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Abstract

Making a decision is often a matter of listing and comparing positive and negative
arguments. In such cases, the evaluation scale for decisions should be considered bipolar,
that is, negative and positive values should be explicitly distinguished. That is what is done,
for example, in Cumulative Prospect Theory. However, contrary to the latter framework
that presupposes genuine numerical assessments, human agents often decide on the basis of
an ordinal ranking of the pros and the cons, and by focusing on the most salient arguments.
In other terms, the decision process is qualitative as well as bipolar. In this article, based
on a bipolar extension of possibility theory, we define and axiomatically characterize several
decision rules tailored for the joint handling of positive and negative arguments in an ordinal
setting. The simplest rules can be viewed as extensions of the maximin and maximax
criteria to the bipolar case, and consequently suffer from poor decisive power. More decisive
rules that refine the former are also proposed. These refinements agree both with principles
of efficiency and with the spirit of order-of-magnitude reasoning, that prevails in qualitative
decision theory. The most refined decision rule uses leximin rankings of the pros and the
cons, and the ideas of counting arguments of equal strength and cancelling pros by cons. It
is shown to come down to a special case of Cumulative Prospect Theory, and to subsume
the “Take the Best” heuristic studied by cognitive psychologists.

1. Introduction

Not only personal experience, but also psychological experiments suggest that making a
decision is often a matter of listing and comparing the positive and negative features of
the alternatives (Cacioppo & Berntson, 1994; Osgood, Suci, & Tannenbaum, 1957; Slovic,
Finucane, Peters, & MacGregor, 2002). Individuals evaluate alternatives or objects by
considering their positive and negative aspects in parallel — for instance, when choosing a
movie, the presence of a good actress is a positive argument; a noisy theater or bad critiques
are negative arguments. Under this bipolar perspective, comparing two decisions amounts
to comparing two pairs of sets, that is the sets of pros and cons attached to one decision with
the sets of pros and cons attached to the other. Cumulative Prospect Theory (Tversky &
Kahneman, 1992) is an explicit attempt at accounting for positive and negative arguments
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in the numerical setting. It proposes to compute a “net predisposition” of a decision, as
the difference between two set functions (capacities) taking values on the positive real line,
the first one measuring the importance of the group of positive features, the second one
the importance of the group of negative features. More general numerical models, namely
bi-capacities (Grabisch & Labreuche, 2005) and bipolar capacities (Greco, Matarazzo, &
Slowinski, 2002) encompass more sophisticated situations where criteria are not independent
from each other. These numerical approaches to bipolar decision contrast with standard
decision theory, which does not account for the bipolarity phenomenon. Indeed, utility
functions are defined up to an increasing affine transformation, which does not preserve the
value 0.

However, cognitive psychologists have claimed that while arguments featured in a de-
cision process can be of different strengths, decision-makers are likely to consider these
degrees of strength at the ordinal level rather than at the cardinal level (Gigerenzer, Todd,
& the ABC group, 1999). Individuals appear to consider very few arguments (i.e., the most
salient ones) when making their choice, rather than to attempt an exact numerical compu-
tation of the merits of each decision (Brandstätter, Gigerenzer, & Hertwig, 2006). In sum,
cognitive psychologists have claimed that human decision processes are likely to be largely
qualitative as well as bipolar.

The last 10 years have also witnessed the emergence of qualitative decision theory in Ar-
tificial Intelligence (Doyle & Thomason, 1999). For instance, qualitative criteria like Wald’s
rule (Wald, 1950/1971) have been axiomatized along the line of decision theory (Brafman
& Tennenholtz, 2000) as well as variants or extensions thereof; see the survey of Dubois
and Fargier (2003). So-called conditional preference networks (Boutilier, Brafman, Domsh-
lak, Hoos, & Poole, 2004) have been introduced for an easier representation of preference
relations on multidimensional sets of alternatives, using local preference statements inter-
preted in the ceteris paribus style. This recent emergence of qualitative decision methods in
Artificial Intelligence is partly motivated by the traditional stress on qualitative representa-
tions in reasoning methods. It is also due to the fact that numerical data are not available
in many AI applications, for example because there is no point in requiring very precise
evaluations from the user (e.g., for recommender systems).

These models use preference relations which express statements like “decision a is bet-
ter than decision b for an agent.” However, these preference relations cannot deal with
bipolarity—more precisely, they cannot express the simple notion that people know what
is good and what is bad for them, and that these judgments are orthogonal to judgments
about what is “best” in a given situation. Sometimes, the best available choice can be
detrimental anyway—and yet, on other occasions, even the worst option is still somewhat
desirable. (Note that the “best” or the “worst” option can be the statu quo option, i.e., the
option of not making any active choice.) To fully capture these situations, it is necessary
to have an absolute landmark or reference point in the model, which expresses neutrality
and separates the positive values from the negative values. While emphasizing qualitative
approaches to decision and choice, the Artificial Intelligence literature in this area has some-
what neglected the fact that preference orderings are not enough to express the fact that
an option can be good or bad per se.

Other qualitative formalisms capable of representing preference exploit value scales that
include some reference points, e.g., fuzzy constraint satisfaction problems (Dubois, Fargier,
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& Prade, 1996) and possibilistic logic (Benferhat, Dubois, & Prade, 2001). There, the merit
of a decision is evaluated on different criteria by means of some kind of utility functions
mapping into a bounded ordinal scale whose bottom value expresses an unacceptable degree
of violation, and whose top value expresses the absence of a violation. Decisions are then
ranked according to the merit of their worst evaluation, following a pessimistic attitude.
But this kind of approach is not bipolar, as it only handles negative arguments: the absolute
landmark expresses unacceptability, not neutrality. Neutrality is only present by omission,
when no constraint is violated, and no decision exists that could be better than neutral.

Another kind of bipolarity is accounted for by Benferhat, Dubois, Kaci, and Prade
(2006), who distinguish between prioritized constraints on the one hand, and goals or desires
on the other hand. Constraints (expressed as logical formulas) are given a prominent role:
they guide the initial selection of the most tolerated decisions. Positive preferences (goals
and desires) are then taken in consideration to discriminate among this set of tolerated
decisions. As a consequence, positive evaluations (no matter how positive) can never trump
negative evaluations (no matter how negative).

Finally, the topic of argumentation in reasoning has gained considerable interest in
artificial intelligence in the last ten years or so. This is a natural way of coping with
inconsistency in knowledge bases (Besnard & Hunter, 2008). Argumentation is naturally
of a bipolar nature, since the construction of arguments consists in collecting reasons for
deriving a proposition and reasons for deriving its negation, before proceeding to arbitration
between arguments of various weights (Cayrol & Lagasquie-Schiex, 2005). However it is not
clear that the strength of an argument in inconsistency-tolerant reasoning should be defined
as a number. It sounds more natural to adopt a qualitative approach to the bipolar nature
of argument-based reasoning. Moreover AI-based decision procedures also naturally rely
on argumentation, so as to facilitate the process of explicating the merits of a decision
(Amgoud & Prade, 2004, 2006).

In the present paper,1 we aim at proposing a bipolar and qualitative setting, equipped
with a family of decision rules, in which the decision is based on the comparison of positive
and negative arguments whose strength can only be assessed in an ordinal fashion. We
insist on the assumption that positive and negative evaluations share a common scale; then
evaluations having one polarity can trump evaluations having the other polarity, e.g., a
strong positive (resp. negative) argument can win against a weaker negative (resp. positive)
argument. Indeed, this is precisely the idea behind the intuitive procedure of weighing
the pros against the cons, i.e., finding out the heavier side.This cannot be done without a
common importance scale. We also adopt a systematic approach, in which we formalize and
axiomatically characterize a set of procedures that are simultaneously ordinal and bipolar.

The paper is structured as follows. Section 2 introduces our framework for qualitative
bipolar choice. Then, Section 3 presents two basic qualitative bipolar decision rules. In
Section 4, we show how the basic properties of bipolar reasoning can be expressed axiomat-
ically, and, taking one step further, which axioms can capture the principles of qualitative
bipolar decision-making. Section 5 studies decision rules that are more decisive than the
basic rules of Section 3, without giving up their qualitative nature. Finally, Sections 6

1. This paper is an extended version of the work of Dubois and Fargier (2006). It analyzes additional
decision rules, and provides a full axiomatization of the cardinality based rule.
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and 7 relate some of our rules to a range of other approaches, and identify avenues of future
research. Proofs of properties and representation theorems are provided in the appendix.

2. A Framework for Qualitative Bipolar Decisions

A formal framework for qualitative bipolar multicriteria decision should consist of a finite
set D of potential decisions a, b, c, . . . ; a set X of criteria or arguments, viewed as attributes
ranging on a bipolar scale, say V ; and a totally ordered scale L expressing the relative
importance of criteria or groups of criteria. In this article, we use the simplest possible
bipolar scale V = {−, 0,+}, whose elements reflect negativity, neutrality, and positivity,
respectively. With this scale, any argument in X is either completely against, totally
irrelevant, or totally in favor of each decision in D. But for the focus on bipolarity, this
is a simpler approach than many multi-criteria decision-making frameworks where each
criterion x ∈ X is rated on a numerical scale, like multi-attribute utility theory. However,
qualitative evaluations are often closer to human capabilities than numerical ones. On this
basis it is useful to see how far we can go with a very rough modelling of preference in the
bipolar situation. Indeed, if a problem can be solved in a rigorous way without resorting to
numerical evaluations, more sophisticated techniques are not needed.

Let A = {x, x(a) �= 0} be the set of relevant arguments for decision a. It only contains
arguments that matter about a, either because they are good things or because they are
bad things. Now let A− = {x, x(a) = −} be the set of arguments against decision a, and
A+ = {x, x(a) = +} the set of arguments in favor of a. Considering the sets A− and A+

amounts to enumerating the pros and the cons of a. Thus, comparing decisions a and b
amounts to comparing the pairs of disjoint sets (A−, A+) and (B−, B+). Obviously, if
A− ⊆ B−, B+ ⊆ A+, then a should clearly be preferred to b in the wide sense. This is the
basic property bivariate monotony that any bipolar decision rule should obey.

For the sake of simplicity, we assume in the following that X is divided into two subsets.
X+ is the set of positive arguments taking their value in {0,+}; and X− is the set of
negative arguments taking their value in {−, 0}. In this simplified model, it is no longer
possible to have A− ∩ B+ �= ∅ nor A+ ∩ B− �= ∅. This, however, is done without loss of
generality and will not affect the validity of our results in the ordinal setting. Indeed, any
x whose evaluation may range in the full domain {−, 0,+} can be duplicated, leading to
an attribute x+ in X+ and an attribute x− in X−. Furthermore, this transformation can
generalize our framework to arguments that have both a positive and a negative side (e.g.,
eating chocolate).

