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On the Property of the Curl-Curl Matrix in Finite
Element Analysis With Edge Elements

H. Igarashj Member, IEEE

Abstract—This paper discusses properties of the curl—curl properties of the curl—curl matrix are discussed in order to give
matrix in the finite element formulation with edge elements. an answer to this question.
Moreover the observed deceleration in convergence of the CG s naner is organized as follows: The next section discusses

and ICCG methods applied to magnetostatic problems through A
the tree—cotree gauging is explained on the basis of the eigenvaluerank of the curl—curl matrix with the help of the network theory,

separation property. From the eigenvalue separation property it and surveys the tree—cotree gauging. The third section describes
follows that neither minimum nonzero eigenvalue of the curl-curl the condition number of the curl—curl matrix, and its influence

matrix nor maximum one increase through the tree—cotree on convergence of the CG and ICCG method. The influence of
gauging. Hence it is concluded that the condition number of he tree—cotree gauging on the condition number of the curl—curl

the curl—curl matrix tends to grow by its definition. Moreover o - . .
the maximum eigenvalue tends to keep constant whereas theMatrix is analyzed on the basis of the eigenvalue separation

minimum nonzero eigenvalue reduces. This property also makes Property in the forth section. The fifth section provides a nu-
the condition number worse. merical example, and the last section includes some concluding

Index Terms—Edge elements, finite element method, graph remarks.

theory, ICCG, magnetostatic fields, network theory.
Il. THE CURL—CURL MATRIX

|. INTRODUCTION We consider here a magnetostatic field governed by

AGNETOSTATIC problems are effectively solved by curlv(curl A) = Jo, 1)

the finite element method with edge elements. In those
analyzes unknown vector potentials are assigned to elememiere
edges to guarantee their tangential continuity and allow nec-A is the vector potential,
essary discontinuity in their normal components. The finite » the magnetic reluctivity, and
element discretization of the differential curl-curl operator J, the external current density.
gives the curl—curl matrix, which is known to be singular, antet us assume for simplicity that (1) is discretized by the finite
its nullity equals to the number of the edges in the spannirgement method with the tetrahedral edge elements of the lowest
tree of a finite element mesh [1], [2]. The curl-curl matrix canrder. The finite element mesh considered hererhasdes e
be regularized by eliminating the unknown vector potentiatsiges and faces. We then obtain a system of equations of the
assigned to the edges in the spanning tree [3]. This ingenudoisn
gauging technique, sometimes called the tree—cotree gauging
[4], has reasonably been constructed to bridge the gap between Ca =1, (2)
continuous and discontinuous systems. However this gaugin ) )
unfortunately results in slow convergence of the CG and ICC1ereC denotes x ¢ matrix, referred to as the curl—curl matrix,
methods which are extensively used for matrix inversion. ~ Which is the discrete counterpart of the operator caurl in

On the other hand it has been observed in numerical exp@r)- Thg co!umn vectorag andb, both Wlbthe entities, consist of

iments that the ICCG method applied to nongauged curl-ci Projections; of A to element edge and the source terms

matrices converges in spite of its singularity, provided that tiglevant toJo, respectively.

system of equations is compatible. Moreover convergence ofl "€ matrix C is decomposed a&’ = B'MB, where

the ICCG has been shown to be much faster than that for mi4- 1 the f x f matrix, whose entities\/;; are given by

trices regularized by the above gauging technique [5], [6]. Coflis = Jqvwi - w; dv, wherew, denote the basis vectors

sequently the solutions without gauging seem most effective g9 the Whitney second form (or facet element) [1]. Since

have extensively been used recently. the mdepende_nt vector@;, span f—dlmensmnal spacej,
However it still remains unclear why the above gaugin\j’_hose determinant is the Gramian, must be regular. Other-

technique undermines convergence of the ICCG. In this paép€ there exist nontrivial constants and /5 for different
i, j after appropriate elementary transformations such that

wy - (aw; + pw;) = 0 for ¥ k. However this means that
Manuscript received June 5, 2000. aw; + Bw; is not in the f-dimensional space spannedy.
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4 and the former direction is parallel (antiparallel) to the latter, Now ry is expanded by the eigenvectarsof A asrg =
andB;; = 0 for others. The matrix3, which depends only on Zf;l c;e;. We assume thatul A = v, and its nonzero eigen-
the topological property of the mesh, is called the loop or circuralues aré\, 41, A\p+2, ..., Ay, whererank A +nul A = N.
matrix in the network theory. It is known that rank Bfis equal The residuer;, can then be written as
tothe number of edgesinthe cotree, thatisi+1 (see standard N X
textbooks of the network theory). m

RankC can be evaluated as f)é)llows: Noticing theorems in the Te=Tot ‘_z;rl cici g;l AV k- ®
linear algebra we have = -

