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1 Introduction

The Lyapunov matrix differential equations occur in many branches of control
theory such as optimal control and stability analysis..
Recent works for Ψ− boundedness, Ψ− stability, Ψ− instability, controllabil-
ity, dichotomy and conditioning for Lyapunov matrix differential equations
have been given in many papers. See, for example, [5 − 12] and the references
cited therein.
The purpose of present paper is to prove (necessary and) sufficient conditions
for Ψ− conditional stability of trivial solution of the nonlinear Lyapunov
matrix differential equation

Z ′ = A(t)Z + ZB(t) + F (t, Z) (1.1)

and the linear Lyapunov matrix differential equation

Z ′ = [A(t) + A1(t)]Z + Z[B(t) +B1(t)], (1.2)
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which can be seen as a perturbed equations of the linear equation

Z ′ = A(t)Z + ZB(t). (1.3)

We investigate conditions on the fundamental matrices of the equations

Z ′ = A(t)Z, (1.4)

Z ′ = ZB(t) (1.5)

and on the functions A1, B1 and F under which the trivial solutions of the
equations (1.1), (1.2) and (1.3) are Ψ− conditionally stable on R+. Here,
Ψ is a matrix function whose introduction permits us obtaining a mixed
asymptotic behavior for the components of solutions.
The main tool used in this paper is the technique of Kronecker product
of matrices, which has been successfully applied in various fields of matrix
theory, group theory and particle physics. See, for example, the above cited
papers and the references cited therein.

2 Preliminaries

In this section we present some basic definitions, notations, hypotheses and
results which are useful later on.
Let Rn be the Euclidean n-dimensional space. For x = (x1,x2,x3,...,xn)T ∈
Rn, let ‖x‖ = max{|x1 |, |x2 |, |x3 |, ..., |xn |} be the norm of x ( T denotes
transpose).
Let Mm×n be the linear space of all m×n real valued matrices.
For a matrix A = (aij) ∈Mn×n, we define the norm |A| by |A| = sup

‖x‖≤1
‖Ax‖ .

It is well-known that |A| = max
1≤i≤n

{
n∑

j=1

|aij|}.

By a solution of the equation (1.1) we mean a continuous differentiable d×d
matrix function satisfying the equation (1.1) for all t ∈ R+.
In equation (1.3), we assume that A and B are continuous d× d matrices on
R+ = [0,∞). It is well-known that continuity of A and B ensure the existence
and uniqueness on R+ of a solution of (1.3) passing through any given point
(t0, Z0) ∈ R+ ×Md×d.
In addition, in equation (1.1), we assume that F : R+ ×Md×d −→ Md×d is
continuous such that F (t, Od) = Od (null matrix of order d× d).
It is well-known that these conditions ensure the local existence of a solution
passing through any given point (t0, Z0) ∈ R+ ×Md×d, but it not guarantee
that the solution is unique or that it can be continued for large values of t.
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Let Ψi : R+ −→ (0,∞), i = 1,2,...,n, be continuous functions and

Ψ = diag [Ψ1,Ψ2, · · ·Ψn].

Def inition 2.1. ([3], [6]). The solution z(t) of the differential equation z ′

= f(t,z) (where z ∈ Rd and f is a continuous d vector function) is said to
be Ψ− stable on R+ if for every ε > 0 and every t0 ∈ R+, there exists a
δ = δ(ε, t0) > 0 such that, any solution z̃(t) of the equation which satisfies
the inequality ‖ Ψ(t0)( z̃(t0) − z(t0))‖ < δ, exists and satisfies the inequality
‖ Ψ(t)( z̃(t) − z(t))‖ < ε for all t ≥ t0.
Otherwise, is said that the solution z(t) is Ψ− unstable on R+.

Def inition 2.2. ([3]). A function ϕ : R+ −→ Rd is said to be Ψ− bounded
on R+ if Ψ(t)ϕ(t) is bounded on R+.
Otherwise, is said that the function ϕ is Ψ− unbounded on R+.

Def inition 2.3. ([3]). The solution z(t) of the differential equation z ′ =
f(t,z) is said to be Ψ− conditionally stable on R+ if it is not Ψ− stable on
R+ but there exists a sequence (z n(t)) of solutions of the equation def ined
for all t ∈ R+ such that

lim
n→∞

Ψ(t)zn(t) = Ψ(t)z(t), uniformly on R+.

Remark 2.1. These definitions generalize the classical definitions of various
types of stability (see [2]).

Now, we extend these definitions for a matrix differential equation Z ′ =
F (t, Z), where Z ∈ Md×d and F : R+ × Md×d −→ Md×d is a continuous
function.

Def inition 2.4. ([6]). The solution Z(t) of the matrix differential equation
Z ′ = F (t, Z) is said to be Ψ− stable on R+ if for every ε > 0 and every

t0 ∈ R+, there exists a δ = δ(ε, t0) > 0 such that, any solution Z̃(t) of the

equation which satisfies the inequality | Ψ(t0)( Z̃ (t0) − Z(t0))| < δ, exists

and satisfies the inequality | Ψ(t)( Z̃ (t) − Z(t))| < ε for all t ≥ t0.
Otherwise, is said that the solution Z(t) is Ψ− unstable on R+.

Def inition 2.5. A matrix function M : R+ −→ Md×d is said to be Ψ−
bounded on R+ if the matrix function Ψ(t)M(t) is bounded on R+ (i.e. there
exists m > 0 such that | Ψ(t)M(t) | ≤ m, for all t ∈ R+).
Otherwise, is said that the function M is Ψ− unbounded on R+.
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Def inition 2.6. The solution Z(t) of the matrix differential equation Z ′ =
F (t, Z) is said to be Ψ− conditionally stable on R+ if it is not Ψ− stable on
R+ but there exists a sequence (Z n(t)) of solutions of the equation def ined
on R+ such that

lim
n→∞

Ψ(t)Zn(t) = Ψ(t)Z(t), uniformly on R+.

