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Abstract. Block ciphers are usually based on one top-level scheme into
which we plug “round functions”. To analyze security, it is important
to study the intrinsic security provided by the top-level scheme from
the viewpoint of randomness: given a block cipher in which we replaced
the lower-level schemes by idealized oracles, we measure the security (in
terms of best advantage for a distinguisher) depending on the number
of rounds and the number of chosen plaintexts. We then extrapolate a
sufficient number of secure rounds given the regular bounds provided by
decorrelation theory.

This approach allows the comparison of several generalizations of the
Feistel schemes and others. In particular, we compare the randomness
provided by the schemes used by the AES candidates.

In addition we provide a general paradigm for analyzing the security pro-
vided by the interaction between the different levels of the block cipher
structure.

1 Introduction

From the attacker’s viewpoint, the block cipher used by a given user can be
considered as an instance of a random permutation over a message block space:
since he only knows how the secret key has been chosen, he only has probabilis-
tic information (in a Shannon sense) on the key and the permutation. In this
setting, security can be formalized by pseudorandomness: if there is no way to
distinguish the block cipher from an ideal random permutation, then we cannot
attack it. Pseudorandomness more precisely means that no oracle circuit with
polynomially many oracle gates can distinguish between the encryption function
and a truly random permutation.

A block cipher usually made from a top-level oracle circuit that we call
“scheme” (for instance the circuit of the Feistel scheme [4]) into which we plug
lower-level circuits that we call “primitives” like round functions, S-boxes, and so
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on. An attack may succeed if it “bypasses” some of the primitives by using some
intrinsic weaknesses of the scheme. For instance, differential cryptanalysis [1] can
investigate the differentials in which some S-boxes play no role at all. This idea
motivated this paper: we consider ideal models of the block ciphers by replac-
ing the primitives by truly random functions and study the pseudorandomness
provided by the scheme.

In this paper we investigate the randomness of several of the schemes used in
many block ciphers. The target schemes are the Feistel scheme, variants of the
Feistel scheme (the CAST256-like Feistel scheme, the MARS-like Feistel scheme,
and the RC6-like Feistel scheme), and the Square-like scheme used in Square,
Rijndael and Crypton.

The pseudorandomness of some general schemes were discussed in previous
papers e.g. [9,17]. In this paper we show how we can reach these kind of results
and extensions in an easier and more systematic way by using the decorrelation
theory introduced in [13,14,15].

In order to compare the schemes we study the threshold number of rounds
needed to achieve randomness, a theoretically sufficient number of secure rounds
against attacks that are limited to two chosen plaintexts or ciphertexts (which
plays a crucial role in the security against differential and linear cryptanalysis),
and the sufficient number of secure rounds, in practice, when we use a practical
decorrelation module (as in DFC [5]) for primitives instead of an ideal primitive.

2 Decorrelation Theory and Randomness of Iterated
Ciphers

2.1 Definitions and Basic Properties

The goal of decorrelation theory is to provide some kind of formal proof of
security on block ciphers. This section describes the essential definitions and
lemmas in decorrelation theory to prove the randomness of iterated ciphers.

Definition 1 (d-wise distribution matrix). Given a random function F 1

from a set M1 to a set M2 and an integer d, we define the “d-wise distribution
matrix” of F as the following Md

1 ×Md
2-matrix.

[F ]d(x1,...,xd),(y1,...,yd)
= Pr[F (x1) = y1, . . . , F (xd) = yd],

where xi ∈ M1 and yi ∈ M2 for i = 1, . . . , d

Definition 2 (d-wise decorrelation bias). Given a random function F from
a set M1 to a set M2, a canonical idealized version F ∗ of F , an integer d, and a

1 Throughout this paper, “a random function F” means a random variable F which
takes values in a set of functions, following regular probability theory. The same
holds for “a random permutation C”.
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distance D over the matrix space RMd
1×Md

2 , we define the “d-wise decorrelation
bias of F” as being the distance

Decd
D(F ) = D([F ]d, [F ∗]d).

In cases where the canonical idealized version F ∗ is not explicit, we will use
the notation DecF in order to make implicit that F ∗ is a uniformly distributed
random function, and DecP in order to make implicit that F ∗ is a uniformly
distributed random permutation.

