i,j

qθi,j = rn(θ)−R(Θ).

From Hoeffding (1948) we have

Un =
1

n!

∑

π

1

⌊n2 ⌋

⌊n
2
⌋

∑

i=1

qθπ(i),π(i+⌊n
2
⌋)

where the sum is taken over all the permutations π of {1, . . . , n}. Jensen’s inequality leads
to

E exp[λUn] = E exp



λ
1

n!

∑

π

1

⌊n2 ⌋

⌊n
2
⌋

∑

i=1

qθπ(i),π(i+⌊n
2
⌋)





≤ 1

n!

∑

π

E exp





λ

⌊n2 ⌋

⌊n
2
⌋

∑

i=1

qθπ(i),π(i+⌊n
2
⌋)



 .

We now use, for each of the terms in the sum we use the same argument as in the proof of
Lemma 1 to get

E exp[λUn] ≤
1

n!

∑

π

exp

[

λ2

2⌊n2 ⌋

]

≤ exp

[

λ2

n− 1

]

(in the last step, we used ⌊n2 ⌋ ≥ (n− 1)/2). We proceed in the same way to upper bound
E exp[−λUn]. �
Proof of Lemma 5. As already done above, we use Bernstein inequality and Hoeffding
decomposition. Fix θ. We define this time

qθi,j = 1{〈θ,Xi −Xj〉 (Yi − Yj) < 0} − 1{
〈

θ,Xi −Xj

〉

(Yi − Yj) < 0} −R(θ) +R

so that

Un := rn(θ)− rn −R(θ) +R =
1

n(n− 1)

∑

i 6=j

qθi,j .

Then,

Un =
1

n!

∑

π

1

⌊n2 ⌋

⌊n
2
⌋

∑

i=1

qθπ(i),π(i+⌊n
2
⌋).
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Jensen’s inequality:

E exp[λUn] = E exp



λ
1

n!

∑

π

1

⌊n2 ⌋

⌊n
2
⌋

∑

i=1

qθπ(i),π(i+⌊n
2
⌋)





≤ 1

n!

∑

π

E exp





λ

⌊n2 ⌋

⌊n
2
⌋

∑

i=1

qθπ(i),π(i+⌊n
2
⌋)



 .

Then, for each of the terms in the sum, use Bernstein’s inequality:

E exp





λ

⌊n2 ⌋

⌊n
2
⌋

∑

i=1

qθπ(i),π(i+⌊n
2
⌋)



 ≤ exp





E((qθπ(1),π(1+⌊n
2
⌋))

2) λ2

⌊n
2
⌋

2
(

1− 2 λ
⌊n
2
⌋

)



 .

We use again ⌊n2 ⌋ ≥ (n−1)/2. Then, as the pairs (Xi, Yi) are iid, we have E((q
θ
π(1),π(1+⌊n

2
⌋))

2) =

E((qθ1,2)
2) and then E((qθ1,2)

2) ≤ C[R(θ)−R] thanks to the margin assumption. So

E exp





λ

⌊n2 ⌋

⌊n
2
⌋

∑

i=1

qθπ(i),π(i+⌊n
2
⌋)



 ≤ exp





C[R(θ)−R] λ2

n−1
(

1− 4λ
n−1

)



 .

This ends the proof of the proposition. �
Proof of Corollary 7.2. The calculations are similar to the ones in the proof of Corollary 5.2
so we don’t give the details. Note that when we reach

Bλ(F1) ≤ R+
2λ

n− 1
+

c
√
d+ d log(2λ) + d

4λ2 + 2 log
(

2e
ε

)

λ
,

an approximate minimization with respect to λ leads to the choice λ =

√

d(n−1)
2 . �

A.7 Proofs of Section 8

Proof. First, note that, for any ρ,

K(ρ, πβ) = β

∫

(R−R)dρ+K(ρ, π) + log

∫

exp
[

−β(R−R)
]

dπ

≤ β

∫

(R−R)dρ+K(ρ, π).