The scale L measuring the importance of the arguments has top 1L (full importance)
and bottom 0L (no importance). Within a qualitative approach, L can be finite. As it
is common with set functions, we make the hypothesis that the importance of a group
of arguments only depends on the importance of the individual arguments in the group.
With this assumption of independence, levels of importance can be directly attached to
the elements of X by a function π : X �→ L, from which the importance of any group of
arguments can also be derived. π(x) = 0L means that the decision-maker is indifferent to
argument x; π(x) = 1L means that the argument possesses the highest level of attraction or
repulsion (according to whether it applies to a positive or negative argument). π is supposed
to be non trivial, that is, at least one x has a positive importance level.
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Example 1 (Luc’s Holidays). Luc will provide us with one of our running examples. He is
considering two holiday destinations, and has listed the pros and cons of each. Option [a]
has scenic landscapes (a strong pro), but it is very expensive, and the local airline has a
terrible reputation (two strong cons). Option [b] is in a non-democratic region, which Luc
considers a strong con. On the other hand, option [b] has a tennis court, a disco, and a
swimming pool. These are three pros, but not very decisive. They do matter, but not as
much as the other arguments. Note that Luc can only give a rough evaluation of how strong
a pro or a con is. He can only say that the gorgeous landscapes, the indecent price, the
terrible reputation of the airline company, and the non-democratic governance are four ar-
guments of comparable importance; and that the swimming pool, tennis and disco are three
arguments of comparable importance, but not as important as the previous ones. Formally,
let:

X+ = {landscape++, tennis+, pool+, disco+} be the subset of pros,
X− = {price−−, airline−−, governance−−} be the subset of cons.

Strong arguments are landscape++, price−−, airline−−, and governance−−. The arguments
tennis+, pool+, and disco+ are weaker. Thus, letting λ > β > 0L, we have:
π(lanscape++) = π(price−−) = π(airline−−) = π(governance−−) = λ
π(tennis+) = π(pool+) = π(disco+) = β.

Finally options [a] and [b] are described by the following sets of arguments:
Options [a] : A+ = {landscape++} A− = {airline−−, price−−}
Options [b] : B+ = {tennis+, pool+, disco+} B− = {governance−−}.

In sum, each attribute x ∈ X is Boolean (presence vs. absence), but has a polarity (its
presence is either good or bad, its absence is always neutral), and an importance π(x) ∈
L. Now, since we are interested in qualitative decision rules, our approach relies on two
modelling assumptions:

Qualitative Scale: In L, there is a big step between one level of merit and the next one.
Arguments are ranked in terms of the order of magnitude of their figure of importance
by means of the mapping π.

Focalization: The order of magnitude of the importance of a group A of arguments with
a prescribed polarity is the one of the most important arguments in the group. This
assumption suits the use of a qualitative scale, as it means that weak arguments are
negligible compared to stronger ones.

Technically, these assumptions suggest the use of the following measure of importance
of a set of arguments

OM(A) = max
x∈A

π(x).

In other terms, we simply use qualitative possibility measures (Lewis, 1973; Dubois,
1986) interpreted in term of order of magnitude of importance.

The next sections examine several decision rules relying on the use of OM(A), that can
be defined for balancing pros and cons. We will see that in the Luc example, some will
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prefer option [a], some will prefer option [b], some will regard the two options as equally
attractive, and some will find it impossible to make a decision. We begin in Section 3
with two basic rules that only take into account the most important arguments. The
corresponding ordering can be complete or partial, and is usually weakly discriminant.
This is due to the immediate use of the order-of-magnitude evaluations, that leads to very
rough decision rules. Refinements of these basic rules will be proposed in Section 5. They
apply elementary principles of simplification (discarding arguments that are relevant to both
decisions, sometimes cancelling opposite arguments of the same strength) before making a
choice. Most of these refinements thus obey a form of preferential independence.

3. Elementary Qualitative Bipolar Decision Rules

The two elementary decision rules in this Section differ by one basic feature: the first one
treats positive and negative arguments separately; the second one allows for a comparison
of the relative strengths of positive and negative arguments, one side possibly overriding
the other.

Each decision rule defines a preference relation. Since the relations presented here are
not necessarily complete nor transitive, let us recall some definitions, prior to presenting
these two decision rules.

Definition 1. For any relation 	, one can define:
− Its symmetric part: A ∼ B ⇔ A 	 B and B 	 A
− Its asymmetric part: A � B ⇔ A 	 B and not(B 	 A)
− An incomparability relation: A � B ⇔ not(A 	 B) and not(B 	 A)

	 is said to be quasi-transitive when � is transitive. The transitivity of 	 obviously
implies its quasi-transitivity, whether or not it is complete. The converse implication gen-
erally does not hold. When the relation is complete, � is empty. 	 is said to be a weak
order if and only if it is complete (and thus reflexive) and transitive.

In the following, we also use the notion of refinement of a relation:

Definition 2. 	′ refines 	 if and only if ∀A,B : A � B ⇒ A �′ B

The refined relation 	′ thus follows the strict preference of 	 when any, but can also
make a difference between decisions in case 	 cannot—that is, it may happen that A �′ B
while A ∼ B or A � B.

3.1 A Bipolar Qualitative Pareto Dominance Rule

The order of magnitude of a bipolar set A is no longer a unique value in L like in the unipolar
case, but a pair (OM(A+),OM(A−)). Pairs and more generally vectors of evaluations can
be easily compared to others using the classical principle of Pareto comparison. This yields
the following rule, which does not assume commensurateness between the evaluations of
positive and negative arguments:

Definition 3. A 	Pareto B ⇐⇒ OM(A+) ≥ OM(B+) and OM(A−) ≤ OM(B−).

What would �Pareto conclude on Luc’s example? Luc has a strong argument for option
[a], but only weak arguments for option [b] : OM(A+) > OM(B+). In parallel, Luc has
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strong arguments both against option [a] and against option [b]: OM(A−) = OM(B−). As
a consequence, A �Pareto B, and Luc will choose option [a].

Let us lay bare in more details the cases where A ∼Pareto B, A �Pareto B, A �Pareto B.

• A and B are indifferent if and only if their salient positive aspects as well as their
salient negative aspects share the same order of magnitude, i.e., OM(A+) = OM(B+)
and OM(A−) = OM(B−);

• B is negligible compared to A (A �Pareto B) in two cases: either OM(A+) ≥ OM(B+)
and OM(A−) < OM(B−), or OM(A+) > OM(B+) and OM(A−) ≤ OM(B−). The
case B �Pareto A can be described symmetrically.

• In other cases, there is a conflict and A is not comparable with B (A �Pareto B).

	Pareto is obviously reflexive and transitive. It collapses to Wald’s pessimistic ordering
(Wald, 1950/1971) when X = X−, and to its optimistic max-based counterpart when
X = X+. Note that 	Pareto is partial — and maybe too partial. For example, when a
decision has both pros and cons, 	Pareto concludes that it is incomparable to a decision
that has not any pro nor con. This can be quite counter-intuitive, as shown in the following
example.

Example 2 (Lucy and the Riviera estate). Being short of money, Lucy was planning to
spend the summer at home. But she is now offered to spend part of the summer at her
brother’s paradisiacal estate on the Riviera. The only inconvenient of this arrangement is
that Lucy finds her sister-in-law mildly annoying.

Formally, let: X = {estate++, inlaw−}, with π(estate++) > π(inlaw−).
The two options, going to the riviera or staying home are described as follows:

Option [a]: A+ = {estate++} and A− = {inlaw−}.
Option [b]: B+ = {} B− = {}

The common intuition about the Lucy case is that if really her sister-in-law is only
mildly annoying, and if the estate is so fantastic, Lucy is likely to prefer to go there rather
than stay at home. However, 	Pareto cannot predict this preference because it finds the two
options incomparable: OM(A+) > OM(B+), but OM(A−) > OM(B−).

Another drawback of 	Pareto becomes clear when the two decisions have the same order
of magnitude on one of the two dimensions:

Example 3 (Luka and the gyms). Luka is considering buying membership in one of two
gyms. Option [a] is very expensive, which is a strong con. Option [b] is also very expensive,
but it comes with the small bonus of having a squash court (this is a small bonus because
Luka is not sure yet he will want to use that court). On the other hand, option [b] also
has a drawback of medium importance, that is, it is inconveniently located. Location is not
as important as price in Luka’s mind, but it is still more important than the presence of a
squash court. Formally:
X = {squash+, location−−, price−−−} with
π(squash+) < π(location−−) < π(price−−−).
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The options are described as follows:
Option [a]: A+ = {squash+} A− = {location−−, price−−−},
Option [b]: B+ = ∅ B− = {price−−−}.

It follows from Definition 3 that Luka will prefer option [a], because OM(A+) > OM(B+)
whilst OM(A−) = OM(B−). This is intuitively unsatisfying, however, for we would expect
Luka to examine more carefully the fact that option [a] is inconveniently located, which
is a moderately strong con, rather than to decide on the basis of a very weak argument,
that is, the squash court. In other terms, 	Pareto does not completely obey the principle of
Focalization discussed in the introduction: An argument of a lower level (the squash court)
can determine a choice even though an argument of a higher level (the location) would have
pointed at the opposite direction.

This problem with 	Pareto is partly rooted in the fact that it does not capture the
assumption that positive and negative evaluations share a common scale. The fact that an
argument may be stronger than an argument of the opposite polarity is never taken into
account. We will now propose a more realistic rule that captures this assumption.

3.2 The Bipolar Possibility Relation

In this section, we propose a decision rule for comparing A and B that focuses on arguments
of maximal strength in A ∪ B, i.e., those at level δ = maxy∈A∪B π(y) = OM(A ∪ B). The
principle underlying this rule is simple: any argument against A (resp. against B) is an
argument pro B (resp. pro A), and conversely. The most supported decision is then
preferred.

Definition 4. A 	BiPoss B ⇐⇒ OM(A+ ∪ B−) ≥ OM(B+ ∪ A−).

This rule decides that A is at least as good as B iff, at the highest level of importance,
there are arguments in favor of A or arguments attacking B. Clearly A �BiPoss B iff, at
the highest level, there is at least a positive element for A or an element against B, but no
element against A and no element pro B. Obviously, 	BiPoss collapses to Wald’s pessimistic
ordering if X = X−, and to its optimistic counterpart when X = X+. In some sense, this
comparison yields the most straightforward way of generalizing possibility orderings to the
bipolar case.

Proposition 1. 	BiPoss is complete and quasi-transitive.

In other terms, the strict part of the relation 	BiPoss is transitive, but the associated
indifference relation is generally not: A ∼BiPoss B and B ∼BiPoss C do not imply A ∼BiPoss

C. For instance, let us denote a+ = OM(A+), a− = OM(A−), b+ = OM(B+), b− =
OM(B−), c+ = OM(C+), and c− = OM(C−). Assume max(a+, b−) = max(a−, b+) and
max(b+, c−) = max(b−, c+). Assume b+ = b− = 1L. Then the two equalities hold regardless
of the values a+, a−, c+, c−. So the values max(a+, c−) and max(a−, c+) can be anything.
Similarly A �BiPoss B and B ∼BiPoss C do not imply A �BiPoss C – counter examples can
be built setting c+ = c− = 1L.

In the case of Luc (Example 1), A = {landscape++, airline−−, price−−}, and B =
{governance−−, tennis+, swimming+, disco+}. From the perspective of 	BiPoss, both op-
tions are equivalently bad, since OM(A+ ∪ B−) = OM(B+ ∪ A−). Likewise, in the case of
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Luka (Example 3), 	BiPoss will regard the two gyms as equivalently bad because of their
high price. Now, in the case of Lucy (Example 2), remember that 	Pareto regarded options
[a] and [b] as incomparable, where A = {estate++, inlaws−} and B is the empty set. In
contrast, 	BiPoss will consider, in line with common intuition, that Lucy will prefer to go
to the Riviera estate, since OM(A+ ∪ B−) > OM(B+ ∪ A−).