Remark 2.2. 1. It is easy to see that if Ψ(t) and Ψ−1(t) are bounded on
R+, then the Ψ− stability and Ψ− conditional stability are equivalent with
the classical stability and conditional stability respectively.
2. In the same manner as in classical conditional stability, we can speak
about Ψ− conditional stability of a linear matrix differential equation (1.3),
(1.4) or (1.5).
Indeed, let X(t), Y(t) be two solutions of the equation (1.4). Suppose that
the solution X(t) is Ψ− conditionally stable on R+. From Definition 2.6,
X(t) is not Ψ− stable on R+ and there exists a sequence (Xn(t)) of solutions
of the equation defined on R+ such that limn→∞Ψ(t)Xn(t) = Ψ(t)X(t),
uniformly on R+. Then, Y(t) is not Ψ− stable on R+ (see Theorem 1, [5])
and limn→∞Ψ(t)Yn(t) = Ψ(t)Y (t), uniformly on R+, where

Yn(t) = Xn(t)−X(t) + Y (t), t ∈ R+, n ∈ N,

are solutions of (1.4). Thus, all solutions of (1.4) are Ψ− conditionally stable
on R+.
The last cases are similar.

Def inition 2.7. ([1]). Let A = (a ij ) ∈Mm×n and B = (bij ) ∈ Mp×q . The
Kronecker product of A and B, written A⊗B, is def ined to be the partitioned
matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB

 .

Obviously, A⊗B ∈Mmp×nq.
The important rules of calculation of the Kronecker product there are in next
Lemma.

Lemma 2.1. ([1]). The Kronecker product has the following properties and
rules, provided that the dimension of the matrices are such that the various
expressions exist:
1). A⊗(B⊗C) = (A⊗B)⊗C;
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2). (A⊗B)T = AT⊗BT;
3). (A⊗B)·(C⊗D) = (A·C)⊗(B ·D);
4). (A⊗B)−1 = A−1⊗B−1;
5). A⊗(B + C) = A⊗B + A⊗C;
6). (A + B)⊗C = A⊗C + B⊗C;

7). I p⊗A =


A O · · · O
O A · · · O
...

...
...

...
O O · · · A

;

8). (A(t)⊗B(t))′ = A′(t)⊗B(t) + A(t)⊗B ′(t); ( ′ denotes the derivative d
dt

).
Proof. See in [1].

Def inition 2.8. The application Vec : Mm×n −→ Rmn, defined by

Vec(A) = (a11, a21, · · · , am1, a12, a22, · · · , am2, · · · , a1n, a2n, · · · , amn)T ,

where A = (aij) ∈ Mm×n, is called the vectorization operator.

Lemma 2.2. ([5]). The vectorization operator

Vec : Mm×n −→ Rmn, A −→ Vec(A),

is a linear and one-to-one operator. In addition, V ec and V ec−1 are contin-
uous operators.
Proof. See Lemma 2, [5].

Lemma 2.3. A function F : R+ −→ Mn×n is a continuous (differentiable)
matrix function on R+ if and only if the function f : R+ −→ Rn2

, def ined
by f(t) = Vec(F (t)), is a continuous (differentiable) vector function on R+.
Proof. It is a simple exercise.
We recall that the vectorization operator Vec has the following properties as
concerns the calculations.

Lemma 2.4. If A,B,M ∈Mn×n, then
1). Vec(AMB) = (BT ⊗ A) · Vec(M);
2). Vec(MB) = (BT ⊗ In) · Vec(M);
3). Vec(AM) = (In ⊗ A) · Vec(M);
4). Vec(AM) = (MT ⊗ A) · Vec(In).
Proof. It is a simple exercise.
The following lemmas play a vital role in the proofs of main results of present
paper.
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Lemma 2.5. ([5]). The matrix function Z(t) is a solution of (1.1) on
R+ if and only if the vector function z(t) = V ec(Z(t)) is a solution of the
differential system

z′ =
(
Id ⊗ A(t) +BT (t)⊗ Id

)
z + f(t, z) (2.1)

where f(t, z) = V ec (F (t, Z)) , on the same interval R+.
Proof. See Lemma 5, [5].

Def inition 2.9. The above system (2.1) is called ”corresponding Kronecker
product system associated with (1.1)”.

Lemma 2.6. ([5]). For every matrix function M : R+ −→Md×d,

1

d
| Ψ(t)M(t) | ≤ ‖ (Id ⊗Ψ(t))Vec (M(t)) ‖Rd2 ≤ | Ψ(t)M(t) |, t ≥ 0.

(2.2)
Proof. See Lemma 6, [5].

Lemma 2.7. The trivial solution of the equation (1.1) is Ψ− conditionally
stable on R+ if and only if the trivial solution of the corresponding Kronecker
product system (2.1) is Id ⊗Ψ− conditionally stable on R+.
Proof. First, suppose that the trivial solution of the equation (1.1) is Ψ−
conditionally stable on R+. According to Definition 2.6, this solution is not
Ψ− stable on R+ but there exists a sequence (Zn(t)) of solutions of the
equation defined on R+ such that

lim
n→∞

Ψ(t)Zn(t) = Od, uniformly on R+.

From Lemma 2.5 and Lemma 7, [6], the trivial solution of (2.1) is not Id⊗Ψ−
stable on R+. In addition, from the inequality (2.2), we have that

‖ (Id ⊗Ψ(t))Vec (Zn(t)) ‖Rd2 ≤ | Ψ(t)Zn(t) |, t ≥ 0.

It follows that

lim
n→∞

(Id ⊗Ψ(t))Vec (Zn(t)) = 0, uniformly on R+.

From these results, Lemma 2.5 and Definition 2.3, it follows that the trivial
solution of (2.1) is Id ⊗Ψ− conditionally stable on R+.
Suppose, conversely, that the trivial solution of (2.1) is Id⊗Ψ− conditionally
stable on R+. According to Definition 2.3, this solution is not Id⊗Ψ− stable
on R+ but there exists a sequence (zn(t)) of solutions of the system (2.1)
defined on R+ such that
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lim
n→∞

(Id ⊗Ψ(t)) zn(t) = 0, uniformly on R+.

From Lemma 2.5 and Lemma 7, [6], the trivial solution of (1.1) is not Ψ−
stable on R+. In addition, from the inequality (2.2), we have that

1

d
| Ψ(t)Vec−1(zn(t)) | ≤ ‖ (Id ⊗Ψ(t)) zn(t) ‖Rd2 .

It follows that

lim
n→∞

Ψ(t)Vec−1(zn(t)) = Od, uniformly on R+.

(here, (Vec−1(zn(t))) is a sequence of solutions of the equation (1.1)).
From these results, Lemma 2.5 and Definition 2.6, it follows that the trivial
solution of (1.1) is Ψ− conditionally stable on R+.
The proof is now complete.

