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On the Property of the Curl–Curl Matrix in Finite
Element Analysis With Edge Elements

H. Igarashi, Member, IEEE

Abstract—This paper discusses properties of the curl–curl
matrix in the finite element formulation with edge elements.
Moreover the observed deceleration in convergence of the CG
and ICCG methods applied to magnetostatic problems through
the tree–cotree gauging is explained on the basis of the eigenvalue
separation property. From the eigenvalue separation property it
follows that neither minimum nonzero eigenvalue of the curl–curl
matrix nor maximum one increase through the tree–cotree
gauging. Hence it is concluded that the condition number of
the curl–curl matrix tends to grow by its definition. Moreover
the maximum eigenvalue tends to keep constant whereas the
minimum nonzero eigenvalue reduces. This property also makes
the condition number worse.

Index Terms—Edge elements, finite element method, graph
theory, ICCG, magnetostatic fields, network theory.

I. INTRODUCTION

M AGNETOSTATIC problems are effectively solved by
the finite element method with edge elements. In those

analyzes unknown vector potentials are assigned to element
edges to guarantee their tangential continuity and allow nec-
essary discontinuity in their normal components. The finite
element discretization of the differential curl–curl operator
gives the curl–curl matrix, which is known to be singular, and
its nullity equals to the number of the edges in the spanning
tree of a finite element mesh [1], [2]. The curl–curl matrix can
be regularized by eliminating the unknown vector potentials
assigned to the edges in the spanning tree [3]. This ingenuous
gauging technique, sometimes called the tree–cotree gauging
[4], has reasonably been constructed to bridge the gap between
continuous and discontinuous systems. However this gauging
unfortunately results in slow convergence of the CG and ICCG
methods which are extensively used for matrix inversion.

On the other hand it has been observed in numerical exper-
iments that the ICCG method applied to nongauged curl–curl
matrices converges in spite of its singularity, provided that the
system of equations is compatible. Moreover convergence of
the ICCG has been shown to be much faster than that for ma-
trices regularized by the above gauging technique [5], [6]. Con-
sequently the solutions without gauging seem most effective and
have extensively been used recently.

However it still remains unclear why the above gauging
technique undermines convergence of the ICCG. In this paper

Manuscript received June 5, 2000.
The author is with the Faculty of Engineering, Kagawa University,

Saiwai-cho 1-1, Takamatsu, 760-8526, Japan (e-mail: iga@eng.kagawa-u.ac.jp;
iga@em-si.eng.hokudai.ac.jp).

Publisher Item Identifier S 0018-9464(01)07817-7.

properties of the curl–curl matrix are discussed in order to give
an answer to this question.

This paper is organized as follows: The next section discusses
rank of the curl–curl matrix with the help of the network theory,
and surveys the tree–cotree gauging. The third section describes
the condition number of the curl–curl matrix, and its influence
on convergence of the CG and ICCG method. The influence of
the tree–cotree gauging on the condition number of the curl–curl
matrix is analyzed on the basis of the eigenvalue separation
property in the forth section. The fifth section provides a nu-
merical example, and the last section includes some concluding
remarks.

II. THE CURL–CURL MATRIX

We consider here a magnetostatic field governed by

curl curl (1)

where
is the vector potential,
the magnetic reluctivity, and
the external current density.

Let us assume for simplicity that (1) is discretized by the finite
element method with the tetrahedral edge elements of the lowest
order. The finite element mesh considered here hasnodes,
edges and faces. We then obtain a system of equations of the
form

(2)

where denotes matrix, referred to as the curl–curl matrix,
which is the discrete counterpart of the operator curlcurl in
(1). The column vectors and , both with entities, consist of
the projection of to element edge and the source terms
relevant to , respectively.

The matrix is decomposed as , where
is the matrix, whose entities are given by

, where denote the basis vectors
for the Whitney second form (or facet element) [1]. Since
the independent vectors span -dimensional space, ,
whose determinant is the Gramian, must be regular. Other-
wise there exist nontrivial constants and for different
, after appropriate elementary transformations such that

for . However this means that
is not in the -dimensional space spanned by.

This is contradiction.
The matrix included in is the matrix whose entities

are given by when face (or loop) includes edge
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and the former direction is parallel (antiparallel) to the latter,
and for others. The matrix , which depends only on
the topological property of the mesh, is called the loop or circuit
matrix in the network theory. It is known that rank ofis equal
to the number of edges in the cotree, that is (see standard
textbooks of the network theory).