For instance, when talking about a block cipher as a random permutation C,
the canonical idealized version C∗ is a random permutation with uniform distri-
bution. This canonical idealized version should be clear from the context.

Given two random functions F andG from M1 to M2 we call “a distinguisher
between F and G” any oracle Turing machine AO that can send M1-element
queries to the oracle O and receive M2-element responses, and which finally
outputs 0 or 1. In particular, the Turing machine can be probabilistic. In the
following, the number of queries to the oracle will be limited to d. The distri-
butions of F and G induce a distribution of AF and AG, thus we can compute
the probability that these probabilistic Turing machines output 1. We call the
function

AdvA(F,G) = Pr[AF = 1]− Pr[AG = 1].

the advantage AO achieves in distinguishing F from G.
We consider the classes Cldna (resp. Clda) of non adaptive (resp. adaptive)

distinguishers limited to d queries. Similarly, when F and G are permutations,
we also consider the extension Clds of distinguishers that are limited to d queries
but who can query either the function F/G or its inverse F−1/G−1. For any
class of distinguishers Cl we will denote

BestAdv
Cl

(F,G) = max
A∈Cl

AdvA(F,G).

Lemma 1 (Equivalence between best advantage and decorrelation dis-
tance [13,15]). For any random functions F and G and any integer d, we have

|||[F ]d − [G]d|||∞ = 2 · BestAdv
Cldna

(F,G)

||[F ]d − [G]d||a = 2 · BestAdv
Clda

(F,G)

||[F ]d − [G]d||s = 2 · BestAdv
Clds

(F,G)

where ||.||a and ||.||s are special matrix norms defined in [15] and |||.|||∞ is the
regular infinity associated matrix norm (the maximum of row sums).
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Lemma 2 (Multiplicativity). For any f and g, we denote by f ◦g their com-
position. For any independent random functions F1, . . . , Fr, any integer d and
any matrix norm we have

DecFd(F1 ◦ · · · ◦ Fr) ≤ DecFd(F1) · · ·DecFd(Fr).

For any independent random permutations C1, . . . , Cr we have

DecPd(C1 ◦ · · · ◦ Cr) ≤ DecPd(C1) · · ·DecPd(Cr).

Some known functions have quite small decorrelation biases called decorrela-
tion modules. An example of decorrelation module is the NUT-IV decorrelation
module.

Lemma 3 (NUT-IV decorrelation module with d = 2 [15]). For an
injection r from {0, 1}m to GF(q) and a surjection π from GF(q) to {0, 1}m, it
has been shown that the random function F , defined on {0, 1}m by

F (x) = π(r(K0) + r(K1)x)

for (K0,K1) uniformly distributed in {0, 1}2m, provides quite good decorrelation.
Namely,

DecF2
||.||a(F ) ≤ 2(q2.2−2m − 1).

For better implementation efficiency, we will only consider prime integers q in
this paper. The reader can refer to Noilhan [11] for implementation issues. For
instance, DFC uses q = 264 + 13 for which we obtain DecF2

||.||a(F ) ≤ 2−58.3

(see [7]).

2.2 Basic Tools

The randomness of a cipher constructed using random primitives such as decor-
relation modules can be proven using decorrelation theory. In order to deduce
an upper bound on the decorrelation bias of the cipher from an upper bound on
the decorrelation bias of these primitives, we use the following lemma.

Lemma 4 (Reduction to the randomness of ideal constructions [15]).
Let d be an integer, F1, . . . , Fr, C1, . . . , Cs be r+ s independent random function
oracles which are idealized by F ∗

1 , . . . , F
∗
r , C

∗
1 , . . . , C

∗
s respectively, where the Cj

and C∗
j are permutations. We let ΩF1,...,Fr,C1,...,Cs be an oracle that can access

the previous oracles and from each query x define an output G(x). We assume
that Ω is such that the number of queries to Fi is limited to some integer ai, and
the number of queries to Cj or C−1

j is limited to bj in total for any i = 1, . . . , r
and j = 1, . . . , s. We let G∗ be the function defined by ΩF∗

1 ,...,F∗
r ,C∗

1 ,...,C∗
s . We

have

Decd
||.||a(G) ≤

r∑
i=1

Decaid
||.||a(Fi) +

s∑
j=1

Decbjd

||.||s(Cj) + Decd
||.||a(G

∗)
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In addition, if the Ω construction defines a permutation G, assuming that com-
puting G−1 leads to the same ai, bj and ck limits, we have

Decd
||.||s(G) ≤

r∑
i=1

Decaid
||.||a(Fi) +

s∑
j=1

Decbjd

||.||s(Cj) + Decd
||.||s(G

∗).