Lemma 2.8. ([5]). Let X(t) and Y(t) be a fundamental matrices for the
equations (1.4) and (1.5) respectively.
Then, the matrix Z(t) = Y T(t)⊗X(t) is a fundamental matrix for the corre-
sponding Kronecker product system associated with (1.3), i.e. for the differ-
ential system

z′ =
(
Id ⊗ A(t) +BT (t)⊗ Id

)
z (2.3)

Proof. See Lemma 9, [5].

3 Ψ− conditional stability of linear matrix
differential equations

The purpose of this section is to study the Ψ− conditional stability of the
linear matrix differential equations (1.4) and

Z ′ = (A(t) + A1(t))Z. (3.1)

The conditions for Ψ− conditional stability of the linear matrix differen-
tial equation (1.4) can be expressed in terms of solutions or in terms of a
fundamental matrix for (1.4).

Theorem 3.1. The linear matrix differential equation (1.4) is Ψ− condi-
tionally stable on R+ if and only if it has a Ψ− unbounded solution on R+

and a nontrivial Ψ− bounded solution on R+.
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Proof. First, we shall prove the ”only if” part.
Suppose that the linear matrix differential equation (1.4) is Ψ− conditionally
stable on R+. Let X(t) be a fundamental matrix for (1.4). From the above
Definition 2.6, Remark 2.2 and Theorem 1, [6], it follows that | Ψ(t)X(t) |
is unbounded on R+. Thus, the linear equation (1.4) has at least one Ψ−
unbounded solution on R+. In addition, there exists a sequence (Xn(t))of
nontrivial solutions of (1.4) such that

lim
n→∞

Ψ(t)Xn(t) = Od, uniformly on R+.

Thus, there exist the constant matrices Cn 6= Od such that

lim
n→∞

Ψ(t)X(t)Cn = Od, uniformly on R+.

Hence, there exists n0 ∈ N such that | Ψ(t)X(t)Cn | < 1 for n ≥ n0 and
t ∈ R+. We choose Cm 6= Od, m ≥ n0. Thus, X(t)Cm is a Ψ− bounded
nontrivial solution of (1.4) on R+.
Now, we shall prove the ”if” part.
Suppose that the linear matrix differential equation (1.4) has a Ψ− un-
bounded solution on R+ and a nontrivial solution X0(t) such that Ψ(t)X0(t)
is bounded on R+. It follows that the fundamental matrix X(t) for (1.4) is
such that | Ψ(t)X(t) | is unbounded on R+. Consequently, the linear matrix
differential equation (1.4) is Ψ− unstable on R+ (see Theorem 1, [6]). On
the other hand, ( 1

n
X0(t)) is a sequence of solutions of (1.4) such that

lim
n→∞

Ψ(t)

(
1

n
X0(t)

)
= Od, uniformly on R+.

Thus, the linear matrix differential equation (1.4) is Ψ− conditionally stable
on R+.
The proof is now complete.

Theorem 3.2. Let X(t) be a fundamental matrix for the linear matrix
differential equation (1.4).
Then, the linear matrix differential equation (1.4) is Ψ− conditionally stable
on R+ if and only if the following conditions are true:
a). there exists a projections P1 such that Ψ(t)X(t)P1 is unbounded on R+;
b). there exists a projections P2 6= 0 such that Ψ(t)X(t)P2 is bounded on
R+.
Proof. First, we shall prove the ”only if” part.
From Ψ− conditional stability on R+ of (1.4) and Theorem 1, [5], it follows
that there exists a projections P1 such that Ψ(t)X(t)P1 is unbounded on R+.
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In addition, from the above Theorem, there exists a matrix C 6= Od such that
X(t)C is a Ψ− bounded nontrivial solution of (1.4) on R+. Let the column ci
= (c1i,c2i,...,cdi)

T 6= 0 of C. Let cji = ‖ ci ‖ . Let P2 be the nul matrix Od in
which the j column is replaced with the column c−1ji ci. It is easy to see that
P2 6= 0 is a projection and Ψ(t)X(t)P2 is bounded on R+.
Now, we shall prove the ”if” part.
From the hypothesis a) and Theorem 1, [5], it follows that the linear matrix
differential equation (1.4) is Ψ− unstable on R+.
Let X0(t) be a nontrivial solution on R+ of the linear matrix differential
equation (1.4). Let (λn) be such that λn ∈ R r {1}, lim

n→∞
λn = 1 and let

(Xn(t)) be defined by

Xn(t) = X(t)P2X
−1(0)(λnX0(0)) +X(t)(I − P2)X

−1(0)X0(0), t ≥ 0.

It is easy to see that Xn(t) are solutions of the linear matrix differential
equation (1.4). For n ∈ N and t ≥ 0, we have
| Ψ(t)Xn(t)−Ψ(t)X0(t) | =

= | Ψ(t)X(t)P2X
−1(0)(λnX0(0)) +

+ Ψ(t)X(t)(I − P2)X
−1(0)X0(0)−Ψ(t)X(t)X−1(0)X0(0) | =

= | Ψ(t)X(t)P2X
−1(0) ((λn − 1)X0(0)) | ≤

≤ | λn − 1 || Ψ(t)X(t)P2 || X−1(0)X0(0) | .
Thus,

lim
n→∞

Ψ(t)Xn(t) = Ψ(t)X0(t), uniformly on R+.

It follows that the linear matrix differential equation (1.4) is Ψ− conditionally
stable on R+.
The proof is now complete.
Remark 3.1. Theorems 3.1 and 3.2 generalize a similar results in connection
with the classical stability or Ψ− conditional stability in [2], [3].

Sufficient conditions for Ψ− conditional stability are given in the following
theorems. At first, we consider the following hypotheses:
(H1) There exist supplementary projections Pi : Rd −→ Rd, P1 6= 0, P2 6= 0
and a constant K > 0 such that the fundamental matrix X(t) for the linear
matrix differential equation (1.4) satisfies one of following conditions:

i.