We can see from (8) that in the CG method the solution is

rank C <rank (M B) searched in the space spanned by the nonzero eigenvectors
<rank B. (3) evt1,...,ex andrq. Therefore the solution processes are
independent of the zero-eigenvalues, and one of the solutions
On the other hand we can see that to (5) is found even if4 is singular provided that the solution
exists.
rank C > rank (B'M~'MB)
=rank (B'B) B. Condition Number and Convergence
=rank B, 4) One can qualitatively expect that convergence of the CG

method has substantial influence from the range of eigenvalues

from which it follows thatrank €' = rank B =c —n+1. ot 1 hacause it searches for the solution in the space spanned
The curl—curl matrixC can be regularized by ellmlnatlngb

h 4 col di q in th r¥ its eigenvectors.
the rows and columns corresponding to edges In the Spanning, ,tarively it is known that the CG method linearly con-
tree of the finite element mesh. This is the tree—cotree gauging, :

X . : . ) : . ges in the form [7], [8]
mentioned in the previous section. Physically this determines
a unique value of the projection; for a given magnetic flux Vi -1 k
passing through the closed loop. As mentioned above this llz — zkl|a < 2/|z — 2ol <\/E+ ) )
gauging deteriorates convergence of the CG and ICCG methods N _
when applied to (2). This phenomenon will be analyzed wheres denotes the condition number df, defined byx =

Section IV after convergence of the CG and ICCG methods akgax/Amins Amax and Ayin are the maximum and minimum

9)

discussed in the next section. eigenvalues ofd, and||y|| 4+ = /y'Ay.
Assuming that: >> 1in (9), we can obtain the condition that

IIl. CONVERGENCE OFCG AND ICCG the relative error becomes smaller thaas follows:
i i i : 2

A. CG Applied to Singular Matrices ps Y log <_> ' (10)

We consider here the CG method for solution of a linear 2 €
system of orderV Hence the number of iterations until convergence is propor-
Az = b, (5) tional to /.

When the CG is applied to the singular system (2), the eigen-
where A is a symmetric matrix. The algorithm of CG method/€ctors corresponding to the zero eigenvalues give no influence
is as follows: choose the initial solutias and sep, = ro = ON the iterative processes as mentioned above. Therefore, in this
b— Az,. Thenfork = 0, 1, ... compute case, it would be reasonable to define the condition number by
K = Amax/A2 ., whereX? . is the minimum nonzero eigen-
ar =Py, 1)/ (Pr> APs), value of C.
Tyl =Tk + Qrpy, The preconditioned CG methods such as ICCG transform (5)

to
Tl =Tk — APy,
B = (Tit1, Apr)/(Prs APr), Az = b, (11)

Pit1 =Tik+1 + OuPy- (6) where
As can be seen in (6), the approximated solutierr; is con- 14 = P7'APT!,
structed by the linear combination of the search directigns & = PIvl
which is in the space spanned by residual vecigrswhere ~ ® =P7band -
j=1,2, ..., k Hencexy, is searched in the space spanned £  is symmetric positive definite.
by the residual vectors;. By this transformatiord is made as near to the unit matrix as

Moreover from (6) it follows that, is expressed in the form Possible in order that the resultant eigenvalues become nearly
unity, and hence/x becomes smaller. A look at the estimate

K (10) reveals that this preconditioning improves the convergence.

Te =70+ arnkATn'rO? (7)

Itis difficult to make a quantitative estimation of convergence
m=1 of the ICCG. One can expect however that it would be positively
wherea,,;, are constants. correlative withs of the original matrixA since the essential
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property of the original eigenvalues is inherited to the precon- The change in the condition numbecaused by this process

ditioned system. is indefinite. [In contrast to this, elimination of a degree of
freedom, i.e., an increase in the restriction, in a regular system
IV. TREE-COTREE GAUGING AND CONDITION NUMBER always improvess, as can be seen from (16).] Nevertheless

one can expect that this process tends to makeorse since

changes in the denominator give stronger influence «on

The minimax principle in the linear algebra states that than those in the numerator. For instance we assume that the

ith eigenvalue\; of a symmetric matrixA of order.V can be condition number:,. for the reduced system is written as
expressed by

A. Eigenvalue Separation Property

Nmax
Ii,,, fd 0—
A; =max ¢ min R(z)», fori=1,2,...,N, (12) Pmin
Y; y;.:l,':O Amax — ON
BT (19)
wherey;, j = 1, 2, ..., i—1are arbitrary vectors itV dimen- min — Ol
sional space, anl(z) represents the Rayleigh quotient defineqheres, andé,y are the reductions in the eigenvalues through
by elimination of a degree of freedom. If the condition number be-
2t A comes smaller after the elimination process, thatisc «, then
R(z) = ——. (13)
rr 5 )\0
1 min
Wheni = 1, (12) reduces to the Rayleigh principle. S s (20)