Rank can be evaluated as follows: Noticing theorems in the
linear algebra we have

(3)

On the other hand we can see that

(4)

from which it follows that .
The curl–curl matrix can be regularized by eliminating

the rows and columns corresponding to edges in the spanning
tree of the finite element mesh. This is the tree–cotree gauging
mentioned in the previous section. Physically this determines
a unique value of the projection for a given magnetic flux
passing through the closed loop. As mentioned above this
gauging deteriorates convergence of the CG and ICCG methods
when applied to (2). This phenomenon will be analyzed in
Section IV after convergence of the CG and ICCG methods are
discussed in the next section.

III. CONVERGENCE OFCG AND ICCG

A. CG Applied to Singular Matrices

We consider here the CG method for solution of a linear
system of order

(5)

where is a symmetric matrix. The algorithm of CG method
is as follows: choose the initial solution and set

. Then for compute

(6)

As can be seen in (6), the approximated solution is con-
structed by the linear combination of the search directions,
which is in the space spanned by residual vectors, where

. Hence is searched in the space spanned
by the residual vectors .

Moreover from (6) it follows that is expressed in the form

(7)

where are constants.

Now is expanded by the eigenvectorsof as
. We assume that , and its nonzero eigen-

values are , , where .
The residue can then be written as

(8)

We can see from (8) that in the CG method the solution is
searched in the space spanned by the nonzero eigenvectors

and . Therefore the solution processes are
independent of the zero-eigenvalues, and one of the solutions
to (5) is found even if is singular provided that the solution
exists.

B. Condition Number and Convergence

One can qualitatively expect that convergence of the CG
method has substantial influence from the range of eigenvalues
of because it searches for the solution in the space spanned
by its eigenvectors.

Quantitatively it is known that the CG method linearly con-
verges in the form [7], [8]

(9)

where denotes the condition number of, defined by
, and are the maximum and minimum

eigenvalues of , and .
Assuming that in (9), we can obtain the condition that

the relative error becomes smaller thanas follows:

(10)

Hence the number of iterations until convergence is propor-
tional to .

When the CG is applied to the singular system (2), the eigen-
vectors corresponding to the zero eigenvalues give no influence
on the iterative processes as mentioned above. Therefore, in this
case, it would be reasonable to define the condition number by

, where is the minimum nonzero eigen-
value of .

The preconditioned CG methods such as ICCG transform (5)
to

(11)

where
,

,
, and

is symmetric positive definite.
By this transformation is made as near to the unit matrix as
possible in order that the resultant eigenvalues become nearly
unity, and hence becomes smaller. A look at the estimate
(10) reveals that this preconditioning improves the convergence.

It is difficult to make a quantitative estimation of convergence
of the ICCG. One can expect however that it would be positively
correlative with of the original matrix since the essential
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property of the original eigenvalues is inherited to the precon-
ditioned system.

IV. TREE–COTREEGAUGING AND CONDITION NUMBER

A. Eigenvalue Separation Property

The minimax principle in the linear algebra states that the
th eigenvalue of a symmetric matrix of order can be

expressed by

for (12)

where are arbitrary vectors in dimen-
sional space, and represents the Rayleigh quotient defined
by

(13)

When , (12) reduces to the Rayleigh principle.
Suppose that we eliminate the end row and column from

to obtain the reduced matrix of order . Now the th
eigenvalue of can be expressed by

(14)

where are again arbitrary for but is
chosen as .

By comparing (12) and (14) we can see that

(15)

since the restriction for is severer than while has a
severer restriction than .

We can easily generalize (15) as

(16)

This is known as the eigenvalue separation property, see e.g.,
[9]. Note here that since an arbitrary row and column can be
permutated to the end of a matrix through the elementary oper-
ation, the property (16) is valid for the elimination of a set of a
row and column corresponding to arbitrary degree of freedom.

B. Condition Number of Singular Systems

Now let us consider what happens when the tree–cotree
gauging is applied to our singular system (2). This gauging
eliminates degree of freedom assigned to all the edges in the
spanning tree. Each process of this gauging is nothing else but
the elimination of a set of a row and column from.