	BiPoss is very different and arguably less dubious than 	Pareto. But, as shown by
Luc and Lukas’s examples, it is a very rough rule that may be not decisive enough. This
weakness of 	BiPoss is rooted in the usual drowning effect of possibility theory: when an
argument of high importance is attached to both decisions (e.g., the ludicrous price for the
two gyms), it will trump all arguments of lesser importance (e.g., the squash court, but
also the location).2 Variants of 	BiPoss will be presented in Section 5 that overcome this
difficulty. Nevertheless, the rule 	BiPoss alone has the merit of capturing the essence of
ordinal decision-making, as shown by the axiomatic study presented in the next section.

4. Axioms for Ordinal Comparison on a Bipolar Scale

In the previous sections, we have proposed a framework and some decision rules that intend
to capture the essence of qualitative bipolar decision-making. In the present section, we
adopt the opposite strategy, that is, we formalize natural properties that such a qualita-
tive bipolar preference relation should obey—and we show that our framework is not only
sound (it obeys the aforementioned properties) but also complete. Our main result is a
representation theorem stating that any preference relation that satisfies these properties
is equivalent to 	BiPoss.

Let 	 be an abstract preference relation on 2X , A 	 B meaning that decision A is
at least as good as decision B. As 	 compares sets of decisions, we call it a set-relation.
First of all, we introduce general properties (e.g., reflexivity or monotony) 	 should sensibly
obey to be a well-behaved bipolar set-relation, be it qualitative or not. Then, we introduce
axioms that characterize qualitative bipolar set-relations.

4.1 Axioms for Monotonic Bipolar Set-Relations

First of all, as for any preference relation, we shall assume minimal working conditions for
a sensible framework, such as reflexivity (R) and quasi-transitivity (QT). 3

The basic notion of bipolar reasoning over sets of arguments is the separation of X into
good and bad arguments. The first axiom thus states that any argument is either positive
or negative in the wide sense, i.e., either not worse or nor better worse than nothing:

Clarity of Arguments (CA) ∀x ∈ X, {x} 	 ∅ or ∅ 	 {x}.

2. The drowning effect is also at work in �Pareto, within the comparison of A+ and B+, or within the
comparison of A− and B−. Ceteris paribus, a destination with gorgeous landscapes plus a swimming
pool is not preferred to a destination with gorgeous landscapes and no pool.

3. Although weak, these assumptions are relaxed in some relational approaches to multicriteria evaluation,
where the aggregation process produces cycles in the preference relation. Nevertheless, in such methods,
even when the resulting relation is not transitive, the next step is to build a transitive approximation to
it.
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One can then partition X, differentiating positive, negative and null arguments:

X+ = {x, {x} � ∅}
X− = {x, ∅ � {x}}
X0 = {x, ∅ ∼ {x}}

Now, arguments to which the decision-maker is indifferent should obviously not affect
his or her preference. This is the meaning of the next axiom, which allows to forget about
X0 without loss of generality:

Status Quo Consistency (SQC)
If {x} ∼∅ then ∀A,B : A 	 B ⇔ A ∪ {x} 	 B ⇔ A 	 B ∪ {x} .

Let us now discuss the property of monotony. Monotony in the sense of inclusion
(A ⊆ B =⇒ B 	 A) can obviously not be obeyed as such in a bipolar framework. Indeed,
if B is a set of negative arguments, it generally holds that A � A ∪ B. We rather need ax-
ioms of monotony specific to positive and negative arguments—basically, the one of bipolar
capacities (Greco et al., 2002), expressed in a comparative way.

Positive Monotony ∀C,C ′ ⊆ X+,∀A,B : A 	 B ⇒ C ∪ A 	 B \ C ′.
Negative Monotony ∀C,C ′ ⊆ X−,∀A,B : A 	 B ⇒ C \ A 	 B ∪ C ′.

We will see that the bivariate monotony property is captured by this pair of axioms.
Now, another assumption is that only the positive side and the negative side of A and

B are to be taken into account when comparing them: if A is at least as good as B on both
the positive and the negative sides, then A is at least as good as B. This is expressed by
the axiom of weak unanimity.

Weak Unanimity ∀A,B,A+ 	 B+ and A− 	 B− ⇒ A 	 B.

The set-relations presented in the previous Section obviously satisfy weak unanimity.
Finally, we add a classical axiom of non triviality:

Non-Triviality: X+ � X−.

It leads to the following generalization of comparative capacities:

Definition 5. A relation on a power set 2X is a monotonic bipolar set-relation if and only
if it is reflexive, quasi-transitive and satisfies the properties CA, SQC, Non-Triviality, Weak
unanimity, Positive and Negative Monotony.

As expected, a monotonic bipolar set-relation safisfies the bivariate monotony property:
using the above conventions for positive and negative arguments in subsets A and B, if
B+ ⊆ A+ (resp. A− ⊆ B−), then using Clarity of Arguments and Positive (resp. Negative)
Monotony, it follows that A+ 	 B+ (resp. A− 	 B− ), hence A 	 B due to weak unanimity.

Proposition 2. 	BiPoss is a monotonic bipolar set-relation.
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In the present work, we are interested in set-relations that are entirely determined by
the strength and the polarity of the individual arguments in X. We denote by X = X ∪{0}
the set of individual arguments in X, adding an element 0 so as to keep track of the polarity
of the arguments. The basic information about arguments is captured by the restriction of
	 to X. Formally it is defined by:

x 	X y ⇐⇒ {x} 	{ y}
x 	X 0 ⇐⇒ {x} 	∅
0 	X x ⇐⇒ ∅ 	 {x}

From now on, we will call 	X the ground relation of 	.
In agreement with the existence of a totally ordered scale for weighting arguments, the

ground relation 	X is supposed to be a weak order. As a consequence, a minimal condition
of coherence for 	X is that a preference cannot be reversed when an argument in the pre-
ferred set (resp., the least preferred set) is replaced by an even better one (resp., a worse
one). This can be viewed as a condition of monotony with respect to 	X:

Monotony w.r.t. 	X or “X-monotony”
∀A,B, x, x′ such that A ∩ {x, x′} = ∅ and x′ 	X x:

A ∪ {x} � B ⇒ A ∪ {x′} � B
A ∪ {x} ∼ B ⇒ A ∪ {x′} 	 B
B � A ∪ {x′} ⇒ B � A ∪ {x}
B ∼ A ∪ {x′} ⇒ B 	 A ∪ {x}

This very natural axiom is richer than it seems. For example, it implies a property of
substitutability of equally strong arguments of the same polarity—a kind of property that
is often called “anonymity” in social choice and decision theory. A kindred property to
anonymity should also be required, for positive arguments to block negative arguments of
the same strength. This blocking effect should not depend on the arguments themselves,
but only on their position on the scale. Hence the axioms of positive and negative cancel-
lation:

Positive Cancellation(POSC)
∀x, z ∈ X+, y ∈ X−, {x, y} ∼∅ and {z, y} ∼ ∅ ⇒ x ∼X z.

Negative Cancellation (NEGC)
∀x, z ∈ X−, y ∈ X+, {x, y} ∼∅ and {z, y} ∼ ∅ ⇒ x ∼X z.

It makes sense to summarize the above requirements into a single axiom, that we call
Simple Grounding:

Simple Grounding
A bipolar set-relation 	 is said to be simply grounded if and only if 	X is a weak order, 	
is monotonic with respect to 	X and satisfies positive and negative cancellation.
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Proposition 3. The set-relation 	BiPoss is simply grounded.4

4.2 Axiomatizing Qualitative Bipolar Set-Relations

Our definition of a monotonic bipolar set-relation (Definition 5) is very general and en-
compasses numerous models, be they qualitative (e.g., the two rules in section 3) or not
(e.g., cumulative prospect theory in its full generality). As we are interested in preference
rules that derive from the principles of ordinal reasoning only, we now focus on axioms that
account for ordinality.

The ordinal comparison of sets has been extensively used, especially in Artificial Intelli-
gence. The basic principle in qualitative reasoning is Negligibility, which assumes that each
level of importance can be interpreted as an order of magnitude, much higher than the next
lower level.

Negligibility (NEG)
∀A,B,C ⊆ X+ : A � B and A � C ⇒ A � B ∪ C.

Axiom NEG has already been featured around in AI, directly under this form or through
more demanding versions. Let us mention the “union property” of nonmonotonic reasoning,
or Halpern’s (1997) “Qualitativeness” axioms (see Dubois & Fargier, 2004, for a discussion).
Lehmann (1996) introduced an axiom of negligibility inside Savage decision theory axiomat-
ics.

Qualitative reasoning generally also comes along with a notion of closeness preservation
(which does away with the notion of counting):

Closeness Preservation (CLO)
∀A,B,C ⊆ X+ : A ∼ B and A ∼ C ⇒ A ∼ B ∪ C
∀B,C ⊆ X+ : B 	 C ⇒ B ∼ B ∪ C

These axioms were proposed and justified in ordinal reasoning when only one scale needs
to be considered (namely, the positive one). But they are not sufficient when a negative
scale also needs to be taken into account. We need for example to express that if there is
a very bad consequence B, so bad that A � B and C � B, then whatever the negative
arguments in A and C, B is still worse than A ∪ C:

∀A,B,C : A � B and C � B ⇒ A ∪ C � B.

This property is meaningful for negative sets of arguments, and trivial on X+; hence it
can be introduced soundly in the framework.

Other cases where sets with both negative and positive elements are compared should
also be encompassed. For example, if A is so good that it can cope with globally negative
B and also win the comparison with C, then A ∪ B is still better than C:

∀A,B,C : A ∪ B � ∅ and A � C ⇒ A ∪ B � C.

4. Technically, �Pareto is also a monotonic bipolar simply grounded set-relation. But this result is quite
irrelevant, since this rule never compares the strengths of positive and negative arguments. In other
terms, it never happens that arguments of opposite polarities cancel each other, and the condition parts
of POSC and NEGC are thus never fulfilled.

396



Qualitative Bipolarity in Decision

And similarly, if a globally negative A (A ≺ ∅) is so bad that it is outperformed by C
(C � A) and cannot be enhanced by B (∅ � A ∪ B), then C � A ∪ B, i.e.:

∀A,B,C : ∅ � A ∪ B and C � A ⇒ C � A ∪ B.

All these properties can be expressed in the following axiom of global negligibility:

Global Negligibility (GNEG)
∀A,B,C,D : A � B and C � D ⇒ A ∪ C � B ∪ D

This is a classic property for purely positive qualitative scales—in that case, it is a
consequence of NEG and positive monotony. That is why it is usually not explicitly required
in positive frameworks. But when a framework with a positive and a negative scale is
needed, the NEG condition is no longer sufficient for getting GNEG. So, in order to keep
the property that is a foundation of pure order-of-magnitude reasoning, bipolar qualitative
frameworks must explicitly require GNEG.

A similar argument applies to axiom CLO. We must expicitly require a property that is
more general than that which is usual for unipolar qualitative scales:

Global Closeness Preservation (GCLO)
∀A,B,C,D : A 	 B and C 	 D ⇒ A ∪ C 	 B ∪ D

Proposition 4. The set-relation 	BiPoss satisfies GNEG and GCLO.

Propositions 2, 3 and 4 show that the bipolar possibility relation is a simply grounded
monotonic bipolar set-relation satisfying GNEG and GCLO. Applying the principles of
qualitative bipolar reasoning described by the previous axioms can also lead to many dif-
ferent but more or less intuitive qualititative rules, for instance the Pareto rule (see Dubois
and Fargier (2006) for a full characterization of this rule). But if we are looking for a simple
complete decision rule, these axioms provide a full characterization of the Biposs preference
relation. Note that the strict part of this rule is governed by axiom GNEG. The indifference
part includes pure case of indifference but also cases when one would expect incomparability
between decisions rather than indifference proper. This is the most debatable part of the
Biposs rule, that will be refined in the sequel.