Lemma 5 ([16]). Let d be an integer. Let F be a random function from a set
M1 to a set M2. We let X be the subset of Md

1 of all (x1, . . . , xd) with pairwise
different entries. We let F ∗ be a uniformly distributed random function from
M1 to M2. We know that for all x ∈ X and y ∈ Md

2 the value [F ∗]dx,y is the
constant p0 = (#M2)−d. We assume there exists a subset Y ⊆ Md

2 and two
positive real values ε1 and ε2 such that

– (#Y)p0 ≥ 1 − ε1
– ∀x ∈ X ∀y ∈ Y [F ]dx,y ≥ p0(1 − ε2).

This yields DecFd
||.||a(F ) ≤ 2ε1 + 2ε2.

This lemma intuitively means that if [F ]dx,y is close to [F ∗]dx,y for all x and almost
all y, then the decorrelation bias of F is small. We have a twin lemma for the
||.||s norm. Here, since we can query y as well, the approximation must hold for
all x and y.

Lemma 6 ([16]). Let d be an integer. Let C be a random permutation on a
set M. We let X be the subset of Md of all (x1, . . . , xd) with pairwise different
entries. We let F ∗ be a uniformly distributed random function on M. We let C∗

be a uniformly distributed random permutation on M. We have

– if [C]dx,y ≥ [C∗]dx,y(1 − ε) for all x and y in X
then DecPd

||.||s(F ) ≤ 2ε
– if [C]dx,y ≥ [F ∗]dx,y(1 − ε) for all x and y in X
then DecPd

||.||s(F ) ≤ 2ε+ 2d2(#M)−1.

2.3 Examples

First this section studies how many rounds are required for Luby-Rackoff’s ran-
domness assuming round functions to be random ones. This is related to the
“lack of randomness” provided by the upper-level design. The required numbers
of rounds for the Feistel scheme and some generalized Feistel schemes are shown
in [17, Section 3.2].

Hereafter we use the following notations. In denotes the set of all n-bit strings,
{0, 1}n. Hn denotes the set of all In �→ In functions and Pn denotes the set of
all such permutations. By x ∈U X we mean that x is drawn randomly and
uniformly from a finite set X .
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Lemma 7 (Luby-Rackoff 1986 [9]). Let (F ∗
1 , F

∗
2 , F

∗
3 , F

∗
4 ) ∈U

(
Hm

2

)4 be four
independent random functions. We have

DecFd
||.||a(Ψ(F ∗

1 , F
∗
2 , F

∗
3 )) ≤ 2d2 · 2−m

2

DecPd
||.||a(Ψ(F ∗

1 , F
∗
2 , F

∗
3 )) ≤ 2d2 · 2−m

2

DecPd
||.||s(Ψ(F ∗

1 , F
∗
2 , F

∗
3 , F

∗
4 )) ≤ 2d2 · 2−m

2

Here Ψ(F1, . . . , Fr) is the notation introduced by Luby and Rackoff in order to
denote a Feistel scheme where the i-th round function is Fi.2

This lemma is tight in the sense that 2 rounds are not enough for pseudoran-
domness and 3 rounds are not enough for super-pseudorandomness. Indeed, we
can make a simple distinguisher against a 2-round Feistel scheme with d = 2
queries with an advantage equal to 1−2−

m
2 by querying random (a, b) and (a, c)

plaintexts and checking that the right half difference is equal to b⊕ c. The same
holds for super-pseudorandomness with 3 rounds (see Patarin [12]): we can query
for the encryption of (a, b) and (a, b⊕ δ), obtain (x, y) and (x′, y′) respectively,
query for the decryption of (x, y⊕δ) and (x′, y′⊕δ), and check that the obtained
left halves are equal.

