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Abstract. We define algebraic families of (all) morphisms which are purely algebraic
analogs of quantum families of (all) maps introduced by P. M. So ltan. Also, algebraic fam-
ilies of (all) isomorphisms are introduced. By using these notions we construct two classes
of Hopf-algebras which may be interpreted as the quantum group of all maps from a fi-
nite space to a quantum group, and the quantum group of all automorphisms of a finite
noncommutative (NC) space. As special cases three classes of NC objects are introduced:
quantum group of gauge transformations, Pontryagin dual of a quantum group, and Galois-
Hopf-algebra of an algebra extension.
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1. Introduction

Our work is based on the extension to the noncommutative setting of the fol-

lowing picture. Let X and Y be compact Hausdorff spaces. If S is a Hausdorff

space then there is a canonical one-to-one correspondence between continuous maps

f : S ×X → Y and continuous families f = {f(s, ·)}s∈S of continuous maps from

X to Y with parameter space S. Moreover, by the exponential law of topology,

there is a canonical homeomorphism Y S×X ≃ (Y X)S where the mapping spaces are

endowed with compact-open topology. Indeed, the family of all continuous maps

from X to Y , that is the family ē induced by the evaluation map e : Y X ×X → Y

defined by e(a, x) = a(x), and the space Y X are completely characterized by the

following universal property. For every Hausdorff space S and any continuous map

f : S×X → Y there is a unique continuous map f that makes the following diagram
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commutative:

Y X ×X
e // Y

S ×X

f×idX

OO

f

;;
✈
✈
✈
✈
✈
✈
✈
✈
✈

In the context of NC geometry and operator algebra, So ltan [15] and Woronowicz

in [21] introduced the notion of the quantum space of all maps between two C*-

algebraic NC spaces. To define this notion they used the C*-dual of the above

universal property: For two quantum spaces QA and QB, a quantum space QC

together with a ∗-homomorphism φ : B → A⊗C is called the quantum family of all

maps from QA to QB if for every ∗-homomorphism ψ : B → A ⊗D, between C*-

algebras, there is a unique ∗-homomorphism ψ : C → D satisfying (idA ⊗ ψ)φ = ψ.

So ltan in [15] showed that such universal C*-algebra C and ∗-homomorphism φ exist

when QA is a finite quantum space, i.e. A is a finite dimensional C*-algebra. He

also showed ([15], [16]) that if B = A then C has a canonical C*-bialgebra structure

(as in the classical case the space XX is a topological semigroup) and the bialgebra

structure of some classes of quantum groups, e.g. quantum permutation groups ([20],

[2]) and quantum isometry groups ([1]), are the same as that of C.

The aim of this paper is to study the purely algebraic version of the quantum

space of all maps and its bialgebra structures. It seems that our algebraic formalism

is more interesting and useful than the C*-formalism because the class of finite

dimensional C*-algebras restricts only to finite direct sums of full matrix algebras

over the complex field.

In Section 2 we define the algebraic family of all morphisms from an algebra B to

another algebra A over a commutative ring K. This will be a morphism m(B,A) :

B → A⊗M(B,A) between algebras which satisfies a universal property analogous to

the above. As mentioned above, this is a purely algebraic reformulation of the notion

of quantum family of all maps, see [15]. As an analogue of Theorem 3.3 of [15], we

show that m(B,A) exists if A is a free finite rank K-module. Also we consider some

elementary properties of M(·, A) as a functor on the category of algebras.

In Section 3 we define algebraic families of all isomorphisms. The idea of the

definition comes from the following trivial fact: A family f associated with the

continuous map f : S × X → Y is a family of homeomorphisms from X onto Y if

and only if there is another family g associated with a continuous map g : S×Y → X

such that g(s, f(s, x)) = x and f(s, g(s, y)) = y for every x ∈ X , y ∈ Y and s ∈ S. It

follows that the family of all homeomorphisms must be universal with respect to this

property. Then by dualizing this universal property we find the desired notion of the

algebraic family of all isomorphisms i(B,A) : B → A⊗ I(B,A) from B onto A. We

will show that i(B,A) exists if both A and B are free finite rank K-modules.
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In Section 4 we consider the existence of duals of the following classical objects:

(1) The space of all bundle morphisms between two fibre bundles over a classical

space.

(2) The space of all continuous maps between two classical spaces which are identity

over a common subspace.

(3) The space of all continuous group homomorphisms between two topological

groups.

(4) The space of all G-maps between two G-spaces for a topological group G.

If G is a compact group then GX is a topological group for every compact space X .