Theorem 1. The following propositions are equivalent:

1. 	 is a simply grounded complete monotonic bipolar set-relation on 2X that satisfies
GNEG and GCLO.

2. There exists a mapping π : X �→ [0L, 1L] such that 	 ≡ 	BiPoss.

The detailed proof of Theorem 1 is provided in Appendix A. In short, we show that,
when 	 is complete and simply grounded, a ranking ≥ can be built that ranks the arguments
with respect to their strength. Within X+ and within X−, ≥ simply obeys the information
captured in 	X:

• ∀x, y ∈ X+ ∪ X0, x ≥ y ⇐⇒ x 	X y;
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• ∀x, y ∈ X− ∪ X0, x ≥ y ⇐⇒ x �X y.

The relative strength of elements of different signs is deduced from blocking effects. Indeed,
when {x, y} is preferred to the empty set, the positive argument must be stronger than
the negative one (and symmetrically). The two arguments are of equivalent strength when
none of them can win: {x, y} ∼∅ . Formally:

• ∀x ∈ X+, y ∈ X−, x ≥ y ⇐⇒ {x, y} 	 ∅;
• ∀x ∈ X+, y ∈ X−, y ≥ x ⇐⇒ ∅ 	 {x, y}.
The condition of simple grounding then ensures that ≥ is a weak order. It can thus be

encoded by a mapping π : X �→ [0L, 1L] such that π(x) = 0L ⇐⇒ x ∈ X0. Note that this
construction is valid for any simple grounded complete bipolar relation, and not only for
qualitative ones. The sequel of the proof then uses the axioms for closeness and negligibility
to show that 	≡	BiPoss.

4.3 The Principles of Efficiency and Preferential Independence

In summary, the previous Section has shown that 	BiPoss is a natural model of preferences
based on bipolar orders of magnitude. In particular, any rule in accordance with GNEG
has to follow the strict preference prescribed by �BiPoss.

Nonetheless, we have seen in Section 3.2 that 	BiPoss suffers from a drowning effect, as
usual in standard possibility theory. For instance, when B is included in A and even if all
their elements are positive, then A is not necessarily strictly preferred to B. This problem is
rooted into the fact that CLO concludes to indifference even in some cases where we would
like to appeal to the so-called “principle of efficiency” to make the decision. Just like the
monotony principle, this axiom is well known on positive sets. Its proper extension to the
bipolar framework obviously has one positive and one negative side:

Positive efficiency B ⊆ A and A \ B � ∅ ⇒ A � B

Negative efficiency B ⊆ A and A \ B ≺ ∅ ⇒ A ≺ B

The set-relations 	BiPoss and 	Pareto also fail to obey the classical condition of preferen-
tial independence, also called the principle of additivity. This condition simply states that
arguments present in both A and B should not influence the decision:

Preferential Independence: ∀A,B,C, (A ∪ B) ∩ C = ∅ : A 	 B ⇐⇒ A ∪ C 	 B ∪ C

This axiom is well known in uncertain reasoning, as one of the fundamental axioms of
comparative probabilities (see Fishburn, 1986, for a survey). Note that it implies the above
conditions of efficiency (provided that completeness holds).

Except in very special cases where all arguments are of different levels of importance
(when 	X is a linear order), these new axioms are incompatible with axioms of ordinality
when completeness or transitivity are enforced. It is already true in the purely positive
case, i.e. when X− is empty (Fargier & Sabbadin, 2005). But this impossibility result is
not insuperable, as shown in the next Section.
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5. Refining the Basic Order-of-Magnitude Comparison

In order to overcome the lack of decisiveness of 	BiPoss we can propose comparison principles
that refine it, that is, more decisive set-relations 	 that are still compatible with 	BiPoss,
such that A �BiPoss B ⇒ A � B. In the following, we shall not consider refining 	Pareto

because of its important drawbacks.

5.1 The Implicative Bipolar Decision Rule

The implicative decision rule (Dubois & Fargier, 2005) follows the basic focalization principle
of 	BiPoss: When comparing A and B, it focuses on arguments of maximal strength OM(A∪
B) = maxx∈A∪B π(x) in A∪B. It adds to this principle the following very simple existential
principle: A is at least as good as B iff, at level s the existence of arguments in favor of
B is counterbalanced by the existence of arguments in favor of A, and the existence of
arguments against A is counterbalanced by the existence of arguments against B. Formally,
the implicative bipolar rule can be described as follows:

Definition 6. Let δ = maxx∈A∪B π(x);

A 	Impl B ⇐⇒ and
OM(B+) = δ =⇒ OM(A+) = δ
OM(A−) = δ =⇒ OM(B−) = δ

Let us go back to the examples of Luc, Lucy, and Luka. In the Luc case (Example 1),
where 	BiPoss concluded to indifference, 	Impl will rather select Option [a], because there
are important arguments against both decisions, whilst only Option [a] is supported by
an important pro (there is no important pro supporting option [b]). In the Lucy case
(Example 2), 	Impl will follow the strict preference of 	BiPoss and send Lucy to the Riviera.
Finally, in the Luka case (Example 3), where the highest level of argument importance
features only one con and no pro, on both sides, 	Impl will opine with 	BiPoss and conclude
to indifference.

Let us lay bare the cases where A 	Impl B. Once again, let us denote a+ = OM(A+),
a− = OM(A−), b+ = OM(B+), b− = OM(B−). By definition, A 	Impl B in any of the four
following situations:

1. a+ = b+ = a− = b−;

2. a+ = b+ ≥ max(a−, b−) > min(a−, b−);

3. a− = b− ≥ max(a+, b+) > min(a+, b+);

4. max(a+, b−) > max(a−, b+).

We thus get the following decomposition of the 	Impl rule:

Proposition 5.

• A ∼Impl B ⇐⇒ either a+ = b+ = a− = b−, or a+ = b+ > max(a−, b−), or yet
a− = b− > max(a+, b+).

• A �Impl B ⇐⇒ either a+ = a− > max(b−, b+), or b+ = b− > max(a−, a+).
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• A �Impl B ⇐⇒ either max(a+, b−) > max(a−, b+), or a+ = a− = b− > b+, or yet
b+ = b− = a+ > a−.

It is then easy to check that 	Impl is a bipolar monotonic set-relation. Like 	BiPoss,
when there are positive arguments only, the set-relation 	Impl collapses to the max rule. It
also obeys the principle of weak unanimity. Moreover:

Proposition 6. The set-relation 	Impl is transitive.

Since max(a+, b−) > max(a−, b+), i.e., A �Biposs B, is one of the conditions for A �Impl

B, it obviously follows that:

Proposition 7. Relation 	Impl is a refinement of 	BiPoss.

Finally, the situation of incomparability A �Impl B arises in two cases only, when
a+ = a− > max(b−, b+), or in the symmetric case b+ = b− > max(a−, a+). In other terms,
incomparability occurs when one of the two sets displays an internal contradiction at the
highest level, while the arguments in the other set are too weak to matter. In particular,
a+ = a− > 0L if and only if A � ∅. For instance, a dangerous travel in an exceptional, and
mysterious part of a far tropical forest displays such an internal conflict, and I do not know
whether I prefer to stay at home or not. Such a conflict appears also in Luc’s first option
(which is very attractive but high priced). On the other hand, considering a non conflicting
(and non-empty set) A, either OM(A+) > OM(A−) and then A �Impl ∅ (well, the travel
is reasonably dangerous, so I prefer to go), or OM(A−) > OM(A+) and then ∅ �Impl A
(there is a war near the border and I prefer to stay at home); in these two latter cases, the
Pareto rule would have concluded to an incomparability. The range of incompleteness of
	Impl is thus very different from the one of 	Pareto, which does not account for any notion
of internal conflict.

The 	Impl rule is very interesting from a theoretic descriptive point of view, both because
of the way it handles the conflict, and because of the fact that it refines 	BiPoss. However,
	Impl is not decisive enough to fully overcome the drowning effect: only the most salient
arguments are taken into account. For instance, a very expensive hotel without swimming
pool is undistinguishable from a very expensive hotel that does include a swimming pool.

Even if it is more decisive than 	BiPoss the 	Impl rule does not satisfy Preferential
Independence: like the previous rules, it collapses with Wald’s criterion (resp., the max
rule) on the negative (resp., positive) sub-scale X− (resp., X+), and can thus suffer from
the drowning effect. To solve this problem, we now leave this family of set-relations and
focus on a set of refinements that do satisfy Preferential Independence, and are thus efficient
both positively and negatively.

5.2 Efficient Refinements of 	BiPoss

The following so-called “Discri” rule adds the principle of preferential independence to the
ones proposed by 	BiPoss, cancelling the elements that appear in both sets before applying
the 	BiPoss rule:

Definition 7. A 	Discri B ⇐⇒ A \ B 	BiPoss B \ A.
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Note that the simplification of options A and B (by cancellation of their common as-
pects) is not inconsistent with the focalization assumption (i.e., the importance of a group
of arguments is that of the most important argument in the group). Rather, focalization
applies once the options have been simplified so as to delete arguments that, because they
are common to both options, do not contribute to making a difference between them.

The Luka case (Example 3) is a typical example of the way 	Discri outperforms 	BiPoss.
In that case, A+ = {squash+}, A− = {location−−, price−−−}, B+ is empty, and B− =
{price−−−}. Recall that 	BiPoss concludes to indifference between the two options because
of the common strong cons. However, after cancelling away the price−−− argument that is
present in both options, 	Discri will choose B, which no longer has any pros nor cons, over
A which is now described by a moderately strong con and a weak pro. On the Luc and
Lucy cases (Examples 1 and 2), the two options do not feature any common argument, and
	Discri will therefore share the preferences of 	BiPoss (indifference in the Luc case, going to
the Riviera in the Lucy case).

	Discri is complete and quasi-transitive (its strict part, �Discri is transitive but its sym-
metric part is not necessarily transitive). Unsurprisingly, when X = X+, 	Discri does not
collapse with the max rule, but rather with the discrimax procedure (Brewka, 1989; Dubois
& Fargier, 2004), that is, the comparison between OM(A \ B) and OM(B \ A).

As it has already been noted, 	Discri simply cancels any argument appearing in both A
and B. One could further accept the cancellation of any positive (resp. negative) argument
in A by another positive (resp. negative) argument in B, as long as these two arguments
share the same order of magnitude. This yields the following 	BiLexi rule (and, later on, the
	Lexi rule), which is based on a levelwise comparison by cardinality. The arguments in A
and B are scanned top down, until a level is reached such that the numbers of positive and
negative arguments pertaining to the two alternatives are different; then, the set with the
least number of negative arguments and the greatest number of positive ones is preferred.
Note that it is perfectly legitimate for a qualitative decision rule to count arguments of the
same strength. This simply means that one argument on one side cancels one argument
of the same strength on the other side. And this is what people seem to do. What must
remain qualitative is the scale expressing the importance of the arguments on which the
decision is based; but it would be unreasonable to consider that the number of arguments
at any given importance level is not, indeed, a number, that is, a natural integer.

Let us first define the λ-section of a set A of arguments:

Definition 8. For any level λ ∈ L:
Aλ = {x ∈ A,π(x) = λ} is the λ-section of A.
A+

λ = Aλ ∩ X+ (resp. A−
λ = Aλ ∩ X− ) is its positive (resp. negative) λ-section.