This lemma can be formally proven by using Lemma 5 and 6. From Lemma
2 and 4 this is generalized for a permutation on {0, 1}m consisting of r rounds
of Feistel transformations:

DecPd
||.||a(Ψ(F1, . . . , Fr)) ≤

(
2d2 · 2−m

2 + 3max
i

DecFd
||.||a(Fi)

)� r
3�

DecPd
||.||s(Ψ(F1, . . . , Fr)) ≤

(
2d2 · 2−m

2 + 4max
i

DecFd
||.||a(Fi)

)� r
4�

for any independent functions F1, . . . , Fr ∈ Hm
2
. This leads to the following

conclusions about the regular Feistel scheme with m = 128.

– The threshold number of rounds for achieving the security result is 3 for
pseudorandomness and 4 for super-pseudorandomness, when d � 232.

– The theoretical sufficient number of secure rounds for achieving the decor-
relation bias of 2−m is αm

m
2 −1−2 log2 d with α = 3 for pseudorandomness and

α = 4 for super-pseudorandomness, when d � 232. This leads to 9 and 12
rounds, respectively, for d = 2.

– When using the NUT-IV decorrelation module with d = 2, m = 128 and
q = 264 + 13 in each round (as for instance DFC), these numbers of rounds
provide decorrelation biases less than 2−m for the corresponding norms.

Here we used an arbitrary threshold of 2−m for the decorrelation bias used in
order to compare different schemes. Since 2−m yields a level of security given
by exhaustive search on m bits, we believe it is a relevant objective criterion for
comparing schemes. We also focused on d = 2 which leads to security against
differential and linear cryptanalysis.
2 In order to be consistent with further schemes, the first round here maps the left
half through F1 and add to the right half.
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f i

Fig. 1. CAST256-like Feistel Scheme

3 Several Cases

3.1 CAST256-like Feistel Scheme

CAST-256 is an AES candidate based on a generalized Feistel scheme called
“Type-1 transformation” by Zheng-Matsumoto-Imai [17] and denoted by Ψ1.
Formally, we define Ψ1 ∈ Hm as Ψ1()(x) = x and

Ψ1(f1, . . . , fr)(x1, . . . , xk) =
Ψ1(f2, . . . , fr)(f1(x1) + x2, x3, x4, . . . , xk, x1)

for any primitive set f1, . . . , fr ∈ Hm
k
. Here k is the number of branches and r

is the number of rounds.

Lemma 8 (Zheng-Matsumoto-Imai 1989 [17]). For independent and uni-
formly distributed random functions F ∗

1 , . . . , F
∗
2k−1 ∈U Hm

k
and an integer d, we

have
DecPd

||.||a(Ψ1(F
∗
1 , . . . , F

∗
2k−1)) ≤ 2(k − 1)d2 · 2−m

k

It can easily be shown that the number of rounds of 2k−1 for pseudorandomness
is actually minimal. For instance, if we take 2k − 2 rounds and d = 2, we
can submit two chosen plaintexts for which only the input of the rightmost
branch has changed. The input difference in this branch will always be equal
to the output difference in the second branch, which leads to a distinguisher of
advantage 1− 2−k.

We however notice that a number of rounds of k2 − k is not enough for
super-pseudorandomness. With k(k − 1) rounds, we can decrypt (y1, y2, . . . , yk)
and (y′1, y2, . . . , yk), obtain (x1, . . . , xk) and (x′1, . . . , x′k) respectively, and check
that x1 ⊕ x′1 = y1 ⊕ y′1. This actually shows that the inverse of the Ψ1 scheme
is not pseudorandom unless the number of rounds is very large. Actually, the
CAST256 cipher is a construction like

(
Ψ1(fr, . . . , f r

2+1)
)−1 ◦ Ψ1(f1, . . . , f r

2
).

We can show that the above attack generalizes to this scheme for r ≤ 4k − 6,
that r = 4k− 4 is enough for pseudorandomness, and that r = 4k− 2 is enough
for super-pseudorandomness.
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Proof (sketch). We use Lemma 5 for evaluating DecFd
||.||a.

For DecP||.||a we let Y be the set of all y = (y1, . . . , yd) where yi = (y1i , . . . , y
k
i )

such that yj
i �= yj

i′ for j > 1 and i < i′. We get ε1 = (k − 1)d(d−1)
2 2−

m
k . We then

consider the event in which the first entry after the (k−1)th round takes pairwise
different values for x1, . . . , xd. Upper bounding the probability when this event
occurs we get ε2 = (k−1)d(d−1)

2 2−
m
k . Thus DecFd

||.||a(F ) ≤ 2(k−1)d(d−1)2−
m
k .