{
| Ψ(t)X(t)P1X

−1(s)Ψ−1(s) | ≤ K, for 0 ≤ s ≤ t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) | ≤ K, for 0 ≤ t ≤ s
;

ii.
∫ t
0
| Ψ(t)X(t)P1X

−1(s)Ψ−1(s) | ds+
+
∫∞
t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) | ds ≤ K, for t ∈ R+.
(H2) A1(t) is a d× d continuous matrix function on R+ that satisfies one of
following conditions:
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i. M = sup
t≥0
| Ψ(t)A1(t)Ψ

−1(t) | is a sufficiently small number;

ii. lim
t→∞
| Ψ(t)A1(t)Ψ

−1(t) |= 0;

iii.
∫∞
0
| Ψ(t)A1(t)Ψ

−1(t) | dt is convergent.
Now, we have the following results:

Theorem 3.3. Suppose that:
1). the hypothesis (H1 – i) holds;
2). the hypothesis (H2 – iii) holds;
3). the linear matrix differential equations (1.4) and (3.1) are Ψ− unstable
on R+.
Then, the linear matrix differential equation (3.1) is Ψ− conditionally stable
on R+.
Proof. It is similar with the proof of Theorem 3, [3].
Remark 3.2. This Theorem is the variant of Theorem 3, [3], for a linear
matrix differential equation.

Theorem 3.4. Suppose that:
1). the hypotheses (H1 – i, ii) hold;
2). the hypothesis (H2 – i or ii) holds;
2). the hypothesis (H2 – iii) holds.
Then, the linear matrix differential equation (3.1) is Ψ− conditionally stable
on R+.
Proof. It results from Theorem above and Theorems 2, 3, [4], variant for a
linear matrix differential equation.
Remark 3.3. The hypothesis (H1) of the Theorems above certainly can be
satisfied if A(t) = A is a d× d real constant matrix which has characteristic
roots with diferent real parts. Indeed, in this case, e.g., there exists an
interval (α, β) ⊂ R such that for λ ∈ (α, β), Ψ(t) = e−λtId and X(t) = etA

satisfy the inequalities{
| Ψ(t)X(t)P1X

−1(s)Ψ−1(s) | ≤ Ke(α−λ)(t−s), for 0 ≤ s ≤ t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) | ≤ Ke(β−λ)(t−s), for 0 ≤ t ≤ s
,

where P1 6= 0, P2 6= 0 are supplementary projections.
There exists a similar situation if A(t) is a d × d real continuous periodic
matrix (see Examples 1, 2, [3]).
Thus, the above results can be considered as a generalization of a well-known
results in connection with the classical conditional stability (see e.g. [2])
Remark 3.4. If the linear equation (1.4) is only Ψ− conditionally stable
on R+ (instead of the hypotheses (H1 – i), (H1 – ii)), then the perturbed
equation (3.1) can’t be Ψ− conditionally stable on R+. This is shown by the
Example 3, [3], in variant for a linear matrix differential equation.
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4 Ψ− conditional stability of linear Lyapunov
matrix differential equations

The purpose of this section is to study the Ψ− conditional stability of the
linear Lyapunov matrix differential equations (1.2) and (1.3).

Theorem 4.1. The linear Lyapunov matrix differential equations (1.3) is
Ψ− conditionally stable on R+ if and only if the corresponding Kronecker
product system (2.3) is Id ⊗Ψ− conditionally stable on R+ .
Proof. It results from Lemma 2.7 and Remark 2.2.
The conditions for Ψ− conditional stability of the linear Lyapunov matrix
differential equation (1.3) can be expressed in terms of solutions or in terms
of a fundamental matrices for (1.4) and (1.5).

Theorem 4.2. The linear Lyapunov matrix differential equation (1.3) is Ψ−
conditionally stable on R+ if and only if it has a Ψ− unbounded solution on
R+ and a nontrivial Ψ− bounded solution on R+.
Proof. It results from Theorem 4.1, Theorem 3.1 (variant for systems),
Lemmas 2.5 and 2.6.

Theorem 4.3. Let X(t) and Y(t) be fundamental matrices for the equations
(1.4) and (1.5) respectively.
Suppose that:
a). There exists a projection Q1 : Rd2 −→ Rd2 such that(

Y T (t)⊗Ψ(t)X(t)
)
Q1

is unbounded on R+;
b). There exists a projection Q2 : Rd2 −→ Rd2 , Q2 6= 0, such that(

Y T (t)⊗Ψ(t)X(t)
)
Q2

is bounded on R+.
Then, the trivial solution of (1.3) is Ψ− conditionally stable on R+.
Proof. It results from Theorem 4.1, Theorem 3.2 (variant for systems) and
Lemmas 2.5, 2.6, 2.8.
Remark 4.1. It is easy to prove that the projection Q1 have the form
Q1 = I1 ⊗ P1, where P1 : Rd −→ Rd is a projection (see Theorem 1, [5]).

For new results, we make the following hypotheses:
Let X(t) and Y(t) be fundamental matrices for the equations (1.4) and (1.5)
respectively.
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(H3) There exist supplementary projections Pi : Rd −→ Rd, P1 6= 0, P2 6= 0
and the constants K > 0, L > 0, such that the fundamental matrices X(t)
and Y(t) satisfy one of the following conditions:

a.

{
| Ψ(t)X(t)P1X

−1(s)Ψ−1(s) | ≤ K, for 0 ≤ s ≤ t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) | ≤ K, for 0 ≤ t ≤ s
;

b.

{
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)P1Ψ
−1(s)) | ≤ K, for 0 ≤ s ≤ t

| (Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)P2Ψ
−1(s)) | ≤ K, for 0 ≤ t ≤ s

;

c.

{
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P1X
−1(s)Ψ−1(s)) | ≤ K, for 0 ≤ s ≤ t

| (Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P2X
−1(s)Ψ−1(s)) | ≤ K, for 0 ≤ t ≤ s

d.
∫ t
0
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P1X
−1(s)Ψ−1(s)) | ds+

+
∫∞
t
| (Y T (t)

(
Y T
)−1

(s)) ⊗ (Ψ(t)X(t)P2X
−1(s)Ψ−1(s)) | ds ≤ L, for

t ≥ 0.
(H4) The continuous matrices A(t) and B(t) satisfy the conditions
a1. sup

t≥0
| Ψ(t)A(t)Ψ−1(t) | is sufficiently small;

a2. lim
t→∞
| Ψ(t)A(t)Ψ−1(t) | = 0;

a3.
∫∞
0
| Ψ(t)A(t)Ψ−1(t) | dt is convergent;

b1. sup
t≥0
| B(t) | is sufficiently small;

b2. lim
t→∞
| B(t) | = 0;

b3.
∫∞
0
| B(t) | dt is convergent.