Now, a lexicographic two-sided partial ordering (called Levelwise Bivariate Tallying by
Bonnefon et al.(in press)) can be introduced:

Definition 9.
A 	BiLexi B ⇐⇒ |A+

δ∗ | ≥ |B+
δ∗ | and |A−

δ∗ | ≤ |B−
δ∗ |,

where δ∗ = Argmax{λ : |A+
λ | �= |B+

λ | or |A−
λ | �= |B−

λ |}.
It is easy to show that 	BiLexi is reflexive, transitive, but not complete. Indeed, if at

the decisive level (δ∗) one of the set wins on the positive side and the other set wins on the
negative side, a conflict is revealed and the procedure concludes to an incomparability.
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The 	BiLexi rule is well-behaved with respect to the Lucy and Luka examples. Lucy will
go to the Riviera, and Luka will chose the best located gym. In the Luka case, {price−−−}
is preferred to {price−−−, location−−, squash+}: Once the price argument featured in both
options is cancelled away, {location−−, squash+} and its moderately strong con is judged as
worse than ∅. In the Luc story, the difficulty of the dilemma is clearly pointed out by the
rule. Remember that option [a] involves three arguments at the highest level of importance,
landscape++, airline−−, and price−−, whilst option [b] involves only one, governance−−.
Since |{governance−−}| < |{airline−−, price−−}| while |{landscape++}| > |∅|, 	BiLexi con-
cludes to incomparability, reflecting the difficulty of the decision.5 More generally, the
	BiLexi rule concludes to incomparability if and only if there is a conflict between the posi-
tive side and the negative side at the decisive level. From a descriptive point of view, this
range of incomparability is not necessarily a shortcoming of 	BiLexi.

Now, if one can assume a form of compensation between positive and negative arguments
of the same level within a given option, the following refinement of 	BiLexi can be obtained,
that will take care of complex cases such as Luc’s:

Definition 10.

A 	Lexi B ⇐⇒ ∃λ ∈ L \ 0L such that
{ ∀γ > λ, |A+

γ | −| A−
γ | = |B+

γ | − |B−
γ |

and |A+
λ | −| A−

λ | > |B+
λ | − |B−

λ |.
Let us look one more time at Luc’s dilemma. One of the strong pros of Option [a] is

cancelled by one of its strong cons, and they are discarded. What remains is one strong con
for each option: no option wins at this level. Therefore, the procedure then examines the
next lower importance level. At this level, there are three weak pros and no con for option
[b], and neither pro nor con for option [a]: Option [b] wins—and this is the first time in
this article that a decision rule yields a strict preference on the Luc case. On the Lucy and
Luka examples, 	Lexi breaks the ties in 	BiPoss just as 	BiLexi and 	Discri did: Lucy will go
to the riviera, and Luka will chose the best located gym.

The three rules proposed in this Section obviously define monotonic bipolar set-relations.
Each of them refines 	BiPoss and satisfies Preferential Independence. They can be ranked
from the least to the most decisive (�Lexi), which is moreover complete and transitive.

Proposition 8. A �BiPoss B ⇒ A �Discri B ⇒ A �BiLexi B ⇒ A �Lexi B

Both decision rules �BiLexi and �Lexi satisfy a strong form of unanimity, namely, if
A+ 	 B+ and A− 	 B− and moreover at least one of A− � B− or A+ � B+ holds,
then A � B follows. However this kind of strong unanimity alone is not strong enough to
achieve good and sound discrimination among options (for instance, it is the key-feature
of 	Pareto). In fact, �BiLexi and �Lexi satisfy much stronger efficiency properties, since
A ∼BiLexi B only if A and B have the same number of positive and negative arguments
at each level of importance, and A ∼Lexi B only if A and B have the same number of
additional arguments of the same polarity at each level of importance after cancellation of
equally important opposite arguments inside each option.

5. We take this opportunity to insist on the fact that incomparability should not be confused with indif-
ference, and signals a more complex situation. In situations of incomparability, the decision-maker is
perplex because not only does no alternative look better than the other, but choosing at random would
not be a satisfactory way out, because any choice leads to some reason to regret. In case of indifference,
both alternatives are equally attractive (or repulsive), and a random choice makes sense.

402



Qualitative Bipolarity in Decision

Notice that the restriction of both 	BiLexi and 	Lexi on X+ amounts to the leximax
preference relation (Deschamps & Gevers, 1978). We can thus use the classical encoding of
the leximax (unipolar) procedure by a sum in the finite case (Moulin, 1988). A capacity is
a set-function monotonic under inclusion. It is then easy to show that:

Proposition 9. There exist two capacities σ+ on 2X+
and σ− on 2X−

such that:

A 	Lexi B ⇔ σ+(A+) − σ−(A−) ≥ σ+(B+) − σ−(B−)

A 	BiLexi B ⇔ and
{

σ+(A+) ≥ σ−(B+)
σ+(B−) ≥ σ−(A−)

For example, denoting λ1 = 0L < λ2 < · · · < λl = 1L the l elements of L, we can use
the (integer-valued) capacity:

σ+(A+) =
∑
λi∈L

|A +λ | · |X|i.

This set-function is said to be a big-stepped capacity because |X|i >
∑

j<i |X|j (see Dubois
& Fargier, 2004). We can similarly use a similar big-stepped capacity to represent the
importance of sets of negative arguments:

σ−(A−) =
∑
λi∈L

|A−
λ | · |X|i.

This proposition means that the 	Lexi and 	BiLexi rankings are particular cases (using
big-stepped probabilities) of the Cumulative Prospect Theory decision rule (Tversky &
Kahneman, 1992). See Section 6 for further discussion.

In summary, 	Lexi complies with the spirit of qualitative bipolar reasoning while being
efficient. In the meantime, it has the advantages of numerical measures (transitivity and
representability by a pair of functions). Finally, in order to make a full case for the attractive
	Lexi, we will show that 	Lexi is the only rule that at the same time (i) refines 	BiPoss,
(ii) is a weak order, and (iii) satisfies the principle of preferential independence without
introducing any bias in the order on X.

Definition 11. A refinement 	′ of a monotonic bipolar set relation 	 is unbiased if it
preserves the ground relation of the latter: 	′

X
≡ 	X.

In order to prove our claim, let us first establish the following proposition that applies to
any transitive relation satisfying preferential independence (note that completeness is not
required). This proposition establishes a principle of anonymity, according to which two
equivalent subsets are interchangeable provided that they do not overlap the other sets of
arguments:

Proposition 10. Let 	 be a transitive monotonic bipolar set-relation that satisfies prefer-
ential independence. Then for any A,B,C,D such that A ∩ (C ∪ D) = ∅ and C ∼ D:

• A ∪ C 	 B ⇐⇒ A ∪ D 	 B;

• B 	 A ∪ C ⇐⇒ B 	 A ∪ D.
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A direct consequence of this property it that a set of arguments that cancel each other
can be added to another set without changing the preferences involving the latter (just let
D ∼ ∅):
Corollary 1. Let 	 be a transitive monotonic bipolar set-relation that satisfies preferential
independence. Then for any A,B,C such that A ∩ C = ∅, C ∼ ∅,

• A 	 B ⇐⇒ A ∪ C 	 B;

• B 	 A ⇐⇒ B 	 A ∪ C.

Another noteworthy consequence of Proposition 10 is an extended principle of preferen-
tial independence:

Corollary 2. Let 	 be a transitive monotonic bipolar set-relation that satisfies preferential
independence. Then for any A,B,C,D such that (A ∪ B) ∩ (C ∪ D) = ∅ and C ∼ D:

A 	 B ⇐⇒ A ∪ C 	 B ∪ D

Finally, Proposition 10 allows to show that6:

Corollary 3. Let 	 be a transitive monotonic bipolar set-relation that satisfies preferential
independence. Then for any A,B ⊆ X, x, y ∈ X such that x /∈ A, y /∈ B, {x} ∼{ y}:

A 	 B ⇐⇒ A ∪ {x} 	 B ∪ {y}
The three above results are instrumental when proving the third representation result

of the paper:

Theorem 2. Let 	 be a monotonic bipolar set-relation and π be an order-of-magnitude
distribution over the elements of X. The following propositions are equivalent:

1. 	 is complete, transitive, satisfies preferential independence and is an unbiased re-
finement of 	BiPoss;

2. 	 ≡ 	Lexi.

This theorem concludes our argumentation in favor of 	Lexi, which is shown to be the
only rule to satisfy the natural principles of order-of-magnitude reasoning while being deci-
sive and practical (e.g., completeness, transitivity, representability by a pair of functions).

6. Related Works

In this section, we relate our decision rules and our general approach to several traditions
of research, in Cognitive Psychology as well as in Artificial Intelligence.

An interesting connection can be made between our decision rules and the Take the
Best heuristic that has been extensively studied by psychologists since its introduction by

6. Note that, in Corollary 3, neither condition {x} ∩ B = ∅ nor condition {y} ∩ A = ∅ are required; this
is the main difference with Corollary 2; on the other hand, Corollary 3 is restricted to the addition of
singletons.
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Gigerenzer and Goldstein (1996). Take the Best is a so-called “fast and frugal heuristic”
for comparing two objects based on their values in a series of binary cues. It is fast and
frugal because it focuses on a limited subset of the available information in order to make a
decision; and it has heuristic value because it shows reasonable accuracy as compared to less
frugal comparison rules (see Gigerenzer et al., 1999; Katsikopoulos & Martignon, 2006, for
simulations and empirical tests). As a consequence, evolutionary psychologists have argued
that Take the Best is an adapted strategy for the kind of binary cue-based comparison we
are investigating.

Take the Best requires that all arguments under consideration have different orders of
magnitude, so that they can be ranked lexicographically: there does not exist x, y such
that π(x) = π(y). Furthermore, each argument is considered to generate its polar opposite:
if the pro x+ is attached to an option [a], then the con x− such that π(x−) = π(x+)
is automatically attached to all options that do not feature x+ (and reciprocally). Then
applying Take the Best amounts to scanning the arguments top-down, starting from the
most important, and to stop as soon as an argument is found that favors one option but
not the other. Interestingly, when applied to such linearly ranked arguments, the 	Discri,
	BiLexi, and 	Lexi rules coincide with the Take the Best heuristic. But the new decision
rules proposed here are able to account for more choice situations than the Take the Best
heuristic—e.g., several criteria can share the same degree of importance. In this sense, they
are natural extensions of the Take the Best qualitative rule advocated by psychologists.

Originally a descriptive model of risky decisions, Cumulative Prospect Theory (Tversky
& Kahneman, 1992) provides another psychological account of decisions involving positive
and negative arguments. Contrary to the Take the Best approach, it is oriented towards
the quantitative evaluation of decisions. The key notions of Cumulative Prospect Theory
are that individuals assess outcomes relatively to some reference point, rather than abso-
lutely; that they are more concerned with losses than with gains, ceteris paribus; and that
individuals overweight extreme outcomes that occur with a small probability.