Here, ε2 is evaluated as the number of unexpected equalities between two
outputs from a single circuit of depth k − 1 with k inputs and internal F ∗

j and
additions times the probability it occurs, which is at most the depth k− 1 times
2−

m
k .
Now to get DecP from DecF, from DecFd

||.||a(C
∗) ≤ d(d − 1)2−m and the

triangular inequality we have

DecPd
||.||a(F ) ≤ DecFd

||.||a(F ) + DecPd
||.||a(F

∗) ≤ DecFd
||.||a(F ) + d22−m.

We then notice that the obtained upper bound for DecFd
||.||a can be written

DecFd
||.||a(F ) ≤ Ad(d − 1)2−

m
k for some A ≥ 2. For d ≤ A2m−m

k we thus obtain

DecPd
||.||a(F ) ≤ Ad22−

m
k . For larger d, this bound is greater than A32m(2− 3

k )

which is greater than 8 since m ≥ k ≥ 2. Since DecPd
||.||a(F ) is always less than

2, the bound is thus still valid. ��

Thus the required number of rounds for the CAST256-like scheme is proven
to be 2k − 1, where k is the number of branches. That is, the required numbers
of rounds for the Feistel scheme and the CAST256-like scheme are 3 and 7,
respectively.

This leads to the following conclusions about the CAST256-like scheme with
k = 4 branches and m = 128.

– The threshold number of rounds is 7 for pseudorandomness when d � 216.
For super-pseudorandomness, this threshold is larger than 13.

– For d = 2, the theoretical sufficient number of secure rounds is 35 for pseu-
dorandomness.

– For the NUT-IV decorrelation module with d = 2, m = 128 and q = 232+15,
the sufficient number of rounds is 42 pseudorandomness.

3.2 MARS-like Feistel Scheme

Similarly, we define the MARS-like generalized Feistel scheme denoted by Ψ ′
1 ∈

Hm as Ψ ′
1()(x) = x and

Ψ ′
1(f1, . . . , fr)(x1, . . . , xk) =

Ψ ′
1(f2, . . . , fr)(f21 (x1) + x2, f

3
1 (x1) + x3, . . . , f

k
1 (x1) + xk, x1)

where fi = (f2i , . . . , f
k
i ), f2i , . . . , f

k
i ∈ Hm

k
.
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f i

Fig. 2. MARS-like Feistel Scheme

Lemma 9. For independent uniformly distributed random functions F ∗
i ∈U Hm

k

for i = 1, . . . , 2k and j = 2, . . . , k and an integer d, we have

DecPd
||.||a(Ψ

′
1(F

∗
1 , . . . , F

∗
k+1)) ≤ 2d2 · 2−m

k

DecPd
||.||s(Ψ

′
1(F

∗
1 , . . . , F

∗
2k)) ≤ 2d2 · 2−m

k

It can easily be shown that the number of rounds of k+1 for pseudorandomness
is actually minimal since a difference in the last input branch only remains
unchanged after k rounds. Similarly, for 2k − 1 rounds, we can merge the first
k− 1 branches and consider that we have a regular 3-round Feistel scheme, and
we can apply the same attack for proving it is not super-pseudorandom.

Proof (sketch). Using Lemma 5 we let Y be the set of all (y1, . . . , yd) such that
yk

i �= yk
j for i �= j. We get ε1 = d(d−1)

2 2−
m
k . We focus on the event that the first

output after k − 1 rounds leads to no collision. We get ε2 = d(d−1)
2 2−

m
k .

For DecPd
||.||s we use the same event. ��

This leads to the following conclusions about the MARS-like scheme with
k = 4 branches and m = 128.

– The threshold number of rounds is 5 for pseudorandomness and 8 for super-
pseudorandomness, when d� 216.

– For d = 2, the theoretical sufficient number of secure rounds is 25 for pseu-
dorandomness and 40 for super-pseudorandomness.

– For the NUT-IV decorrelation module with d = 2, m = 128 and q = 232+15,
the sufficient number of rounds is as for the ideal case.

3.3 RC6-like Feistel Scheme

The RC6 block cipher is designed to be secure by mixing operations that are
efficiently implemented on most modern processors.