(H5) There exist a projection Q : Rd2 −→ Rd2 (or a projection P : Rd −→
Rd, such that Q = Id ⊗ P ) and a positive constant M such that
a.
∫∞
t
| (Id ⊗Ψ(t)X(t))Q (Id ⊗X−1(s)Ψ−1(s)) | ds ≤M, for all t ≥ 0,

(or
∫∞
t
| Ψ(t)X(t)PX−1(s)Ψ−1(s) | ds ≤M, for all t ≥ 0);

b.
∫∞
t
|
(
Y T (t)⊗Ψ(t)

)
Q
(
(Y T )−1(s)⊗Ψ−1(s)

)
| ds ≤M, for all t ≥ 0,

(or
∫∞
t
|
(
Y T (t)(Y T )−1(s)

)
⊗ (Ψ(t)PΨ−1(s)) | ds ≤M, for all t ≥ 0);

c.
∫∞
t
|
(
Y T (t)(Y T )−1(s)

)
⊗ (Ψ(t)X(t)PX−1(s)Ψ−1(s)) | ds ≤ M, for all

t ≥ 0.

Theorem 4.4. Suppose that are satisfied one of the following hypotheses:
I. (H3 − a), (H4 − b3) and the systems (1.3) and (1.4) are Ψ− unstable on
R+;
II. (H3 − b), (H4 − a3) and the systems (1.3) and (1.5) are Ψ− unstable on
R+.
Then, the linear Lyapunov matrix differential equation (1.3) is Ψ− condi-
tionally stable on R+.
Proof. From Theorem 4.1, we know that the equation (1.3) is Ψ− condition-
ally stable on R+ if and only if the corresponding Kronecker product system



Vol. LII (2014) 53

associated with (1.3), i.e. the system (2.3), is Id ⊗ Ψ− conditionally stable
on R+.
In case I, we apply Theorem 3.3 (variant for systems) to the system

z′ = (Id ⊗ A(t)) z +
(
BT (t)⊗ Id

)
z.

In case II, we apply Theorem 3.3 (variant for systems) to the system

z′ =
(
BT (t)⊗ Id

)
z + (Id ⊗ A(t)) z.

Thus, the system (2.3) is Id ⊗Ψ− conditionally stable on R+.
From Theorem 4.1, the linear Lyapunov matrix differential equation (1.3) is
Ψ− conditionally stable on R+.
The proof is now complete.
Remark 4.2. 1. The hypothesis (H5 − a) ensures that system (1.4) is Ψ−
unstable on R+;
2. The hypothesis (H5 − b) ensures that system (1.5) is Ψ− unstable on R+;
3. The hypothesis (H5 − c) ensures that system (1.3) is Ψ− unstable on R+.
(see Theorem 2, [5]).

Theorem 4.5. Suppose that are satisfied one of the following hypotheses:
I. (H3 − a), (H3 − d), (H4 − b1) or (H4 − b2), (H4 − b3);
II. (H3 − b), (H3 − d), (H4 − a1) or (H4 − a2), (H4 − a3).
Then, the linear Lyapunov matrix differential equation (1.3) is Ψ− condi-
tionally stable on R+.
Proof. It is similar with the proof of above Theorem, using Theorem 3.4.

Theorem 4.6. Suppose that are satisfied one of the following hypotheses:
I. (H3 − c), (H3 − d);
II. A1(t) and B1(t) are continuous d×d matrices functions on R+ and satisfy
one of the following conditions:
i. M = sup

t≥0
| Id ⊗Ψ(t)A1(t)Ψ

−1(t) +BT
1 (t)⊗ Id | < 1

L

ii. lim
t→∞
| Id ⊗Ψ(t)A1(t)Ψ

−1(t) +BT
1 (t)⊗ Id | = 0

and the condition
iii.
∫∞
0
| Id ⊗Ψ(t)A1(t)Ψ

−1(t) +BT
1 (t)⊗ Id | is convergent.

Then, the linear Lyapunov matrix differential equation (1.2) is Ψ− condi-
tionally stable on R+.
Proof. From Theorem 4.1, we know that the equation (1.2) is Ψ− condition-
ally stable on R+ if and only if the corresponding Kronecker product system
associated with (1.2), i.e.

z′ =
[
Id ⊗ (A(t) + A1(t)) + (B(t) +B1(t))

T ⊗ Id
]
z
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or

z′ =
[
Id ⊗ A(t) +BT (t)⊗ Id

]
z +

[
Id ⊗ A1(t) +BT

1 (t)⊗ Id
]
z, (4.1)

is Id ⊗Ψ− conditionally stable on R+.
From Lemma 2.8, we know that U(t) = Y T (t)⊗X(t) is a fundamental matrix
for the system

z′ =
(
Id ⊗ A(t) +BT (t)⊗ Id

)
z.

The hypotheses ensure, via Theorem 3, [3] and Theorem 3, [5], that the
system (4.1) is Id ⊗Ψ− conditionally stable on R+.
From Theorem 4.1, the equation (1.2) is Ψ− conditionally stable on R+.
The proof is now complete.

Remark 4.3. If the linear equation (1.3) is only Ψ− conditionally stable on
R+, then the perturbed equation (1.2) can’t be Ψ− conditionally stable on
R+.
This is shown by the next Example, transformed after an equation due to O.
Perron [13].
Example 4.1. Consider the equation (1.3) with

A(t) =

(
sin ln(t+ 1) + cos ln(t+ 1)− 2a 0

0 −a

)
and

B(t) =

(
α 0
0 β

)
,

where a, α, β ∈ R, such that 0 < 2a < 1 + α and α ≤ 0, β > 0.
Then, a fundamental matrices for the homogeneous equations (1.4) and (1.5)
are

X(t) =

(
e(t+1)(sin ln(t+1)−2a) 0

0 e−a(t+1)

)
and

Y (t) =

(
eα(t+1) 0

0 eβ(t+1)

)
respectively.
Let Ψ be the matrix

Ψ(t) =

(
1 0
0 ea(t+1)

)
.

From Lemma 2.8, the matrix
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(
Y T (t)⊗X(t)

)
=


u(t) 0 0 0

0 e(−a+α)(t+1) 0 0
0 0 v(t) 0
0 0 0 e(−a+β)(t+1)

 ,

where u(t) = e(t+1)(sin ln(t+1)−2a+α), v(t) = e(t+1)(sin ln(t+1)−2a+β), is a fundamen-
tal matrix for the system (2.3), i.e. for the corresponding Kronecker product
system associated with equation (1.3).
It is easy to see that (I2 ⊗Ψ(t))

(
Y T (t)⊗X(t)

)
is unbounded on R+.

