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ON THE QUANTITY oa,(g(2), f) OF
GAPPY ENTIRE FUNCTIONS

By BAao-QIN L1

1. Introduction.

Let f(z)= Zlanz" be a transcendental entire function. We denote by A,=
n=

{2}, My={u,}, k=1, 2, -+ the sequences of exponents n for which a,#0 and
a,=0 respectively, arranged in increasing order. Also let g(z) be an arbitrary
meromorphic function in the plane growing slowly compared with the function
f(2), i.e., T@r, g)=o0{T(r, )} as r—co.

If f(z) has finite order we define

N(r,——l—“)
—1_ f—g)
0,(g(2), /=1 lrlTrg T f) .

If f(z) has infinite order, let E be any set in (1, o) having finite length. We
define

1 1
N(r =) _ m(r )
L L T\ f—g@)/ e o T\ f—g(@)/
0Xg(@), fi=l=sup lim —pi—p===inf lim ——r o2

Obviously

1

N(r )
=1—11 _.__’f—&

¥(g(@), f=1—lim — —o== =08, f).

In [1], we obtained the following

THEOREM A. Let dn be the highest common factor of all the numbers
Am+1—An for m=n and suppose that

d, —> oo as n—oo . 1.1)

Then
0,(g(2), /)=0 (1.2)

for every entire function g(z) satisfying T(r, g@)=o0{T(r, f)} as r—oo.
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In this paper we further prove that (1.2) is also valid for every meromorphic
function g(z) satisfying 7'(r, g)=0{T(r, f)} as r—oo. That is, we shall prove

THEOREM 1. With the hypotheses of Theorem A, we have
0s(g(2), /)=0
for every meromorphic function g(z) satisfying T(r, g@)=o0{T(r, f)} as r—oo.

From (1.1), we see that A, is very ‘thin’ in a sense. For the gappy entire
function f(z) with ‘thickish’ 4;, we have

THEOREM 2. Suppose that b(=0), d(=2) are integers such that b+kdeM,
for k=1. Then for every meromorphic function g(z) satisfying T(r, g)=0{T(, f)}
as r—oo, we have

3.(2(2), f>g1—§ (1.3)

except possibly if, for 0<|z| <e, g(z)=sz ian" and Cyim=a,, where m(=0)

is an integer and e is a positive number.
Remark 1. (1.3) can break down if g(z)- i‘,an" and Cysm=a;. For

2n
(n+3)!

satisfies the hypotheses of Theorem 2 with b=1 and d=2. But for g(z)=
—(1/2(14-2%+2%/2), with m=6 and Cyin=a,=0, we have

f@=5+5 =

2
Z2(n+3) ) eZ

fle)—gz)= (1+22+——+ +2 i)

and so

0s(g(2), /H=1.
Also for

f2)=z+e%

satisfies the hypotheses of Theorem 2 with b=1 and d=2. But for g(z)=z,
with m=0 and Cy+n=1=a,, we have

sz, /)=1.

Remark 2. The inequality (1.3) is sharp. For f(z)——“/——E—+S e~t*dt satisfies

the hypotheses of Theorem 2 with b=0 and d=2. Hence we have d,0, f)<
1—1/2=1/2. Also as is shown by Nevenlinna [5], we have 8(0, f)=1/2. Thus
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0,00, /)=6(0, f)=1/2. Therefere 0,0, f)=1/2.
As a consequence of Theorem 2, we have

COROLLARY 1. Suppose that b(>0), d(=2) are integers such that b= A; but
b+kdeM; for k=1. Then

g‘,j(a, N 1—% . (1.4)

Remark 3. (1.4) is obviously better than the corresponding result of Hayman

in [3, p.330]: g}&(a, HE1— with the hypotheses of Corollary 1.

1
dd—1)

2. Proof of Theorems.

From now on we denote by S(r, F) any term which satisfies S(r, F)=
o{T(r, F)} as r&E, r—oo, where FE is a set in (1, +o0) having finite length
and in particular E is an empty set if F(z) is of finite order.

In proving our theorems, we shall quote the following lemmas.

