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Abstract

In two previous papers the quantization was discussed of three one-degree-of-freedom
Hamiltonians featuring a constant ¢, the value of which does not influence at all the
corresponding classical dynamics (which is characterized by isochronous solutions,
all of them periodic with period 27: “nonlinear harmonic oscillators”), but turned
instead out to influence, possibly quite nontrivially, the results in the quantized case.
The quantization of two analogous Hamiltonian systems is discussed in this paper.
The outcome is analogous, if perhaps even more clear cut, than in the previous three
cases; it also confirms that different quantized spectra may be obtained if quantization
is performed before or after a (nonlinear) canonical transformation.

In two previous papers [1] [2] the (quantization of the) following three one-degree-of-
freedom Hamiltonians was investigated:

) =3 [EL v (44 1)), )

Cc

DO |

HZ(p? Q) =

N =

—_

2 gin? sin
Hs(p,a) = 5 [p (g)c 29)

+2¢ cot(2 q)] . (3)

These three Hamiltonians contain the arbitrary (positive) constant ¢, but the three cor-
responding Newtonian equations of motion that determine in the classical (unquantized)
context the time-evolution of the coordinate ¢(¢) do not feature at all this constant, hence
their general solutions ¢(t) are as well independent of this constant, and moreover they are
all periodic with period 27 (following Ref. [3] we call such systems, all solutions of which
are isochronous, “nonlinear harmonic oscillators”). These three Hamiltonians were then
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quantized [1] [2], and, as might have been expected, for certain quantization prescriptions
the equispaced energy spectrum

En=FEy+n, n=012.. (4)

was obtained; but the evaluation of the ground-state energy Ej turned out (to depend on
the value of the constant ¢ and possibly) to be complex (for sufficiently small values of ¢),
corresponding then to a quantum Hamiltonian which lacked the property to be self-adjoint
[1] [2]. In this paper we study two other Hamiltonian models closely related to the first
of the three models mentioned above. The results we find in this case are analogous, if
perhaps even more clear cut, than the previous findings [1] [2].

We consider the one-degree-of-freedom systems characterized by the following two
Hamiltonians:
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where ¢ is an arbitrary real constant, which we hereafter assume (without significant loss
of generality) to be positive,

c> 0. (6)

The corresponding Hamiltonian equations of motion read
. qp . 1 2 of S
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and they entail the Newtonian equations of motion

_i 2 9 .
q—2q(s+q q), s = =+. (8)

Here and throughout superimposed dots denote of course time derivatives.
Note that the constant ¢ does not appear at all in these Newtonian equations of motion.
The general solution of these Newtonian equations of motion reads

4(t) = 4(0) [cos (%)] 4 4(0) sin(®) + % [Sin (%ﬂ S )

Obviously this solution ¢(t) = ¢(s;t) is independent of the constant ¢, nonsingular and
clearly periodic in ¢ with period 2,

q(t +2m) = q(t); (10)
and it can be easily seen that
Gmin < Q(t) < @max (11&)

with
s

Gmin = 24(0)’ (11b)
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[2(0)) + [4(O)]* _ 5+ [a(0)]* + [§(0)]*
q(0) q(0)
The corresponding expression of the canonically conjugate coordinate p(t) = p(s;t)
reads

Gmax = Qmin (110)

s+ [4(0)]* — [g(0)]* +2¢(0) 4(0) cos(t)
24(0) q(t) ’

note that it is as well independent of the value of the constant ¢, except for a trivial overall
rescaling; and it is of course as well periodic with period 27,

pt) =c (12)

p(t +2m) = p(1). (13)

Let us conclude this treatment of the classical dynamics entailed by the two one-degree-
of-freedom Hamiltonian models (5) by noting a difference between the two cases with
s = + and s = —, which is sufficiently important (see especially below) to justify our
consideration of these two Hamiltonian models as two different cases. Let us hereafter
suppose, for definiteness (and without significant loss of generality), that ¢(0) is positive,
q(0) > 0. It is then clear that, in the s = + case, ¢(t) is as well positive for all time,
q(t) > 0, see (11) (in particular (11b)); and this entails that p(t) is nonsingular, see (12).
In the s = — case @min is instead negative, see (11b), while gnax might be positive or
negative, depending on the initial conditions, in particular on the magnitude of both ¢(0)
and ¢(0) (see (11c)). There is therefore in this second, s = —, case the possibility that, at
some times t = ¢ty mod(2), the coordinate ¢ vanish, ¢(to + 2n7) = 0, and therefore that
at those times p(t) diverge, see (12).

The periodic, indeed isochronous, character of the time evolution of the classical canon-
ical variables, see (10) and (13), suggests that the corresponding quantized system — at
least for some appropriate quantization prescription (see below) — feature the discrete
equispaced spectrum (4).