From Theorem 1, [4], it follows that the system (2.3) is I2⊗Ψ− unstable on
R+.
In addition, from Theorem 1, [3], the system (2.3) is I2 ⊗ Ψ− conditionally
stable on R+.
From Theorem 4.1, it follows that the linear equation (1.3) is Ψ− condition-
ally stable on R+.
Now, if we take

A1(t) =

(
0 be−a(t+1)

0 0

)
,

where b ∈ R, b 6= 0, then, a fundamental matrix for the corresponding system
(2.3) of perturbed equation (1.2) is

Z0(t) =


bu(t)

∫ t+1

1
e−s sin ln sds u(t) 0 0

e(−a+α)(t+1) 0 0 0

0 0 bv(t)
∫ t+1

1
e−s sin ln sds v(t)

0 0 e(−a+β)(t+1) 0

 .

As in Example 3, [3], we have that the all columns of (I2 ⊗Ψ(t))Z0(t) are
unbounded on R+. From Theorem 4.1 and Theorem 1, [3], it follows that the
perturbed equation (1.2) is not Ψ− conditionally stable on R+.
Finally, we have

Ψ(t)A1(t)Ψ
−1(t) =

(
0 be−2a(t+1)

0 0

)
.

Thus, A1(t) and B1(t) = O2 satisfy the condition II of Theorem 4.6.

5 Ψ− conditional stability of nonlinear Lyapunov
matrix differential equations

The purpose of this section is to study the Ψ− conditional stability of the
nonlinear matrix differential equation (5.1) and of the nonlinear Lyapunov
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matrix differential equation (1.1).

Theorem 5.1. Suppose that:
1). There exist supplementary projections Pi : Rd −→ Rd, Pi 6= 0, and a
constant K > 0 such that the fundamental matrix U(t) for the linear matrix
differential equation (1.4) satisfies the conditions{

| Ψ(t)U(t)P1U
−1(s)Ψ−1(s) | ≤ K, for 0 ≤ s ≤ t

| Ψ(t)U(t)P2U
−1(s)Ψ−1(s) | ≤ K, for 0 ≤ t ≤ s

;

2). The continuous function F : R+ ×Md×d −→Md×d is such that∫ ∞
0

| Ψ(t)F (t, 0) | dt <∞

and
| Ψ(t) (F (t,X1)− F (t,X2)) |≤ γ(t) | Ψ(t)(X1 −X2) |,

for all t ≥ 0 and X1, X2 ∈ Md×d, where γ : R+ −→ R+ is a continuous
function such that ∫ ∞

0

γ(t)dt <∞.

3). The equation (1.4) is Ψ− unstable on R+.
4). All Ψ− bounded solutions of the equation

X ′ = A(t)X + F (t,X) (5.1)

are Ψ− unstable on R+.
Then, all Ψ− bounded solutions of the equation (5.1) are Ψ− conditionally
stable on R+.
If, in addition, the continuous matrix B(t) is such that∫ ∞

0

| B(t) | dt <∞,

then, all Ψ− bounded solutions of the the linear Lyapunov matrix differential
equation (1.1) are Ψ− conditionally stable on R+.
Proof. Choose t0 > 0 so large that

θ = K

∫ ∞
t0

γ(t)dt < 1.

We put

S = {X : R+ −→Md×d | X is continuous and Ψ− bounded on [t0.∞)}.
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Define on the set S a norm by

|| X || = sup
t≥t0
| Ψ(t)X(t) | .

It is well-known that (S, || · ||) is a Banach real space.
For X ∈ S, we define

(TX) (t) =

∫ t

t0

U(t)P1U
−1(s)F (s,X(s))ds−

∫ ∞
t

U(t)P2U
−1(s)F (s,X(s))ds,

for all t ≥ t0.
For v ≥ t ≥ t0,

| Ψ(t)
∫ v
t
U(t)P2U

−1(s)F (s,X(s))ds | =

= |
∫ v
t

Ψ(t)U(t)P2U
−1(s)Ψ−1(s)Ψ(s)F (s,X(s))ds | ≤

≤
∫ v
t
| Ψ(t)U(t)P2U

−1(s)Ψ−1(s) || Ψ(s)F (s,X(s)) | ds ≤
≤ K

∫ v
t
| Ψ(s)F (s,X(s)) | ds =

= K
∫ v
t
| Ψ(s) (F (s,X(s))− F (s, 0) + F (s, 0)) | ds ≤

≤ K
∫ v
t

[| Ψ(s) (F (s,X(s))− F (s, 0)) | + | Ψ(s)F (s, 0) |]ds ≤
≤ K

[∫ v
t
γ(s) | Ψ(s)X(s) | ds+

∫ v
t
| Ψ(s)F (s, 0) |

]
ds ≤

≤ K || X ||
∫ v
t
γ(s)ds+K

∫ v
t
| Ψ(s)F (s, 0) | ds.

It follows that the integral∫ ∞
t

U(t)P2U
−1(s)F (s,X(s))ds

is convergent.
From hypotheses, (TX)(t) exists for t ≥ t0 and is continuous differentiable.
For X ∈ S and t ≥ t0,
| Ψ(t)(TX)(t) | =

= |
∫ t
t0

Ψ(t)U(t)P1U
−1(s)Ψ−1(s)Ψ(s)F (s,X(s))ds−

−
∫∞
t

Ψ(t)U(t)P2U
−1(s)Ψ−1(s)Ψ(s)F (s,X(s))ds | ≤

≤
∫ t
t0
| Ψ(t)U(t)P1U

−1(s)Ψ−1(s) || Ψ(s)F (s,X(s)) | ds +

+
∫∞
t
| Ψ(t)U(t)P2U

−1(s)Ψ−1(s) || Ψ(s)F (s,X(s))ds | ds ≤
≤ K[

∫ t
t0
| Ψ(s) (F (s,X(s))− F (s, 0) + F (s, 0)) | ds +

+
∫∞
t
| Ψ(s) (F (s,X(s))− F (s, 0) + F (s, 0)) | ds] ≤

≤ K[
∫ t
t0

(γ(s) | Ψ(s)X(s) | + | Ψ(s)F (s, 0) |) ds+
+
∫∞
t

(γ(s) | Ψ(s)X(s) | + | Ψ(s)F (s, 0) |) ds] ≤
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≤ K
(
|| X ||

∫∞
t0
γ(s)ds+

∫∞
t0
| Ψ(s)F (s, 0) | ds

)
.