Section 5 is devoted to the noncommutative analog of this fact. More precisely, we

will show that if B is a Hopf-algebra and A is commutative and finite-rank then

M(B,A) has a canonical Hopf-algebra structure. In the C*-case this construction

has been considered in [17] and [13].

In Sections 6 and 7, by using the results of the preceding sections, we construct two

classes of Hopf-algebras which may be interpreted as the quantum group of gauge

transformations over trivial quantum vector bundles in the sense of [4], and as the

Pontryagin dual of finite-rank Hopf-algebras.

If X is a compact Hausdorff space then the space of all homeomorphisms of X is

a topological group. In Section 8 we show this is also the case in the dual context.

Indeed, we will show that for any finite-rank Hopf-algebra A the algebra I(A,A) has

a canonical Hopf-algebra structure. Finally, we consider a notion dual to the notion

of Galois group of algebra extensions.

We announce that there is a C*-algebraic concept of the family of quantum in-

vertible maps due to Podleś, see [12], [14, ] which is different from our notion of the

algebraic family of isomorphisms and because of its topological nature it seems that

its purely algebraic formulation is not interesting. Also, after preparation of this

paper we received a recent paper [14] of Skalski and So ltan where they consider C*-

algebraic quantum group structures on Podleś’ families of quantum invertible maps.

We delegate the study of relations between the results of the present paper and those

of [14] to a future work.

Notation and preliminaries. The identity map on a set X is denoted by

iX . Throughout, all rings have unit and ring homomorphisms preserve units. K

denotes a fixed nonzero commutative ring. Further ⊗ denotes the tensor product

over K. For any permutation σ of {1, . . . , n}, Fσ denotes the flip homomorphism

x1 ⊗ . . . ⊗ xn 7→ xσ(1) ⊗ . . . ⊗ xσ(n) on the tensor product M1 ⊗ . . . ⊗ Mn of K-

modules; when there is no risk of confusion we will write F instead of Fσ. An

algebra is a ring together with a structural ring homomorphism K → A. A mor-

phism between algebras is a ring homomorphism which commutes with structural
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homomorphisms. K[xi]i∈I and K
c[xi]i∈I denote, respectively, the polynomial alge-

bra in non-commuting and commuting variables {xi}i∈I . Let B be an algebra. If

S ⊆ B generates B as an algebra, we write IS for the kernel of the canonical mor-

phism K[xs]s∈S → B defined by xs 7→ s. Alg denotes the category of algebras and

Alg(B,A) is the set of morphisms from B to A. The elements of Alg(B,K) are called

characters of B. The full subcategory of commutative algebras is denoted by Algc.

The multiplication of A is denoted by µA : A⊗A→ A. Note that if A is commuta-

tive then µA is a morphism. By a finite-rank algebra we mean an algebra which is

a free K-module of finite rank. Throughout, finite-rank is abbreviated to FR. A co-

multiplication on an algebra B is a morphism ∆: B → B⊗B which is coassociative:

(∆⊗ iB)∆ = (iB ⊗∆)∆. So ∆ is cocommutative if ∆ = F∆. A character ε on B is

a counit if (iB ⊗ ε)∆ = (ε⊗ iB)∆ = iB. So a morphism S : B → Bop is an antipode

if µB(S ⊗ iB)∆ = µB(iB ⊗ S)∆ = ε1. Then (B,∆, ε) and (B,∆, ε, S) are called the

bialgebra and the Hopf-algebra, respectively. By a (right) B-comodule we mean

an algebra V together with a right coaction of B, i.e. a morphism ̺ : V → V ⊗ B

satisfying (̺⊗ iB)̺ = (iV ⊗∆)̺ and (iV ⊗ ε)̺ = iV .

2. Algebraic family of all morphisms

In this section we consider the notions of the algebraic family of morphisms and the

algebraic family of all morphisms from an algebra B to another algebra A. We shall

show that the latter exists when A is a FR algebra. Also we consider some functorial

properties of these notions and some simple explicit examples and computations.

Definition 2.1. Let A, B, B′, C and C′ be algebras.

(a) A morphism ψ : B → A⊗C is called an algebraic family of morphisms from B

to A with parameter-algebra C. When there are no ambiguity about A, B and C,

we call ψ just ’family’.

(b) A family with parameter-algebra 0 is called the empty family of morphisms.

If f1, . . . , fn is a finite collection of morphisms from B to A then ψ : B → A ⊗ K
n,

defined by ψ(b) =
n∑
i=1

fi(b)⊗ ei where e1, . . . , en denote the standard basis, is called

the trivial family.