To quantize the two Hamiltonian systems (5) we rewrite first of all these Hamiltonians
as follows:
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Clearly in the classical case, namely when p and ¢ commute, these Hamiltonians, (14),
are independent of the value of the constant A and coincide with the Hamiltonian (5); and,
as it happens, this is as well true in the quantum case, when we perform the replacement

d
=, = —7— 15
q p - (15)
(corresponding to the fact that p and ¢ are noncommuting operators, indeed the commuta-
tor [q, p] equals now the imaginary unit, [¢, p| = ), and we must then solve the Schrodinger
equation

H®) (=i %,x) VYn(z) = Epthp(x), s==+. (16)
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Indeed via (5) and (15) this Schrédinger equation (turns out to be independent of A
and) reads

—5’”142—%4'02 (l’—l—;) ¢n:2CEnwn7 s==4 . (17)

Here and throughout primes denote of course differentiations with respect to the argument
of the functions they are appended to, and we are omitting for notational simplicity
to indicate explicitly the dependence of the eigenfunction v, (z) = ¥,(s;x) and the
eigenvalue F,, = E,(s) on the parameter s = + that distinguishes the two models under
consideration.

Note that the same outcome would be produced by the “Weyl” quantization prescrip-
tion (see, for instance, the Appendix of [1], and the references cited there) which entails

2
[F @] yoyr = = |F@) oz + F0) g + 1 F'0)]. (18)

hence it yields, directly from (5), again the Schrédinger equation (17).
To solve the Schrodinger equation (17) we set

n(z) = exp (—cx) Z An,m e (19)

m=0

We then get for the coefficients a,, ,, the recursion relation

E,—(m+a+3)

Anm+1 = —2Canm . 1)2 .2 =&, (20)
with the following two conditions:

o =sc?, s=4, (21)

En:n+oz+%, n=0,1,2,... (22)

The first of these two conditions, (21), is consistent with the fact that the sum at the
right-hand side of (19) starts at m = 0, and the second condition, (22), is consistent with
the fact that the sum in the right-hand side of (19) ends at m = n.

At this point we must consider separately the two cases with s = + and s = —.

In the s = 4 case, the condition (21), together with (6), entails

a=c>0. (23)

Note that this implies that the eigenfunction ¢, (z), see (19), vanishes at x = 0, 1,,(0) = 0.
This is consistent with the fact that in this case the classical motion is confined to the
positive real axis, 0 < ¢(t) < oo, as discussed above. We can therefore limit consideration
of the eigenfunction v, () to the interval 0 < 2 < oo, with the boundary conditions

¥n(0) =0, lim [zP ¢, (x)] =0, (24)

r—00
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where p is an arbitrary (of course finite) number; and it is then clear that in the functional
space characterized by such restrictions (as well as by the requirement that i, (x) be
nonsingular for 0 < z < co) the quantum Hamiltonian operator H(*)(p, q) (see (14)) is self-
adjoint. And indeed in this case, at least for the (most natural) quantization prescription
as given above, which in this case also happens to coincide with the “Weyl” rule [1], we get
(see (22) with (23)) the equispaced spectrum (4) with the following simple identification
of the ground-state energy,

1
E0:§+C. (25)

It is interesting to compare these findings with the results obtained [1] by quantizing
the Hamiltonian H; (p, q), see (1), which is related to the Hamiltonian H () (p, q) treated
here, see (5), by the simple canonical transformation

1
= p=-pq . (26)

For the quantized Hamiltonian H;(p, q), see (1), the equispaced spectrum (4) was also
obtained [1], but with the following expression of the ground-state energy:

By= g+ V&, (27)
where p is a constant which depends on the choice of the quantization prescription [1]
and takes the value p = % if the “Weyl” rule is adopted. Clearly the condition ¢ > p
is necessary in order that this expression, (27), of the ground-state energy Ej be real,
and indeed the same condition is required [1] in order that the quantized Hamiltonian
Hi(p,q), see (1), be self-adjoint. No analogous restriction emerged in the (quite natural)
quantization of the Hamiltonian H ) (p,q), as described herein.

This is of course one more illustration of the well-known fact [4] that “canonical trans-
formations and quantization” need not commute, namely that a different outcome (for
instance a different ground-state energy, or even a quantum Hamiltonian operator that
does, or does not, possess the essential property to be self-adjoint) may be obtained by
quantizing a system before or after performing a canonical transformation.

Let us finally proceed and consider the other case, s = —.

Then from the condition (21) we infer that « is imaginary, hence we see from (22) that
the energy spectrum is no longer real. This is of course an indication that the quantum
Hamiltonian operator H (_)(—z’ %, x), see (14), is not self-adjoint in the functional space
which contains the eigenfunction v, (), which indeed in this case does not vanish at z = 0,
where the Hamiltonian operator is singular. We therefore must conclude that in this s = —
case quantization runs into difficulties (independently of the value of ¢), in spite of the
fact that, as we saw above, the classical solution ¢(¢) of the Newtonian equation of motion
yielded by this Hamiltonian is nonsingular and periodic with period 27 (but let us recall
that in this s = — case, in contrast to the s = + case discussed above, the other canonical
variable, p(t), might become singular at certain times; while of course the Hamiltonian
remains itself constant throughout the classical motion).

The analogies and differences of the findings for the models considered herein, and
for the three models previously considered [1] [2], move us to conclude by reiterating [2]
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our hunch that these results are probably pedagogically useful: perhaps they should be
included in the teaching of elementary quantum mechanics courses.
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