Now, we define a subset of F that will be used for the calculation of the bound. We define
for δ > 0 the probability distribution ρU,V,δ(dθ) as π conditioned to θ = µνT with µ is
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uniform on {∀(i, ℓ), |µi,ℓ−Ui,ℓ|≤ δ} and ν is uniform on {∀(j, ℓ), |νi,ℓ−Vj,ℓ|≤ δ}. Note that
∫

(R−R)dρM,N,δ =

∫

E((θX −MX)2)ρU,V,δ(dθ)

≤
∫

3E(((UV T )X −MX)2)ρU,V,δ(d(µ, ν))

+ 3

∫

E(((UνT )X − (UV T )X)2)ρU,V,δ(d(µ, ν))

+ 3

∫

E(((µνT )X − (UνT )X)2)ρU,V,δ(d(µ, ν)).

By definition, the first term is = 0. Moreover:

∫

E(((UνT )X − (UV T )X)2)ρU,V,δ(d(µ, ν))

=

∫

1

m1m2

∑

i,j

[

∑

k

Ui,k(νj,k − Vj,k)

]2

ρU,V,δ(d(µ, ν))

≤
∫

1

m1m2

∑

i,j

[

∑

k

U2
i,k

][

∑

k

(νj,k − Vj,k)
2

]

ρU,V,δ(d(µ, ν))

≤ KrC2δ2.

In the same way,

∫

E(((µνT )X − (UνT )X)2)ρU,V,δ(d(µ, ν)) ≤
∫

‖µ− U‖2F ‖ν‖2FρU,V,δ(d(µ, ν))

≤ Kr(C + δ)2δ2.

So:
∫

(R−R)dρM,N,δ ≤ 2Krδ2(C + δ2).

Now, let us consider the term K(ρU,V,δ, π). An explicit calculation is possible but tedious.
Instead, we might just introduce the set Gδ = {θ = µνT , ‖µ − U‖F≤ δ, ‖ν − V ‖F≤ δ}
and note that K(ρU,V,δ, π) ≤ log 1

π(Gδ)
. An upper bound for Gδ is calculated page 317-320

in Alquier (2014) and the result is given by (10) in this reference:

K(ρU,V,δ, π) ≤ 4δ2 + 2‖U‖2F+2‖N‖2F+2 log(2)

+ (m1 +m2)r log

(

1

δ

√

3π(m1 ∨m2)K

4

)

+ 2K log

(

Γ(a)3a+1 exp(2)

ba+12a

)
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as soon as the restriction b ≤ δ2

2m1K log(2m1K) ,
δ2

2m2K log(2m2K) is satisfied. So we obtain:

K(ρU,V,δ, πβ) ≤ β2Krδ2(C + δ2) + 4δ2 + 2‖U‖2F+2‖N‖2F+2 log(2)

+ (m1 +m2)r log

(

1

δ

√

3π(m1 ∨m2)K

4

)

+ 2K log

(

Γ(a)3a+1 exp(2)

ba+12a

)

.

Note that ‖U‖2F≤ C2rm1, ‖V ‖2F≤ C2rm2 and K ≤ m1 +m2 so it is clear that the choice

δ =
√

1
β and b ≤ 1

2β(m1∨m2) log(2K(m1∨m2))
leads to the existence of a constant C(a, C) such

that

K(ρU,V,δ, πβ) ≤ C(a, C)

{

r(m1 +m2) log [βb(m1 +m2)K] +
1

β

}

.

�

Appendix B. Implementation details

B.1 Sequential Monte Carlo

Tempering SMC approximates iteratively a sequence of distribution ρλt , with

ρλt(dθ) =
1

Zt
exp (−λtrn(θ))π(dθ),

and temperature ladder λ0 = 0 < . . . < λT = λ. The pseudo-code below is given for an
adaptive sequence of temperatures.
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Algorithm 1 Tempering SMC

Input N (number of particles), τ ∈ (0, 1) (ESS threshold), κ > 0 (random walk tuning
parameter)

Init. Sample θi0 ∼ πξ(θ) for i = 1 to N , set t← 1, λ0 = 0, Z0 = 1.