This shows that TS ⊂ S.
Moreover, for any two Ψ− bounded continuous functions X1(t), X2(t),
| Ψ(t) ((TX1)(t)− (TX2)(t)) | =

= |
∫ t
t0

Ψ(t)U(t)P1U
−1(s)Ψ−1(s)Ψ(s) (F (s,X1(s))− F (s,X2(s))) ds−

−
∫∞
t

Ψ(t)U(t)P2U
−1(s)Ψ−1(s)Ψ(s) (F (s,X1(s))− F (s,X2(s))) ds | ≤

≤
∫ t
t0
| Ψ(t)U(t)P1U

−1(s)Ψ−1(s)Ψ(s) (F (s,X1(s))− F (s,X2(s))) | ds+
+
∫∞
t
| Ψ(t)U(t)P2U

−1(s)Ψ−1(s)Ψ(s) (F (s,X1(s))− F (s,X2(s))) | ds ≤
≤ K

∫∞
t0
γ(s) | Ψ(s) (X1(s)−X2(s)) | ds ≤

≤
(
K
∫∞
t0
γ(s)ds

)
|| X1 −X2 || .

It follows that

|| TX1 − TX2 || ≤ θ || X1 −X2 ||, for all X1, X2 ∈ S.

This shows that T is a contraction of the Banach space (S, || · ||) .
It follows by the contraction principle that for any Ψ− bounded function
Y (t) on R+, the integral equation

X = Y + TX (5.2)

has a unique solution X ∈ S.
Furthermore, by the definition of T, X(t)− Y (t) is continuous differentiable
and

(X(t)− Y (t))′ = A(t) (X(t)− Y (t)) + F (t,X(t)), t ≥ t0.

Hence, if Y (t) is a Ψ− bounded solution of (1.4), then the corresponding
solution X(t) of (5.2) is a Ψ− bounded solution of (5.1). Conversely, if X(t)
is a Ψ− bounded solution of (5.1), the function Y (t) defined by (5.2) is a
Ψ− bounded solution of (1.4).
Thus, the equation (5.2) establishes a 1–1 correspondence C between the Ψ−
bounded solutions of (1.4) and (5.1): X = CY.
If we subtract from (5.2) the analogous equation X0 = Y0 + TX0, we get
|| X −X0 || ≤ || Y − Y0 || + || TX − TX0 || ≤ || Y − Y0 || + θ || X −X0 ||,
i.e.

(1− θ) || X −X0 || ≤ || Y − Y0 ||

and
|| Y − Y0 || ≤ || X −X0 || + || TX − TX0 || ≤ (1 + θ) || X −X0 || .
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Thus,

(1 + θ)−1 || Y − Y0 || ≤ || X −X0 || ≤ (1− θ)−1 || Y − Y0 || . (5.3)

This shows that the correspondence C is bicontinuous on the interval [t0,∞).
Since under the conditions of the theorem, the solutions of (1.4) and (5.1)
are defined for all t ≥ 0, are uniquely determined by their initial values
and depend continuously on these initial values over any finite interval, we
actually have continuity on the interval [0,∞).
F inally, let X0(t) be a Ψ− bounded solution of (5.1). This solution is Ψ−
unstable on R+. Let Y0 = X0 − TX0 be. From Theorem 3.1, the equation
(1.4) is Ψ− conditionally stable on R+. Thus, for the solution Y0 of (1.4),
there exists a sequence (Yn) of solutions of (1.4) defined on R+ such that

lim
n→∞

Ψ(t)Yn(t) = Ψ(t)Y0(t), uniformly on R+.

Let Xn = CYn be. From (5.3), it follows that the sequence (Xn) of solutions
of (5.1), defined on R+, is such that

lim
n→∞

Ψ(t)Xn(t) = Ψ(t)X0(t), uniformly on R+.

Thus, the Ψ− bounded solution X0(t) of (5.1) is Ψ− conditionally stable on
R+.
The proof of the first part is complete.
The last part results from the above, if we put XB(t) + F (t,X) instead of
F (t,X).
The proof is now complete.
Remark 5.1. The Theorem contains as a particular case a result concern-
ing Ψ− conditional stability of all Ψ− bounded solutions of the differential
system

x′ = A(t)x+ f(t, x).

Indeed, consider in (5.1)

X =


x1 x1 · · · x1
x2 x2 · · · x2
· · · · · · · · · · · ·
xd xd · · · xd


and

F (t,X) =


f1(t, x) f1(t, x) · · · f1(t, x)
f2(t, x) f2(t, x) · · · f2(t, x)
· · · · · · · · · · · ·

fd(t, x) fd(t, x) · · · fd(t, x)

 ,
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where x = (x1, x2, · · · , xd)T and f(t, x) = (f1(t, x), f2(t, x), · · · , fd(t, x))T .
Now, the definitions and conditions for Ψ− boundedness or Ψ− conditional
stability on R+ of x are the same for Ψ− boundedness or Ψ− conditional
stability on R+ of X.
We mention that in Theorem 5, [3], there exist a result concerning Ψ− condi-
tional stability of all Ψ− bounded solutions of the nonlinear Volterra integro-
differential system

x′ = A(t)x+

∫ t

0

F (t, s, x(s))ds.

Remark 5.2. In conditions of Theorem, in particular case F (t,X) = XB(t),
with

∫∞
0
| B(t) | dt is convergent, the linear Lyapunov matrix differential

equation (1.3) is Ψ− conditionally stable on R+.

Corollary 5.1. Suppose that there exist supplementary projections Pi 6= 0,
Pi : Rd −→ Rd, i = 1, 2 and a constant K > 0 such that{

| Ψ(t)P1Ψ
−1(s) | ≤ K, for 0 ≤ s ≤ t

| Ψ(t)P2Ψ
−1(s) | ≤ K, for 0 ≤ t ≤ s

;

In addition, suppose that there exist a projection P : Rd −→ Rd, P 6= 0 and
a constant M > 0 such that∫ ∞

t

| Ψ(t)PΨ−1(s) | dt ≤M, for all t ≥ 0.

Let F : R+ ×Md×d −→Md×d be a continuous function such that∫ ∞
0

| Ψ(t)F (t, 0) | dt <∞

and

| Ψ(t) (F (t,X1)− F (t,X2)) | ≤ γ(t) | Ψ(t)(X1 −X2) |,

for all t ≥ 0 and X1, X2 ∈ Md×d, where γ : R+ −→ R+ is a continuous
function such that ∫ ∞

0

γ(t)dt <∞.