More technically, Cumulative Prospect Theory assumes that the reasons supporting a
decision and the reasons against it can be measured by means of two capacities σ+ and
σ−; σ+ reflects the importance of the group of positive arguments, σ− the importance of
the group of negative arguments. The higher σ+, the more convincing the set of positive
arguments; and conversely, the higher σ−, the more deterring the set of negative argu-
ments. Furthermore, Cumulative Prospect Theory assumes that it is possible to map these
evaluations to a so-called “net predisposition” score, expressed on a single scale:

∀A ⊆ X,NP(A) = σ+(A+) − σ−(A−),

where A+ = A ∩ X+, A− = A ∩ X−. Alternatives are then ranked according to this net
predisposition: A 	NP B ⇐⇒ σ+(A+) − σ−(A−) ≥ σ+(B+) − σ−(B−). Proposition 9
(Section 5) actually shows that 	Lexi is a particular case of this rule (using big-stepped
capacities). Interestingly, the 	BiPoss rule is not foreign to the comparison of net predispo-
sitions. More precisely, it can be viewed as the ordinal counterpart to net predisposition
comparison. Let us first write A 	NP B as σ+(A+) + σ−(B−) ≥ σ+(B+) + σ−(A−). Now,
it is immediate that changing + into max, and changing σ+ and σ− in this inequality into
possibility measures, yields the 	BiPoss rule.
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Cumulative Prospect Theory and its variants assume some kind of independence be-
tween X+ and X−, but this assumption does not always hold. Bi-capacities (Grabisch &
Labreuche, 2002, 2005) were introduced to handle such non-separable bipolar preferences:
a measure σ is defined on Q(X) := {(U, V ) ∈ 2X , U ∩ V = ∅}, and increases (resp., de-
creases) with the addition of elements in U (resp., in V )7. Bi-capacities originally stemmed
from bi-cooperative games (Bilbao, Fernandez, Jiménez Losada, & Lebrón, 2000), where
players are divided into two groups, the “pros” and the “cons”: a player x is sometimes
a pro, sometimes a con, but cannot be both simultaneously. In the context of bipolar
decision, we typically set U = A+ and V = A− and measure the attractivity of A by
σ(A+, A−). The net predisposition of Cumulative Prospect Theory is recovered by letting
σ(A+, A−) = σ+(A+) − σ−(A−) = NP(A).

Since the comparison of net predispositions (and, more generally, bi-capacities or bi-
cooperative games) systematically provides a complete and transitive preference, it can fail
to capture a large range of decision-making attitudes: contrasting affects make decision
difficult, so why should the comparison of objects having bipolar evaluations systematically
yield a complete relation? It might imply some incompatibilities. That is why bi-capacities
were generalized by means of bipolar capacities (Greco et al., 2002). The idea underlying
bipolar capacities is to use two measures, a measure of positiveness (that increases with
the addition of positive arguments and the deletion of negative arguments) and a measure
of negativeness (that increases with the addition of negative arguments and the deletion
of positive arguments), but not to combine them. In other terms, a bipolar capacity σ
can be equivalently defined by a pair of bi-capacites σ+ and σ−, namely by: σ(A) =
(σ+(A+, A−), σ−(A−, A+)). Then A is preferred to B with respect to σ if and only if A
is preferred to B with respect to both σ+ and σ−— that is, according to the sole Pareto
principle. This allows for the representation of conflicting evaluations and leads to a partial
order.

Our approach provides clear qualitative counterparts of Cumulative Prospect Theory,
bi-capacities, and bipolar capacities only to a certain extent. Indeed, 	Lexi belongs to
the Cumulative Prospect Theory family, and can thus be represented by a bi-capacity, or
more generally a bipolar capacity. In contrast, 	Pareto obviously belongs to the family of
bipolar capacities. But rules 	BiPoss, 	Discri, 	BiLexi and 	Impl are not in the spirit of
bi-capacities nor bi-cooperative games. First of all, and contrary to these models, some of
these decision rules do not provide a complete preorder between alternatives – they argue
on the contrary that conflicts between positive and negative arguments of the same strength
should lead to a conflict, thus to incomparable alternatives. Other decision rules, like	BiPoss

cannot be understood as a comparison of some σ(A+, A−) to some σ(B+, B−); this rule
indeed compares max(OM(A+),OM(B−)) to max(OM(B+),OM(A−)). For 	BiPoss, the
right scheme would rather be the comparison of some σ(A+, B−) to some σ(B+, A−). This

7. For a bibliography about bi-capacities and bi-cooperative games see the work of Grabisch and colleagues
(Grabisch & Labreuche, 2005; Grabisch & Lange, 2007). Most of the developments about these notions
concern the computation of their Shapley value, or the definition of Choquet integrals. But apart from
Cumulative Prospect Theory, very few instances of this general framework are presented. The point is
probably that, because it provides a complete and transitive comparison, it cannot highlight the presence
of conflicting information.
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suggests that neither the framework of bi-cooperative games, nor the ones of bi-capacities
nor of bipolar capacities are yet general enough.

Finally, notice that we have couched our results in a terminology borrowing to argu-
mentation and decision theories, and indeed we consider they can be relevant for both. The
paper is also relevant to argumentative reasoning for the evaluation of sets of arguments in
inference processes (Cayrol & Lagasquie-Schiex, 2005). The connection between reasoning
and decision in the setting of argumentation is laid bare by Amgoud, Bonnefon, and Prade
(2005). They propose an extensive framework where arguments are constructed from a
knowledge base and a base of logically defined criteria. Arguments are evaluated in terms
of certainty, strength and degree of attainment of the corresponding criterion. Assuming
a common scale for these three aspects, they separately compare individual positive argu-
ments, and negative ones, using a simple aggregation of these weights, but never compare
arguments of different polarity. The idea of using logical arguments to compare decisions is
first discussed in the setting of possibilistic logic by Amgoud and Prade (2004). Amgoud and
Prade (2006) further elaborated this framework, where the explicit use of a knowledge base
and a goal base in the construction of arguments builds a bridge between argumentative
reasoning and qualitative decision under uncertainty.

7. Conclusion

This paper has focused on a particular class of bipolar decision making situations, namely
those that are qualitative rather than quantitative. What we have proposed is an extension
of possibility theory to the handling of sets containing arguments considered as positive
or negative. We have laid bare the importance of 	Lexi and 	BiLexi as decision rules for
qualitative bipolar decision-making. Both rules separately evaluate the positive and neg-
ative sets of arguments, by means of big-stepped capacities σ+ and σ−. Then, the 	Lexi

rule aggregates the two measures in agreement with Cumulative Prospect Theory’s “net
predisposition.” In contrast, the 	BiLexi rule does not merge the positive and negative
measures, allowing for the expression of conflict and incomparability. In a sense, these two
rules combine the best of two worlds: while they agree with the spirit of order of magnitude
reasoning, they are more decisive and efficient than basic rules such as 	BiPoss, and they
offer the same practical advantages as the quantitative Cumulative Prospect Theory—e.g.,
transitivity and representability by a pair of functions.

This paper has adopted a prescriptive point of view in the sense that the rules were
studied with respect to the properties that a qualitative theory of bipolar decision-making
should obey. The representation theorems of Sections 4 and 5 show that the use of 	BiPoss

and 	Lexi are the only well-behaved ones when dealing with qualitative bipolar information.
In parallel, we tested the descriptive power of our rules, i.e., their accuracy when predicting
the behavior of human decision makers. Our experimental results (Bonnefon et al., in press;
Bonnefon & Fargier, 2006) confirm �BiPoss as a basic ordinal decision-making rule: when
�BiPoss yields a strict preference, it is very uncommon that human decision-makers disagree
with this preference. Furthermore, results strongly suggest that 	Lexi is the decision rule
generally followed by decision-makers: 	Lexi accurately predicted nearly 80% of the 2,000
decisions we collected, and was always the one decision-makers individually agreed with the
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most. Finally, results suggest that human decision-makers do sometimes find some decisions
incomparable; and when they do, it is usually in situations when 	BiLexi would predict so.

In the present paper, we did not address the question of the computational complexity
of comparing two objects with a bipolar decision rule. Actually, the presence of bipolar
information does not change the range of complexity of the comparison of objects. A detailed
complexity study is out of the scope of the paper, but we can at least say that for all the
rules presented in this paper, the comparison of two alternatives is at most polynomial in the
number of criteria in X. This comparison indeed relies on the computation of the strength
of four subsets of X – computation that is sometimes preceded by a simple deletion step
(for the rules based on a discri- or a lexi- comparison). The computation of the strength of a
set is itself linear, since performed by means of an aggregation operator. The complexity of
comparing two alternatives with the 	BiPoss or the 	Lexi rules is for instance in O(Card(X))
(it can be computed as a simple aggregation of individual strengths). Finally, notice that
all our rules provide a transitive strict preference, so no cycle can appear as it may be
the case in CP-nets. If combinatorial alternatives were to be considered, we could easily
use a branch and bound algorithm for looking for the best alternative(s); the problem
of optimization with a bipolar aggregation is not harder than with a unipolar one: the
corresponding decision problem remains NP-complete (Fargier & Wilson, 2007).

This concludes our study of qualitative bipolar reasoning. However, we are aware of
some unresolved issues this paper has raised. For example, Section 6 suggests that the
framework of bi-capacities, and even bipolar capacities, is not rich enough to accommodate
the full range of qualitative bipolar rules we have introduced. Secondly, our results were
established within a restricted framework, where a relevant criterion is either a complete
pro or a complete opponent w.r.t. each decision, in the spirit of bi-cooperative games. This
is clearly a simpler approach than usual multi-criteria decision-making frameworks, where
each x ∈ X is a full-fledged criterion rated on a bipolar utility scale like Lx = [−1x,+1x],
containing a neutral value 0x. Thus, a natural extension of the present work would be to
address qualitative bipolar criteria whose satisfaction is a matter of degree.

Appendix A. Proofs

To simplify notations, let a+ = OM(A+), a− = OM(A−), b+ = OM(B+), b− = OM(B−),
c+ = OM(C+), c− = OM(C−). Hence OM(A) = max(a+, a−), OM(A+∪B−) = max(a+, b−)
and so on.

Proposition 1. The proof of completeness is trivial, as OM(A+ ∪ B−) and OM(B+ ∪ A−)
can always be compared. To prove the transitivity of �BiPoss, let us assume max(a+, b−) >
max(a−, b+) and max(b+, c−) > max(b−, a+). Then, letting b = max(b+, b−), we get
max(a+, b, c−) > max(a−, b, c+). As a consequence, max(a+, c−) > b. Hence, max(a+, c−) >
max(a−, b, c+) ≥ max(a−, c+).

Proposition 2. Quasi-transitivity is proved in Proposition 1. Positive and negative monotony,
as well as SQC, follow from the monotony of OM, which is a possibility measure: i.e.,
∀U, V,OM(U ∪ V ) ≥ OM(V ). Non-triviality of 	BiPoss is obtained from the non-triviality
of π (there exists x such as π(x) = 0), which implies OM((X+)+ ∪ (X−)−) = OM(X+ ∪
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X−) > 0 while OM((X+)− ∪ (X−)+) = OM(∅) = 0. Clarity of argument is also triv-
ial: if x ∈ X+ then OM({x}+ ∪ (∅)−) = π(x) ≥ OM({x}− ∪ (∅)+) = OM(∅) = 0:
{x} 	BiPoss ∅. If x is a con, we get in the same way {x} �BiPoss ∅. If x has null im-
portance, we get OM({x}+ ∪ (∅)−) = OM({x}− ∪ (∅)+) = OM(∅) = 0: {x} ∼BiPoss ∅.
To prove weak unanimity, suppose that A+ 	BiPoss B+ and A− 	BiPoss B− . Obviously
A+ 	BiPoss B+ ⇐⇒ OM(A+) ≥ OM(B+) and A− 	BiPoss B− ⇐⇒ OM(B−) ≥ OM(A−).
Hence OM(A+ ∪ B−) ≥ OM(B+ ∪ A−) : A 	BiPoss B.