One controversial additional operation is the data dependent rotation. Such
a scheme cannot provide pseudorandomness nor super-pseudorandomness.3 In-
deed, the attack in Gilbert et al. [6] exhibits an efficient polynomial time distin-
guisher.
3 As was mentioned by Joux during the third Advanced Encryption Standard work-
shop, although Iwata and Kurosawa had claimed the opposite two days before at the
FSE00 workshop [8].
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f fi i
1 2

Fig. 3. RC6′-like Feistel Scheme

However, we can consider RC6′, a transformation of RC6 WITHOUT the
data dependent rotations. The structure of RC6′ can be regarded as a gener-
alized Feistel scheme, which is similar to “Type-2 transformation” named by
Zheng-Matsumoto-Imai [17] assuming that primitives are independent random
functions. Formally, as the RC6′-like Feistel scheme Ψ2 ∈ Hm is defined for k
even and r a multiple of k

2 , by Ψ2()(x) = x and

Ψ2(f1, . . . , fr)(x1, . . . , xk) =
Ψ2(f k

2+1, . . . , fr)(x2, f2(x4) + x3, . . . , xk−2, f k
2
(xk) + xk−1, xk, f1(x2) + x1),

where f1, . . . , fr ∈ Hm
k
. We consider this as r rounds which are processed in

bunch of k
2 parallel rounds.

Lemma 10. For independent uniformly distributed random functions F ∗
1 , . . . ,

F ∗
k2 ∈U Hm

k
and an integer d, we have

DecPd
||.||a(Ψ2(F

∗
1 , . . . , F

∗
k
2 (k+1)

)) ≤ k2

2
d2 · 2−m

k

DecPd
||.||s(Ψ2(F

∗
1 , . . . , F

∗
k2 )) ≤ k2

2
d2 · 2−m

k

It can easily be shown that the number of rounds of k
2 (k+1) for pseudorandom-

ness is actually minimal. Tightness of the k2 bound for super-pseudorandomness
is still open. (We already know that it is tight for k = 2.)

Proof (sketch). Similarly, we use Lemma 9 for evaluating DecPd
||.||a. For Ψ2 we

let Y be the set of all y such that yj
i �= yj

i′ for odd j and i < i′. We get
ε1 = k

2 × d(d−1)
2 2−

m
k . We consider the event in which all even entries after the

(k − 1)th bunch of rounds takes pairwise different values for x1, . . . , xd. We get
ε2 = k

2 (k− 1)× d(d−1)
2 2−

m
k . Thus DecFd

||.||a(F ) ≤ k2

2 d(d− 1)2−
m
k . For DecPd

||.||s ,
we add k − 1 more bunch of rounds and study the probability that we get Y if
we invert them on y1, . . . , yd. The result comes from Lemma 6. ��

This leads to the following conclusions about the RC6′-like scheme with k = 4
branches and m = 128.

– The threshold number of rounds is 5 for pseudorandomness and between 5
and 8 for super-pseudorandomness, when d� 216.
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– For d = 2, the theoretical sufficient number of secure rounds is 25 for pseu-
dorandomness and between 25 and 40 for super-pseudorandomness.

– For the NUT-IV decorrelation module with d = 2, m = 128 and q = 232+15,
the sufficient number of rounds as the ideal case.

3.4 Square-like Scheme

In this paper we discuss only the Rijndael scheme. The pseudorandomness of
other Square-like schemes will be described in the full paper. Let us formalize
the Rijndael scheme on k2 values by

Σ(f1, . . . , fr)(x1, . . . , xk2) =

Σ(f2, . . . , fr)(MixCol(ShiftRow(f11 (x1), . . . , f
k2

1 (xk2 ))))

where fi = (f1i , . . . , f
k2

i ), f1i , . . . , f
k2

i ∈ H m

k2
, the ShiftRow transformation is

a fixed linear transformation on the rows of a k × k matrix which consists in
mixing them, and the MixCol transformation is a fixed linear transformation on
the columns [3].