Suppose that we eliminate the end row and column febm
to obtain the reduced matrid’ of order N — 1. Now theith must hold. This is, however, a very severe condition because

eigenvalueu; of A’ can be expressed by usually X0 . /X < 1.
Moreover the maximum eigenvalue, which corresponds to
;i = max { min R(z) }, (14) @an eigenvector with a short characteristic wavelength, would
y; |yie=0 be insensitive to introduction of the new restriction to (2). The

minimum nonzero eigenvalus? . , whose eigenvector has a
long characteristic wavelength, increases its value after intro-
duction of the new restriction. Hence this would correspond
to the second minimum nonzero eigenvalue in the reduced
N < i < it (15) system. On the other hand the minimum nonzero eigenvalue
©2 ., which newly appears between zero adq , is possibly
since the restriction foi, 4, is severer tham; while 11; has a very different from)?; . This fact also helps the increasesn
severer restriction thah;. by the gauging.
We can easily generalize (15) as Consequently we conclude that the tree—cotree gauging,
which is regarded as the successive elimination of degrees of
freedom in the spanning tree, tends to deteriorate the condition

This is known as the eigenvalue separation property, see e. _r’nbem of the curl—curl matrix”, and resylt in Qecelerathn
[9]. Note here that since an arbitrary row and column can the _CG _and ICCG. In the ”e’?‘ section th_|s theoretical
permutated to the end of a matrix through the elementary opBF?d'Ct'on will be tested through a simple numerical example.
ation, the property (16) is valid for the elimination of a set of a
row and column corresponding to arbitrary degree of freedom. V. NUMERICAL RESULTS

For a numerical test we analyze the magnetostatic field in
the cube which has unit-length edges parallel to the axes of the

Now let us consider what happens when the tree—cotre@artesian coordinates [3]. In the region a uniform source cur-
gauging is applied to our singular system (2). This gaugingntJ, flows in parallel with one of the normal vectors of the
eliminates degree of freedom assigned to all the edges in tifhe surface, e.g., the direction of thaxis. Assuming that the
spanning tree. Each process of this gauging is nothing else hi#gnetic field lines are confined in the cube, the tangential com-
the elimination of a set of a row and column frarh ponents of vector potentials are set to zero on the surfaces.

Suppose that we eliminate one degree of freedom in the firstThe matrix equation (2) is solved with the CG and ICCG
process of the tree—cotree gauging. It can be seen from (hfgthods. The degree of freedom of the system is varied by
that the first — 1 zero eigenvalues remain the same while thgradually eliminating the unknown vector potentials assigned

minimum nonzero eigenvalye) ;, appears so that to edges in the spanning tree. The eigenvalues of the curl—curl

wherey,; are again arbitrary fof = 1,2, ..., ¢ — 1 buty; is
chosenag, = (0,0, ..., 0, 1)".
By comparing (12) and (14) we can see that

A< <A< <A< - <punvor < Anv. (16)

B. Condition Number of Singular Systems

0< 0. <20 17) matrix C are also computed to evaluate its condition number
= Hmin = Amin and nullity.
Similarly we have The cubic region is subdivided into 234 tetrahedral elements
with 77 nodes and 364 edges. The resultant numbers of edges in
AN—1 S N-1 = Mmax AN = Amax- (18) the tree and co-tree after imposing the boundary conditions are
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TABLE | 3) The eigenvalue separation property states that neither
CONVERGENCE OFCG AND ICCG minimum nonzero eigenvalue nor maximum one increase
Notim Noers Noc  Nicoo X0 J— through the elimination of degree of freedom. Hence the

0 21 21 15 1.43 53.6  6.13 condition number tends to grow by its definition. More-

1 20 27 17 6.13x10”"  53.6  9.35 over the maximum eigenvalue tends to keep constant

5 16 40 21 8‘54“0:2 534 250 whereas the minimum nonzero eigenvalue reduces. This

10 11 55 26 3.69x10 52.8 378 o

5 3 68 31 191x10-2 528 526 property also makes the condition number larger.

21 0 81 36 1.23x107% 486 629 The logic used in this paper does not owe to the special prop-
Netim: Number of eliminated DOFs on the spanning tree erty of the curl—curl matrix except its singularity. Hence the
N.ero: Number of zero-eigenvalues (nullity) results are not valid only for the curl—curl matrix in magneto-
Nce: Number of CG iterations statics, but also other singular matrices. One can expect in gen-
Nicoe: Number of ICCG iterations eral that the elimination of degree of freedom from a singular

system results in the worse condition number and resultant de-

21 and 181. The tolerance for convergence of the CG and Ic&gleration inthe CG methods. In fact such phenomena have been
methods is set ta x 10~6. observed in the eddy current analysis with the edge finite el-

Table | summarizes the result, whexg. and\ repre- ements. In this case convergence in the ICCG becomes worse

sents minimum nonzero and maximum eigenvalues under e¥¢}fN the redundant terms coming from the divergence-free con-
computational condition. We can see thdf,. monotonously dlgon of eddy currents are eliminated. The detailed analysis of
decreases whilk,,..,, keeps almost constant A& y;,,, increases, this phenomena will be reported elsewhere.

and hence this results in the increasg/@f. MoreoverNcg and

Nicog increases consistently witflk. These numerical results

are consistent with the prediction given in the previous section. REFERENCES
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