Proposition 3. When restricted to singletons, 	BiPoss is a weak order that ranks the positive
arguments by decreasing values of π, then the null arguments (π = 0), then the negative
arguments by increasing value of π. This ranking defines a complete and transitive relation.
This proves that the relation 	X induced by 	BiPoss is a weak order. Axioms POSC is easy
to check, since {x+, y−} ∼∅ (resp., {z+, y−} ∼BiPoss ∅) if and only if π(x+) = π(y−) (resp.
π(z+) = π(y−)). Then {x+, y−} ∼BiPoss ∅ and {z+, y−} ∼ ∅ imply π(x+) = π(z+). So,
{x+} ∼BiPoss {z+}, i.e., x+ ∼X z+. The proof of NEGC is similar. The X-monotony of
	BiPoss is shown as follows. Let A,x, x′ be such that A ∩ {x, x′} = ∅ and x′ 	X x. Three
cases are possible:

1. x ∈ X+. Then x′ ∈ X+ and π(x′) ≥ π(x).

• if A∪ {x} �BiPoss B: then OM(A+ ∪ {x} ∪B−) > OM(A− ∪B+). Since π(x′) ≥
π(x), we get OM(A+ ∪ {x′} ∪ B−)OM(A− ∪ B+): A ∪ {x′} �BiPoss B.

• if A ∪ {x} ∼BiPoss B: then OM(A+ ∪ {x} ∪ B−) = OM(A− ∪ B+). Replacing x
by x′, i.e., π(x) by π(x′), the first OM level increases, so we get OM(A+ ∪{x′}∪
B−) ≥ OM(A− ∪ B+): A ∪ {x′} 	BiPoss B.

• if B � A ∪ {x′}, then OM(B+ ∪ A−) > OM(A+ ∪ {x′} ∪ B−). Replacing x′ by
x, i.e., π(x′) by π(x), the second OM level decreases, so we get OM(B+ ∪A−) >
OM(A+ ∪ {x} ∪ B−), i.e. B �BiPoss A ∪ {x}.

• if B ∼ A ∪ {x′}, then OM(B+ ∪ A−) = OM(A+ ∪ {x′} ∪ B−). Replacing x′

by x, i.e. π(x′) by π(x), the second OM level decreases, so OM(B+ ∪ A−) ≥
OM(A+ ∪ {x} ∪ B−), i.e. B 	BiPoss A ∪ {x}.

2. x′ ∈ X−. Then x ∈ X− and π(x) ≥ π(x′). The same kind of four-case proof can be
carried out.

3. x′ ∈ X+ and x ∈ X−.

• if A ∪ {x} �BiPoss B, i.e., OM(A+ ∪ B−) > OM(A− ∪ B+ ∪ {x}), it follows that
OM(A+ ∪ B− ∪ {x′}) > OM(A− ∪ B+), so A ∪ {x′} �BiPoss B.

• Similarly, if A∪{x} ∼BiPoss B, i.e., OM(A+∪B−) = OM(A−∪B+∪{x}), it follows
that OM(A+∪B−∪{x′}) ≥ OM(A−∪B+∪{x}), and then OM(A+∪B−∪{x′}) ≥
OM(A−∪B+∪{x}), which implies OM(A+∪B−∪{x′}) ≥ OM(A−∪B+). Hence
(x′ being positive) A ∪ {x′} 	BiPoss B.

• if B � A ∪ {x′}, which means OM(B+ ∪ A−) > OM(A+ ∪ {x′} ∪ B−) since x′

is positive. Obviously, OM(B+ ∪ A− ∪ {x}) ≥ OM(B+ ∪ A−) and OM(A+ ∪
{x′} ∪ B−) ≥ OM(A+ ∪ B−). Hence OM(B+ ∪ A− ∪ {x}) > OM(A+ ∪ B−):
B �BiPoss A ∪ {x}.
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• Similarly, if B ∼BiPoss A∪{x′} we have: OM(B+∪A−∪{x}) ≥ OM(B+∪A−) =
OM(A+ ∪ {x′} ∪ B−) ≥ OM(A+ ∪ B−): B 	BiPoss A ∪ {x}.

Proposition 4.

	BiPoss satisfies GCLO Recall that A 	BiPoss B ⇐⇒ max(a+, b−) ≥ max(b+, a−) and
C 	BiPoss D ⇐⇒ max(c+, d−) ≥ max(d+, c−). Hence, max(a+, b−, c+, d−) ≥
max(b+, a−, d+, c−), i.e., A ∪ C 	BiPoss B ∪ D.

	BiPoss satisfies GNEG Recall that A �BiPoss B ⇐⇒ max(a+, b−) > max(b+, a−) and
C �BiPoss D ⇐⇒ max(c+, d−) > max(d+, c−). Hence: max(a+, b−, c+, d−) >
max(b+, a−, d+, c−), i.e., A ∪ C �BiPoss B ∪ D.

Theorem 1. Let us first build π. By CA, any singleton {x} is comparable to ∅. So X+ =
{x, {x} � ∅}, X− = {x, {x} ≺ ∅} and X0 = {x, {x} ∼ ∅} are soundly defined.

Let us define a relation ≥ on X as follows:

• x, y ∈ X0 : x ≥ y and y ≥ x.

• x, y ∈ X+ : x ≥ y ⇐⇒ {x} 	 {y}
• x, y ∈ X− : x ≥ y ⇐⇒ {y} 	{ x}
• x ∈ X+, y ∈ X− : x ≥ y ⇐⇒ not(∅ � {x, y})
• x ∈ X+, y ∈ X0 : x > y

• x ∈ X−, y ∈ X0 : x > y

Because of axiom CA, X+, X− and X0 are disjoint. The previous definition is thus well
founded. ≥ is complete by definition. We prove now that ≥ is transitive. Suppose that
x ≥ y and y ≥ z and let us perform the following case analysis:

• x, y, z ∈ X+ : Then x ≥ z is trivial because 	X is transitive and can be identified
with ≥ within X+ .

• x, y, z ∈ X− : Then x ≥ z is trivial because 	X is transitive and can be identified
with ≥ within X− .

• x ∈ X0 : then x ≥ y means by STQ that y is also in X0, which in turn implies z ∈ X0.
So, by STQ again, x ≡ z.

• y ∈ X0: y ≥ z implies by STQ that z is also in X0. So, by STQ again, x ≥ z.

• z ∈ X0 : x ≥ z is always true (by status quo consistency again).

• x ∈ X+, y ∈ X− and z ∈ X−. Then by definition, x ≥ y means {x, y} 	 ∅ and
y ≥ z means {z} 	{ y}. By X-monotony we can replace y by z without reversing the
preference: {x, z} 	 ∅, i.e. x ≥ z.
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• x ∈ X+, y ∈ X+ and z ∈ X− : the proof of x ≥ z is similar to the one in the previous
item.

• y ∈ X+ x ∈ X− and z ∈ X− . Suppose that {x, y} �∅ (x ≥ y), {z, y} 	 ∅ (y ≥ z) and
{x} > {z} (z > x for negative arguments). If {z, y} �∅ , then X-monotony implies
{x, y} � ∅ (thus a contradiction). If ∅ � {x, y} then X-monotony implies ∅ � {z, y}
(second contradiction). Last case, if {x, y} ∼ ∅ and {z, y} ∼∅ , then POSC implies
{x} ∼{ z} (last contradiction). So, z > x does not hold and thus, by completeness of
≥, x ≥ z.

• y ∈ X− x ∈ X+ and z ∈ X+ . The proof of x ≥ z is similar to the one in the previous
item, using NEGC instead of POSC.

So, ≥ is a weak order. It can be encoded by a distribution π : X �→ [0L, 1L], [0L, 1L]
being a totally ordered scale. Level 0L is mapped to elements of X0. Now, we have to show
the equivalence between 	 and the relation 	BiPoss induced from π, namely to prove that
A 	 B ⇐⇒ OM(A+∪B−) ≥ OM(A−∪B+). Since 	 is complete, this amounts to showing
that OM(A+ ∪B−) = OM(A−∪B+) implies A ∼ B and that OM(A+ ∪B−)OM(A−∪B+)
implies A � B. Let us first prove that OM(A+∪B−)OM(A−∪B+) implies A � B. Suppose
that the element of highest π value in A+∪B− is x ∈ A+. So, for any y ∈ A−, {x, y} � ∅ and
w ∈ B+, {x} �{ w}. By GNEG we get {x}∪A− � B+ and positive and negative monotony
then imply A+ ∪ A− � B+ ∪ B−. If the element of highest π value in A+ ∪ B− were some
v ∈ B− then for any w ∈ B+, {w, v} ≺ ∅ and for any y ∈ A−, {y} � {v}. By GNEG we
get {v} ∪ B+ ≺ A− and positive and negative monotony then imply A+ ∪ A− � B+ ∪ B−.
Let us now prove that OM(A+ ∪ B−) ≥ OM(A− ∪ B+) implies A 	 B. Suppose that the
element of highest π value in A+ ∪ B− is x ∈ A+. So, for any y ∈ A−, {x, y} 	∅ and
w ∈ B+, {x} 	 {w}. By GCLO we get {x}∪A− 	 B+ and positive and negative monotony
then imply A+ ∪ A− 	 B+ ∪ B−. If the element of highest π value in A+ ∪ B− were some
v ∈ B− then for any w ∈ B+, {w, v} � ∅ and for any y ∈ A−, {y} 	{ v}. By GCLO we get
{v} ∪ B+ � A− and positive and negative monotony then implies A+ ∪ A− 	 B+ ∪ B−.

Proposition 5. Consider the four cases identified in the text. Clearly situation 1 corresponds
to a case where A ∼Impl B. In case 4, strict dominance A �Impl B prevails. Case 2 may
lead to three different conclusions. Equivalence arises when a+ = b+ max(a−, b−): the
cons being of low level w.r.t to the pros, they are not taken into account and indifference
prevails based on the pros. If a+ = b+ = b− > a−, then A 	Impl B holds but not
B 	Impl A. So, A �Impl B since the arguments against A are too weak. By symmetry,
a+ = b+ = a− > b+ concludes to B �Impl A. Case 3 is handled in a similar manner:
equivalence arises when a− = b− > max(a+, b+); if a− = b− = a+ > b+, A �Impl B
holds since the arguments for B are too weak; if a− = b− = b+ > a+, B �Impl A Finally,
A �Impl B is concluded when neither A 	Impl B nor B 	Impl A. This arises in two cases
only, when a+ = a− > max(b−, b+) or in the symmetric case b+ = b− max(a−, a+).

Proposition 6. Assume A 	Impl B and B 	Impl C. Using the above conventions, consider:

1. Any of the following situations ensuring A 	Impl B:
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(a) a+ = b+ = a− = b−;

(b) a+ = b+ ≥ max(a−, b−);

(c) a− = b− ≥ max(a+, b+);

(d) max(a+, b−) > max(a−, b+).

2. And any of the following situations ensuring B 	Impl C the following group:

(a) b+ = c+ = b− = c−;

(b) b+ = c+ ≥ max(b−, c−);

(c) b− = c− ≥ max(b+, c+);

(d) max(b+, c−) > max(b−, c+).

Combining one condition in the first group with one in the second group yields one of the
corresponding conditions ensuring A 	Impl C. For instance,

• Combining conditions 1b and 2b yields a+ = c+ ≥ max(a−, b−, c−) ≥ max(a−, c−).

• Combining conditions 1b and 2c yields a+ ≥ max(a−, c−) and c− ≥ max(a+, c+).
Hence a+ ≥ max(a−, a+, c+), c− ≥ max(a−, c−, c+) and a+ = c−. Hence a+ = c− ≥
max(a−, c+). If the inequality is strict this is condition d. If a+ = c− = max(a−, c+),
this is condition b or c.