Let A(t), B(t) be continuous matrix functions such that∫ ∞
0

| Ψ(t)A(t)Ψ−1(s) | dt <∞
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and ∫ ∞
0

| B(t) | dt <∞.

Suppose that all Ψ− bounded solutions of the equation (1.1) are Ψ− unstable
on R+.
Then, all Ψ− bounded solutions of the equation (1.1) are Ψ− conditionally
stable on R+.
Proof. It results from the above Theorem, if we take O2 instead of A(t) and
A(t)X+XB(t)+F(t,X) instead of F(t,X).

Theorem 5.2. Suppose that:
1. There exist supplementary projections Pi : Rd −→ Rd, P1 6= 0, P2 6= 0
and a constant K > 0 such that the fundamental matrices X(t) and Y(t)
for the linear matrix differential equations (1.4) and (1.5) respectively satisfy
the conditions

{
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P1X
−1(s)Ψ−1(s)) | ≤ K, for 0 ≤ s ≤ t

| (Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P2X
−1(s)Ψ−1(s)) | ≤ K, for 0 ≤ t ≤ s

;

2. The continuous function F : R+×Md×d −→Md×d is such that F (t, 0) = 0
and satisfies the Lipschitz condition

| Ψ(t) (F (t,X1)− F (t,X2)) | ≤ γ(t) | Ψ(t)(X1 −X2) |,

for all t ≥ 0 and X1, X2 ∈ Md×d, where γ : R+ −→ R+ is a continuous
function such that ∫ ∞

0

γ(t)dt <∞.

3. The linear Lyapunov matrix differential equation (1.3) is Ψ− unstable on
R+.
4. The trivial solution of the equation (1.1) is Ψ− unstable on R+.
Then, the trivial solution of the equation (1.1) is Ψ− conditionally stable on
R+.
Proof. We will apply the Theorem 5.1, variant for differential system (see
Remark 5.1).
From Lemma 2.7, we know that the trivial solution of the equation (1.1)
is Ψ− conditionally stable on R+ if and only if the trivial solution of the
corresponding Kronecker product system (2.1) is Id⊗Ψ− conditionally stable
on R+.
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From Lemma 2.8, we know that the matrix Y T (t) ⊗ X(t) is a fundamental
matrix for the linear homogeneous system associated with (2.1), i.e. for the
differential system (2.3).

The hypothesis 1 ensures the hypothesis 1 of Theorem 5.1.

Let

f(t, z) = Vec (F (t, Z)) , z = Vec(Z),

for t ∈ R+ and Z ∈Md×d.

From hypothesis 2 and Lemma 2.6, it follows that

‖ (Id ⊗Ψ(t)) (f(t, x1)− f(t, x2)) ‖Rd2 =

= ‖ (Id ⊗Ψ(t)) (Vec (F (t,X1))− Vec (F (t,X2))) ‖Rn2 ≤
≤ | Ψ(t) (F (t,X1)− F (t,X2)) | ≤ γ(t) | Ψ(t) (X1 −X2) | ≤
≤ dγ(t) ‖ (Id ⊗Ψ(t)) (Vec (X1)− Vec (X2)) ‖Rd2 =

= dγ(t) ‖ (Id ⊗Ψ(t)) (x1 − x2) ‖Rd2 ,

for t ≥ 0 and x1, x2 ∈ Rd2 .

Thus, it is ensured the hypothesis 2 of Theorem 5.1.

In the end, the hypotheses 3 and 4 ensure the last hypotheses of Theorem
5.1.

From Theorem 5.1, variant for differential system, the trivial solution of the
system (2.1) is Id⊗Ψ− conditionally stable on R+. From Lemma 2.7, results
that the trivial solution of (1.1) is Ψ− conditionally stable on R+.

The proof is now complete.

Corollary 5.2. Suppose that:

1. There exist supplementary projections Pi : Rd −→ Rd, P1 6= 0, P2 6= 0
and a constant K > 0 such that the fundamental matrices X(t) and Y(t)
for the linear matrix differential equations (1.4) and (1.5) respectively satisfy
the conditions:

i.

{
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P1X
−1(s)Ψ−1(s)) | ≤ K, for 0 ≤ s ≤ t

| (Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P2X
−1(s)Ψ−1(s)) | ≤ K, for 0 ≤ t ≤ s

ii.
∫ t
0
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P1X
−1(s)Ψ−1(s)) | ds+

+
∫∞
t
| (Y T (t)

(
Y T
)−1

(s)) ⊗ (Ψ(t)X(t)P2X
−1(s)Ψ−1(s)) | ds ≤ K, for

t ≥ 0.

2. The continuous function F : R+×Md×d −→Md×d is such that F (t, 0) = 0
and satisfies the Lipschitz condition

| Ψ(t) (F (t,X1)− F (t,X2)) |≤ γ(t) | Ψ(t)(X1 −X2) |,



Vol. LII (2014) 63

for all t ≥ 0 and X1, X2 ∈ Md×d, where γ : R+ −→ R+ is a continuous
function such that ∫ ∞

0

γ(t)dt <∞

and

Γ = sup
t≥0

γ(t) <
1

Kd
.

Then, the trivial solution of (1.1) is Ψ− conditionally stable on R+.
Proof. It results from the above Theorem and Theorem 4, [5].

Corollary 5.3. Suppose that:
1. There exist supplementary projection Pi : Rd −→ Rd, P1 6= 0, P2 6= 0 and
a constant K > 0 such that the fundamental matrices X(t) and Y(t) for the
linear matrix differential equations (1.4) and (1.5) respectively satisfy the
conditions

{
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P1X
−1(s)Ψ−1(s)) | ≤ K, for 0 ≤ s ≤ t

| (Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)X(t)P2X
−1(s)Ψ−1(s)) | ≤ K, for 0 ≤ t ≤ s

;

2. There exist a projection P : Rd −→ Rd, P 6= 0 and a constant M > 0
such that∫∞
t
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)X(t)PX−1(s)Ψ−1(s)) | ds ≤ K, for all t ≥ 0.

3. The continuous d× d matrices functions A(t) and B(t) satisfy the condi-
tions ∫ ∞

0

| Ψ(t)A(t)Ψ−1(t) | dt <∞,
∫ ∞
0

| B(t) | dt <∞.

Then, the equation (1.3) is Ψ− conditionally stable on R+.
Proof. It results from the above Theorem and Theorem 2, [5].
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