Loop a. Solve in λt the equation

{∑N
i=1wt(θ

i
t−1)}2

∑N
i=1{wt(θit−1))

2}
= τN, wt(θ) = exp[−(λt − λt−1)rn(θ)] (18)

using bisection search. If λt ≥ λT , set ZT = Zt−1 ×
{

1
N

∑N
i=1wt(θ

i
t−1)

}

, and

stop.

b. Resample: for i = 1 to N , draw Ai
t in 1, . . . , N so that P(Ai

t = j) =
wt(θ

j
t−1)/

∑N
k=1wt(θ

k
t−1); see Algorithm 2 in the appendix.

c. Sample θit ∼Mt(θ
Ai

t
t−1, dθ) for i = 1 to N where Mt is a MCMC kernel that leaves

invariant πt; see comments below.

d. Set Zt = Zt−1 ×
{

1
N

∑N
i=1wt(θ

i
t−1)

}

.

The algorithm outputs a weighted sample (wi
T , θ

i
T ) approximately distributed as target

posterior, and an unbiased estimator of the normalizing constant ZλT
.

Step b. of algorithm B.1 depends of a resampling algorithm. We choose to use Sys-
tematic resampling, see Algorithm 2.
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Algorithm 2 Systematic resampling

Input: Normalised weights W j
t := wt(θ

j
t−1)/

∑N
i=1wt(θ

i
t−1).

Output: indices Ai ∈ {1, . . . , N}, for i = 1, . . . , N .

a. Sample U ∼ U([0, 1]).

b. Compute cumulative weights as Cn =
∑n

m=1NWm.

c. Set s← U , m← 1.

d. For n = 1 : N

While Cm < s do m← m+ 1.

An ← m, and s← s+ 1.

End For

For the MCMC step, we used a Gaussian random-walk Metropolis kernel, with a co-
variance matrix for the random step that is proportional to the empirical covariance matrix
of the current set of simulations.

B.2 Optimizing the bound

A natural idea to find a global optimum of the objective is to try to solve a sequence of
local optimization problems with increasing temperatures. For γ = 0 the problem can be
solved exactly (as a KL divergence between two Gaussians). Then, for two consecutive
temperatures, the corresponding solutions should be close enough.

This idea has been coined under several names. It has a long history in variational
inference under the name ‘deterministic annealing’; see e.g. Yuille (2010) for an application
to Markov random fields. In addition the intermediate results can be of interest in our case
for selecting the temperature. One can compute the bound at almost no additional cost as
a function of the current risk. In turns this can be used to monitor the bound.
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Algorithm 3 Deterministic annealing

Input (λt)t∈[0,T ] a sequence of temperature

Init. Set m = 0 and Σ = ϑId, the values minimizing KL-divergence for λ = 0

Loop t=1,. . . ,T

a. mλt ,Σλt = Minimize Lλt(m,Σ) using some local optimization routine with initial
points mλt−1 ,Σλt−1

b. Break if the empirical bound increases.

End Loop

 γ =0
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

 γ =125
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 γ =250
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Figure 2: Deterministic annealing on a Pima Indians with one covariate and full
model resp.
The right panel gives the empirical bound obtained for the DA method (in red). The dots are the results
of direct global optimization based on L-BFGS algorithms (with starting values drawn from the prior).
Each optimization problem is repeated 20 times.

We find that using a deterministic annealing algorithm with a limited amount of steps
helps in finding a high enough optimum. On the left panel of Figure 2, we can see the one
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dimensional case where the initial problem γ = 0 corresponds to a convex minimization
problem and where the increasing temperature gradually complexifies the optimization
problem. Figure 2 shows that the solution given by DA is in average lower than randomly
initialized optimization.

Appendix C. Stochastic gradient descent

The stochastic gradient descent algorithm used in Section 7 is described as Algorithm 4.

Algorithm 4 Stochastic Gradient Descent

Input B a batch size, an unbiased estimator of the gradient ∇̂Bf , η ∈ (0, 1) and c

While ¬converged

a. xt+1 = xt − λt∇̂Bf(xt)

b. Update λt+1 =
1

(t+c)η

End Loop

In all our experiments we take c = 1 and η = 0.9.
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