• Combining condition 1d and condition 2b yields max(a+, b−) > max(a−, c+) and
c+ ≥ max(b−, c−). Hence a+ > max(a−, c+).

The other cases can be handled similarly.

Proposition 7. A �BiPoss B if and only if max(a+, b−) > max(a−, b+) which thanks to
Proposition 5 implies A �Impl+ B.

Proposition 8.

• Suppose that A �BiPoss B: then ∃x∗ ∈ A+∪B− such that ∀x ∈ A−∪B+, π(x∗)π(x). If
many arguments satisfy this property, let x∗ be one of those maximizing π. x∗ is thus
not in A− ∪B+. So, it is either in A+ \B+ or in B− \A−. Since A+ \B+ = (A \B)+

and B− \A− = (B \A)−, we can write x∗ ∈ (A \B)+ ∪ (B \A)−. On the other hand
(B \A)+ ∪ (A \B)− ⊆ A− ∪B+ and no element in A− ∪B+ has a higher degree than
x∗. So, OM((B \ A)+ ∪ (A \ B)−) < π(x∗). So, A �Discri B. This proves that 	Discri

refines 	BiPoss.

• Suppose that A �Discri B: then ∃x∗ ∈ A+ \B+ ∪ B− \A− such that ∀x ∈ B+ \A+ ∪
A− \ B−, π(x∗) > π(x). If many elements satisfy this property, let x∗ be one of those
maximizing π. So, at any level λ >π (x∗), A+ \ B+ ∪ B− \ A− is empty; thus for
these levels, A+

λ = B+
λ and A−

λ = B−
λ , which imply the equality of the cardinalities.

On the other hand, at level δ∗ = π(x∗), there is no element in B+ \ A+ ∪ A− \ B−.
So, |(B+ \ A+)δ∗ | = 0 and |(A− \ B−)δ∗ | = 0. And there is at least one element
in A+ \ B+ ∪ B− \ A− so |(A+ \ B+)δ∗ | ≥ 1 or |(B− \ A−)δ∗ | ≥ 1 (or even both).
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Suppose now |(A+ \ B+)δ∗ | ≥ 1: from |(B+ \ A+)δ∗ | = 0 and adding the common
elements, we get |B+

δ∗ | = |(A+ ∩ B+)δ∗ |. Since |(A+ \ B+)δ∗ | ≥ 1 we get |A+
δ∗ ||B+

δ∗ |.
From |(A− \ B−)δ∗ | = 0 and adding the common element we get |A−| = |B− ∩ A−|
thus |A−| ≤ |B−|. So A �BiLexi B. We get A �BiLexi B in the same way from
|(B− \ A−)δ∗ | ≥ 1. Hence 	BiLexi refines 	Discri.

• Finally, suppose that A �BiLexi B, i.e., at any level λ higher than δ∗, |A+
λ | = |B+

λ | and
|A−

λ | = |B−
λ | and that at level δ∗, there is a difference in favor of A. Then necessarily,

at any level higher λ than δ∗, |A+
λ |−|A−

λ | = |B+
λ |−|B−

λ |. Let first suppose that at level
δ∗, the difference is made on the positive scale, i.e., |A+

δ∗ | > |B+
δ∗ | and |A−

δ∗ | ≤ |B+
δ∗ |.

Summing up the inequalities we get: |A+
δ∗ | − |A−

δ∗ ||B+
δ∗ | − |B−

δ∗ |. Then A �Lexi B. If
the difference is rather made on the negative side, we get A �Lexi B in a similar way.
So, A �Lexi B. Hence 	Lexi refines 	BiLexi.

Proposition 10 . From C ∼ D and A ∩ (C ∪ D) = ∅, preferential independence implies
A ∪ C ∼ A ∪ D. Then, by transitivity: A ∪ C 	 B implies A ∪ D 	 B; A ∪ D 	 B implies
A ∪ C 	 B; B 	 A ∪ C implies B 	 A ∪ D; and B 	 A ∪ D implies B 	 A ∪ C.

Corollary 1 . Since C ∼ ∅ and A ∩ C = ∅, we can apply the principle of preferential
independence and get A ∪ C ∼ A. Then, by transitivity, A 	 B implies A ∪ C 	 B.
Conversely, A ∪C 	 B and A ∪C ∼ A implies, also by transitivity, that A 	 B. Similarly,
from B 	 A and A∪C ∼ A, transitivity implies B 	 A∪C; from B 	 A∪C and A∪C ∼ A,
transitivity implies B 	 A.

Corollary 2 . From the axiom of preferential independence, and because (A ∪ B) ∩ C = ∅:
A 	 B ⇐⇒ A∪C 	 B ∪C. Then applying Proposition 10 and because B ∩ (C ∪D) = ∅,
A 	 B ⇐⇒ A ∪ C 	 B ∪ D.

Corollary 3.

Case x ∈ B: Then by Proposition 10 we can replace x by y in B and get A 	 B ⇐⇒
A 	 (B \ {x}) ∪ {y}. Let us then apply preferential independence and add x on
both sides of 	: A 	 (B \ {x}) ∪ {y} ⇐⇒ A ∪ {x} 	 (B \ {x}) ∪ {y} ∪ {x}, i.e.,
A 	 (B \ {x}) ∪ {y} ⇐⇒ A ∪ {x} 	 B ∪ {y}, thus A 	 B ⇐⇒ A ∪ {x} 	 B ∪ {y}.

Case x �∈ B: Then preferential independence means that A 	 B ⇐⇒ A ∪ {x} 	 B ∪ {x}
and Proposition 10 is used to get A 	 B ⇐⇒ A ∪ {x} 	 B ∪ {y}.

Theorem 2 . It is easy to show that item 2 implies item 1. We have already seen that 	Lexi

is complete, transitive, satisfies preferential independence, and refines 	BiPoss. It is also
easy to show that the grounding relations on X induced by both relations are equivalent,
i.e., that 	Lexi is an unbiased refinement of 	BiPoss.

Let us now prove that item 1 implies item 2. Let 	 be a complete and transitive
monotonic bipolar set-relation that satisfies preferential independence, and is an unbiased
refinement of 	BiPoss. Since 	 is an unbiased refinement of 	BiPoss, 	X≡	BiPoss

X
. It is

413



Dubois, Fargier, Bonnefon

equivalently defined by π. The notions of λ-section, positive λ-section and negative λ-
section are thus well defined.

1. Let us first suppose that, for any γ, |A+
γ | − |A−

γ | = |B+
γ | −| B−

γ |. Then we show that
∀γ,Aγ ∼ Bγ . Two cases are possible:

Case |A+
γ | − |A−

γ | ≥ 0: Then it is possible to partition Aγ into nA = |A−
γ | pairs of

{x+, x−} and n = |A+
γ | − |A−

γ | singletons {x+}. Similarly, it is possible to parti-
tion Bγ into nB = |B−

γ | pairs of {y+, y−} and n singletons {y+}—the same n as
for A, since |A+

γ | −| A−
γ | = |B+

γ | − |B−
γ |. So, from ∅ = ∅, we can use Proposition

3 to add the n singletons {x+} and the n singletons {y+} on each side of the
equivalence (left side for the x+, right side for the y+). Then Corollary 1 allows
us to add the pairs {x+, x−} on the left side, the pairs {y+, y−} on the right side.
Then we arrive at Aγ ∼ Bγ .

Case |A+
γ | − |A−

γ | ≤ 0: The proof is similar. It is possible to partition Aγ into nA =
|A−

γ | pairs of {x+, x−} and n = |A+
γ | −| A−

γ | singletons {x−}. Similarly, it is
possible to partition Bγ into nB = |B−

γ | pairs of {y+, y−} and n singletons {y−}.
So, from ∅ = ∅, we can use Proposition 3 and Corollary 1 allow us to add the pairs
{x+, x−} and the remaining singletons {x−} on the left side, the pairs {y+, y−}
and the remaining singletons {y−} on the right side. We arrive at Aγ ∼ Bγ .

The λ-sections of A ∪ B are pairwise disjoint. Thanks to Corollary 2 we can then
“sum” the equivalences Aγ ∼ Bγ and get

⋃
γ Aγ ∼ ⋃

γ Bγ , i.e., A ∼ B.

2. Let us now suppose that there is a λ > 0L such that (i) for any γ > λ, |A+
γ | − |A−

γ | =
|B+

γ | −|B−
γ | and (ii) |A+

λ | − |A−
λ | > |B+

λ | − |B−
λ |. From a proof similar to the one just

before, we get
⋃

γ>λ Aγ ∼ ⋃
γ>λ Bγ . Three cases are then possible:

Case |A+
γ | − |A−

γ | ≥ 0: Then it is possible to partition Aγ into nA = |A−
γ | pairs of

{x+, x−} and n = |A+
γ | −| A−

γ | singletons {x+}. Similarly, it is possible to
partition Bγ into nB = min(|B+

γ |, |B−
γ |) pairs of {y+, y−} and m singletons

{y+} and a number m′ of singletons {y−}, with max(m,m′) = 0. Because
|B+

γ | −| B−
γ | < |A+

γ | −| A−
γ | = n, m < n. Let x∗ be one of the n positive

singletons in the partition of Aλ. Obviously, x∗ ∪γ<λ A−
γ �BiPoss ∪γ<λB+

γ and
thus by monotony x∗ ∪γ<λ Aγ �BiPoss ∪γ<λBγ . Then x∗ ∪γ<λ Aγ � ∪γ<λBγ

(this is the refinement hypothesis). Then we can add the n singletons x+ and
n singleton y+ on the left and right side of the strict preference without mod-
ifying it (this is Proposition 3). By monotony, we can then add the singletons
y−, if any, and the remaining m − n − 1 singletons x+, if any. Since the pairs
{x+, x−} (resp., {y+, y−}) are equivalent to ∅, they can be added on the left
(resp., right) side without modifying the inequality (we use Corollary 1). We get
∪γ≤λAγ � ∪γ≤λBγ .

Case |B+
γ | −| B−

γ | ≤ 0: The proof if very similar to the previous one, from a negative
y∗. We partition Bλ into a maximum number of pairs, and a given number n
of negative singletons. Aλ is also partitioned into a maximum number of pairs,
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possibly m < n negative singleton or (the two conditions are exclusive) some
positive singletons we show that ∪γ<λAγ � ∪γ<λBγ ∪ {y∗}, then add m the
negative singletons x− and the negative singletons y− on their respective sides,
add the remaining negative y− or the remaining positive x+ . The pairs {x+, x−}
(resp., {y+, y−}) being equivalent to ∅, they can be added on the left (resp., right)
side without modifying the inequality. We get ∪γ≤λAγ � ∪γ≤λBγ .

Finally, |B+
γ | − |B−

γ | > 0 and |A+
γ | −| A−

γ | < 0 is incompatible with the fact that
|A+

γ | − |A−
γ | > |B+

γ | − |B−
γ |.

We thus get ∪γ≤λAγ � ∪γ≤λBγ . The λ-sections of A ∪ B are pairwise disjoint.
Thanks to Corollary 2 we can then “sum” the equivalences Aγ ∼ Bγ , λ >γ to the
string preference and get

⋃
γ Aγ � ⋃

γ Bγ , i.e. A � B.

3. We have shown that A �lexi B =⇒ A � B and A ∼lexi B =⇒ A ∼ B. Because the
relations are complete, this means that they are equivalent: A 	lexi B ⇐⇒ A 	 B.
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