LEMMA 1. [2]: If F(2) is a transcendental entire function and g.(z), g.(2),
-, g2) are distinct meromorphic functions satisfying T(r, g)=o0{T(r, F)} as
r—o0 (]=1) 27 tty Q); then

q

1
> m(r, m§T(T, F)+S(r, F).

=1

LEMMA 2 [4]: If a4, -, a, are distinct finite complex numbers, then when-
ever F(z) is transcendental entire function we have

Sonle ) s .

Proof of Theorem 1.
By our Theorem A, we may assume that g(z) is a meromorphic function
which has at least a pole and satisfies

T(r, ©)=0{T(, )}  as r—o 2.1

Let’s discuss two cases separately.

Case (a). g(2) has a pole Zo=+0.
Let ¢(=2) be an arbitrary integer. We write

Wn=exp ( 2d7rz) s

P(Z)——-::ij a2, (2.2)
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Fo)= 3 a:2™. 2.3)

Obviously, lim (Wn)?Zo=Zo (1=7<q). Hence there exists a larger n such that

(Wn)YZo (1=5<q) is not a pole of g(z).
Noticing d,|(An+1—An) for m=n, we have

dn |(zv_2n) for V=N ,

where “alb” denotes that a is a factor of b. Thus for 1<;<¢g we have, in
view of (2.2) and (2.3),

fWiz)—gWha)=pWhz)—gWha)+FWiz)
=pWha)—gWihz)+Wil"F (2)
=W F(2)— W3 (gWiz)— p(wha)}
=Wi™{F(2)—g2)}, 2.4)

say, where g,(2)=Wz*"(gWiz)—pW3iz)).
Clearly, by (2.1) we have

T(r, g2)=0{T(r, f)}  as r—oo. (2.5)

We assert that g.(z), g.(2), -+, g,(2) are dist'nct from each other. Other-
wise, there must exist 7, j (1=</<j<q) such that

4, (2)=Wn i (g(Wniz)— p(Wniz))— Wn~ 4" (g(Wn'z)— p(Wniz))=0. (2.6)
But by the definition of the integer n we easily conclude that
4, (Wn~zo)=Wn74"(g(Wni~'z0)— p(Wn'~iz0)— Wn**"(g(z0)— p(z0))=co .

This contradicts (2.6).

Now using Lemma 1 to our functions g.(z), g2(z), -, g2) and F(z) and
noticing (2.4) and (2.5), we deduce that

1
S, -_—Z)gT(r, F)+S@, F)
and so that
1
gm(r, 7:g(7)>§T(r, F)+S(r, F)
=T(, NH+S, ).
Thus we have

5.(e(2), ) g-;— .
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But ¢ can be assumed any large. Hence we obtain

05(g(2), f)=0.

Cass (b). Zo=0 is an only pole of g(z).
It is easily seen that there exists an integer m=1 such that

1
g(z)=—1rg%@),
z
where g*(z) is an entire function satisfying

T(r, g¥@)=0{T(, )} as r—oo.
we set

fHa)=z"f(2)
=z™ N anz*r=a, z'",
n=1 n=1 "

say, where n,=4,+m.
By (2.7) we have

T(r, g¥@)=0{T(, f*)} as r—oco.

291

(2.7)

2.8)

Let dn* be the highest common factor of all the numbers 9,4,—7, for s=n.

Apparently we have
dn* —> o as n—oo .,

(2.9

Using Theorem A to our functions f*(z) and g*(z) and noticing (2.8) and

(2.9), we get

0,(8*(2), f*(z)=0.
But

f@)=g(@y=— (/42— 8*(2) .
Therefore
0s(g(2), f)=0ds(g*(z), f*)=0.
This completes the proof of Theorem 1.

Proof of Theorem 2.
Suppose that g(z) is any meromorphic function satisfying

T(r, g)=0{T(r, )}  as r—co
we write
2ni

W =exp (—d—) y

hl)=W="{fW 2)—gW’2)}  (1=v=d),

h(z)= él hyz).