Suppose that we eliminate one degree of freedom in the first
process of the tree–cotree gauging. It can be seen from (16)
that the first zero eigenvalues remain the same while the
minimum nonzero eigenvalue appears so that

(17)

Similarly we have

(18)

The change in the condition numbercaused by this process
is indefinite. [In contrast to this, elimination of a degree of
freedom, i.e., an increase in the restriction, in a regular system
always improves , as can be seen from (16).] Nevertheless
one can expect that this process tends to makeworse since
changes in the denominator give stronger influence on
than those in the numerator. For instance we assume that the
condition number for the reduced system is written as

(19)

where and are the reductions in the eigenvalues through
elimination of a degree of freedom. If the condition number be-
comes smaller after the elimination process, that is , then

(20)

must hold. This is, however, a very severe condition because
usually .

Moreover the maximum eigenvalue, which corresponds to
an eigenvector with a short characteristic wavelength, would
be insensitive to introduction of the new restriction to (2). The
minimum nonzero eigenvalue , whose eigenvector has a
long characteristic wavelength, increases its value after intro-
duction of the new restriction. Hence this would correspond
to the second minimum nonzero eigenvalue in the reduced
system. On the other hand the minimum nonzero eigenvalue

, which newly appears between zero and , is possibly
very different from . This fact also helps the increase in
by the gauging.

Consequently we conclude that the tree–cotree gauging,
which is regarded as the successive elimination of degrees of
freedom in the spanning tree, tends to deteriorate the condition
number of the curl–curl matrix , and result in deceleration
of the CG and ICCG. In the next section this theoretical
prediction will be tested through a simple numerical example.

V. NUMERICAL RESULTS

For a numerical test we analyze the magnetostatic field in
the cube which has unit-length edges parallel to the axes of the
Cartesian coordinates [3]. In the region a uniform source cur-
rent flows in parallel with one of the normal vectors of the
cube surface, e.g., the direction of the-axis. Assuming that the
magnetic field lines are confined in the cube, the tangential com-
ponents of vector potentials are set to zero on the surfaces.

The matrix equation (2) is solved with the CG and ICCG
methods. The degree of freedom of the system is varied by
gradually eliminating the unknown vector potentials assigned
to edges in the spanning tree. The eigenvalues of the curl–curl
matrix are also computed to evaluate its condition number
and nullity.

The cubic region is subdivided into 234 tetrahedral elements
with 77 nodes and 364 edges. The resultant numbers of edges in
the tree and co-tree after imposing the boundary conditions are
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TABLE I
CONVERGENCE OFCG AND ICCG

21 and 181. The tolerance for convergence of the CG and ICCG
methods is set to .

Table I summarizes the result, where and repre-
sents minimum nonzero and maximum eigenvalues under each
computational condition. We can see that monotonously
decreases while keeps almost constant as increases,
and hence this results in the increase of. Moreover and

increases consistently with . These numerical results
are consistent with the prediction given in the previous section.

VI. CONCLUSIONS

In this paper the observed deceleration in convergence of
the CG and ICCG methods applied to magnetostatic problems
by the tree–cotree gauging is explained on the basis of the
eigenvalue separation property. The contents are summarized
as follows:

1) The convergence of the CG and also ICCG methods are
not influenced from zero eigenvalues of a singular matrix.
Those convergence can be characterized by means of the
condition number, which is defined as the ratio of the
minimum nonzero eigenvalue to the maximum one.

2) The tree–cotree gauging can be regarded as the successive
elimination of degree of freedom in the spanning tree.
Hence the generated eigenvalues during the elimination
process obey the eigenvalue separation property.

3) The eigenvalue separation property states that neither
minimum nonzero eigenvalue nor maximum one increase
through the elimination of degree of freedom. Hence the
condition number tends to grow by its definition. More-
over the maximum eigenvalue tends to keep constant
whereas the minimum nonzero eigenvalue reduces. This
property also makes the condition number larger.

The logic used in this paper does not owe to the special prop-
erty of the curl–curl matrix except its singularity. Hence the
results are not valid only for the curl–curl matrix in magneto-
statics, but also other singular matrices. One can expect in gen-
eral that the elimination of degree of freedom from a singular
system results in the worse condition number and resultant de-
celeration in the CG methods. In fact such phenomena have been
observed in the eddy current analysis with the edge finite el-
ements. In this case convergence in the ICCG becomes worse
when the redundant terms coming from the divergence-free con-
dition of eddy currents are eliminated. The detailed analysis of
this phenomena will be reported elsewhere.
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