Lemma 11. For independent uniformly distributed random functions F ∗
1 , . . . ,

F ∗
5 and an integer d, we have

DecPd
||.||a(Σ(F ∗

1 , . . . , F
∗
3 )) ≤ 2k2d2 · 2− m

k2

DecPd
||.||s(Σ(F ∗

1 , . . . , F
∗
5 )) ≤ 2k2d2 · 2− m

k2

Thus achieving decorrelation to the order d ≥ 1
k
√
2
2

m

2k2 does not seem possible

with this design. (For m = 128 and k = 4, this is d = 2
√

2.)
It can easily be shown that the number of rounds of 3 for pseudorandomness

is actually minimal. The tightness of the 5 bound depends on the instance of the
cipher.

Proof (sketch). We use Lemma 9 for evaluating DecPd
||.||a. We let Y be the set

of all y = (y1, . . . , yd) that take different values on all positions before the last
MixCol and ShiftRow transformations. We have ε1 = k2 d(d−1)

2 2−
m

k2 . We consider
the event that after two rounds we obtain different values on all positions. Pro-
vided that the MixCol transformation has good diffusion properties we obtain
ε2 = k2 d(d−1)

2 2−
m
k2 . ��

This leads to the following conclusions about the Rijndael scheme with k2 =
42 branches and m = 128.

– The threshold number of rounds is 3 for pseudorandomness and between 3
and 5 for super-pseudorandomness, when d < 3.

– For d = 2, the theoretical sufficient number of secure rounds is 384 for pseu-
dorandomness and between 384 and 640 for super-pseudorandomness.

– For the NUT-IV decorrelation module with d = 2, m = 128 and q = 28 + 1,
the bounds of decorrelation theory cannot guaranty any low decorrelation
bias for any number of rounds.
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Table 1. Randomness of several schemes (when d = 2, k = 4,m = 128)

Scheme Feistel CAST256-like MARS-like RC6′-like Rijndael
Threshold number
of rounds for p.r. 3 7 5 5 3

sufficient number
of rounds for p.r. (ideal) 9 35 25 25 384

sufficient number
of rounds for p.r. (NUT-IV) 9 42 25 25 ∞

Threshold number
of rounds for s.p.r. 4 ≥ 13 8 5–8 3–5

sufficient number
of rounds for s.p.r. (ideal) 12 40 25–40 384–640

sufficient number
of rounds for s.p.r. (NUT-IV) 12 40 25–40 ∞

Example Twofish, CAST-256 MARS Rijndael
DFC

Note: “p.r.” and “s.p.r.” mean pseudorandomness and super-pseudorandomness, re-
spectively.

4 Conclusion

We studied the randomness provided by several schemes used in block ciphers.
We focused on the schemes for AES candidates in particular (see Table 1). The
randomness so discovered is a good measure for evaluating the security from a
randomness viewpoint but the readers should take care to note that it doesn’t
show the actual security of a cipher based on one of the schemes. To study the
intrinsic security provided by the general schemes, we decomposed the ciphers
into a general scheme and internal primitives, ignoring the components that we
considered do not affect its randomness. We also assumed that internal primitives
are ideal random ones.

The results in Table 1 show that the regular Feistel scheme is the best
in that it requires the fewest number of rounds for pseudorandomness and
super-pseudorandomness. However, when comparing the randomness of several
schemes we should take account of the computational cost of random primitives.
For example, for the Feistel scheme we assume the random functions on {0, 1}64,
and for the CAST256-like4, MARS-like, and RC6-like schemes, we assume the
random functions on {0, 1}32, whose computational cost is much cheaper than
the former. Under the same assumption of the computational cost of random
functions on {0, 1}32, the MARS-like scheme is the best. Table 1 separates the
schemes according to the size of the internal random functions.

Our results show that the schemes that use random primitives with smaller
input/output sizes are less secure, which is not surprising because the random-
ness bias is larger in these cases. We should interpret these conclusions with
great care. Indeed, our results do not mean that Rijndael (or Serpent5) is not
4 Table 1 considers the Ψ1 structure only and not the Ψ−1

1 ◦ Ψ1 scheme on which
CAST256 is based. This latter scheme increases the threshold number of rounds for
p.r. to 12.

5 A preliminary study suggested that the Serpent scheme requires too many rounds
for randomness, because the size of primitives is too small (4 bits).
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secure, or less secure than regular Feistel schemes. Rather they mean that the
latter can benefit from stronger security arguments: we can prove that an ef-
ficient attack against — say Twofish — must use an unexpected property of
the round function, whereas an attack against Serpent may hold for any set of
(random) S-boxes.
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