(2.10)

(2.11)

(2.12)
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We then have, for any integer n(=0), that vdElW"(""”zd if d|(n—b) and
. =

DW= =0 if 4 f(n—b).

=1

So by b+kdeM, for k=1 we deduce that

hE@)= 3 hl2)

W—vb io aannzn__v_él W"”’g(W"z)

Ma

1

v

0 d
=d Zk Qo4 pq?"tRe— EIW-vbg(WvZ),
= =

k=ko

where ko is the minimum of integers k (—oco<<k=0) satisfying b+kd=0.
By (2.10), it is easily deduced that

T, h(@)=0{T(, )} as r—oo . (2.13)

We claim that
h(z)%£0, (2.14)

if the exceptional case mentioned in Theorem 2 doesn't occur.
In fact, we may write

§@=— 5 Cnzr as 0<lz|<e,

where m(=0) is an integer and ¢ is a small positive number.
Hence for 0<|2|<e we have

o d
Qpira zb+kd_ 2 Cn Zn-m 2 Wv(n—m—b)
n=0 v=1

h@)=d 3
k=kg

=d( 3 apnaz e 33 Cmtbkd #49), (2.15)
k=kg k=k;

where k&, is the minimum of integer 2 (—co<k=<0) satisfying m+b+kd=0.

In (2.15), if z=0 is a pole of A(z), then (2.14) is alreadly correct. Or A(z)
is holomorphic in {|z|<e} and (2.15) is its power-series expansion in |z|<e.
But the coefficient of 2° in A(z) is d(as—Cm+s)#0. Thus (2.14) is also correct.

Next we assume without loss of generality that A,(2), hy(2), -+, hi(z) (<d)
are linearly independent. Then there exist complex numbers ey, ¢, -, ¢, such

that
h(z)=e h,(2)+e.ha(2)+ - Fe.h(2)

=H\(2)+Hy(2)+ -+ +Hy(2), (2.16)

say, where Hj(z)=eshj(z) (1<j<t).
Also we may assume that ¢;#0 for 1<;=<¢, which doesn’t, lose generality.
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Hence if we set

H\(z) Hy(2) - Hy(2)
J= HI’(z) Hz’(Z) H/(Z)

H(t 1)(2) H(t l)(Z) H(t 1)(2)
then we have 4=%0.
By (2.16), we conclude that

h(2) Hy(2) < Hy(2)
4=|"@ H'(z) - H(2)
h¢=D(z) Hy*"P(2) - H V()
=h(z)do(z)+h'd,(2)+ - +h¢ (), (2), (2.17)

where 4;z) (0<;<t—1) is the algebraic complement with respect to h‘?(z)
(A (2)=h(2)).

It is well known that m(r, F®**/F)=S(r, F) for k=1 whenever F(z) (con-
stant) is a meromorphic function [4]. Hence we deduce that, in view of (2.11),
(2.17) and (2.13),

T(r, N=T(r, H(2)+o{T(r, )}

S hoy, 11 H,
<N(r, H(2))+m| r,k—t— +ml| 7, MA +o{T(r, N}
H

<N, B@)+ Simer, h<”>>+2m(r, Lo )+m(r, A )
fH

+N(r, A \iot1e,
o H

=N(@, HI(Z))+§m( he )+tm(r h)+ Em(r, 4. )
v=0 H H

+ m(h tA >+N(r, D+ Zt‘, N(r, ]—_11—)+0{T(r, H}
11 H, v

v=1

<o{T(r, AI+S(r, W+o{T(r, H}+ 2S¢, H)+ 3 S(r, H)

oAT(r, NIHN(r, <= ) ol T, )
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1

< -

SIN(r, = )40 1.
That is,

1
T(r, f)§tN(7’, T_‘g(—z)) +S(, ).
Therefore we conclude that
1 1

<1 —
04(g(2), N)=1 ; =1 R
The proof of Theorem 2 is thus completed.
Using Theorem 2 to the functions f/(z) and g(z)=0 and Lemma 2 to the
function f, we easily get the conclusion of Corollary 1. We here omit its
details.
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