(c) M(B,A) denotes the class of all families of morphisms from B to A; M(B,A)

can be viewed as a category such that objects are families and morphisms from

ψ : B → A ⊗ C to ψ′ : B → A ⊗ C′ are algebra morphisms ϕ : C → C′ satisfying

ψ′ = (iA ⊗ ϕ)ψ.

(d) Let ψ : B → A ⊗ C and ψ′ : B′ → B ⊗ C′ be families of morphisms from B

to A and from B′ to B, respectively. Then the family (ψ ⊗ iC′)ψ′ of morphisms

from B′ to A (with parameter-algebra C ⊗ C′) is denoted by ψ ◦ ψ′ and called the
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composition of ψ and ψ′. (Note that the composition of families can be viewed as

a functor from M(B,A)×M(B′, B) to M(B′, A).)

(e) Let C be a subclass of M(B,A). Then ψ ∈ C is called a C-universal family if

it is an initial object of C when C is viewed as a full subcategory of M(B,A). (Note

that if a C-universal family exists then it is unique up to isomorphism.)

(f) Let C be a subclass of M(B,A). Then Cc denotes the subclass of C containing

families with commutative parameter-algebras.

Lemma 2.2. Let C ⊆ M(B,A). Suppose that φ : B → A ⊗ C is a C-universal

family. Consider the morphism ψ = (iA ⊗ ϕ)φ : B → A ⊗ C/[C,C], where [C,C]

denotes the commutator ideal of C and ϕ : C → C/[C,C] is the canonical projection.

Then ψ is Cc-universal if it belongs to C.

P r o o f. Straightforward. �

Proposition 2.3. Let A and B be algebras such that A is FR. Then there exists

an M(B,A)-universal family, say φ : B → A ⊗ Z. This family has the following

additional properties.

(a) The set {(α⊗iZ)φ(b)}, where b ∈ B and α runs over all module homomorphisms

from A to K, generates Z as an algebra.

(b) If B is finitely generated or presented algebra then Z is finitely generated or

presented algebra, respectively.

(c) For any algebra C there is a canonical one-to-one correspondence between mor-

phisms from B to A ⊗ C and morphisms from Z to C. In particular there is

a one-to-one correspondence between morphisms from B to A and characters

on Z.

(d) Z represents the covariant functor Alg(B,A ⊗ ·) from Alg to the category of

sets.

The morphism φ is called the algebraic family of all morphisms from B to A. We

will also use the symbols m(B,A) and M(B,A) for φ and Z, respectively.

P r o o f. Suppose that S ⊆ B generates B as an algebra and {ai : i = 1, . . . , n}

is a basis for A as a free module. Let Z be the universal algebra generated by zsi,

s ∈ S, such that for every polynomial p ∈ IS the equation p
({ n∑

i=1

ai ⊗ zsi

}
s∈S

)
= 0

(in A⊗ Z) is satisfied. Then the assignment s 7→
n∑
i=1

ai ⊗ zsi defines a morphism φ.

Let ψ : B → A ⊗ C be a morphism and suppose that cs,i ∈ C is such that ψ(s) =
n∑
i=1

ai⊗ csi. Thus the equation p
({ n∑

i=1

ai⊗ csi

}
s∈S

)
= 0 is satisfied for every p ∈ IS .

Then the universality of Z shows that the assignment zsi 7→ csi defines a morphism ψ
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and this morphism is the only one that satisfies ψ = (iA ⊗ ψ)φ. This shows that

φ is a universal family in M(B,A). We set that (a) and (b) immediately follow from

the construction of Z, and it is clear that the assignment ψ 7→ ψ defines the desired

correspondence in (c). Also (d) trivially follows from (c). �

Remark 2.4. Let A and B be algebras such that A is FR. It follows from Propo-

sition 2.3 and Lemma 2.2 that there exists a family mc : B → A⊗Mc(B,A) which is

Mc(B,A)-universal. It also follows that Mc(B,A) is canonically isomorphic to the

quotient of M(B,A) by its commutator ideal, and analogs of conditions (a)–(d) of

Proposition 2.3 are satisfied for Mc(B,A).

The universality of families of all morphisms easily implies the following proposi-

tion.

Proposition 2.5. Let A and B be algebras such that A is FR and commutative.

Then Mc(B,A) and Mc(B/[B,B], A) are isomorphic.

P r o o f. Straightforward. �

Remark 2.6. Let A and B be algebras such that A is FR.

(a) It follows easily from the universal property that M(B,K) = B, Mc(B,K) =

B/[B,B], and M(K, A) = Mc(K, A) = K.

(b) From the construction of the universal parameter-algebra in the proof of Propo-

sition 2.3 we see that M(B,Kn) is the free product B ∗ . . .∗B of n copies of B. (Here

free product means coproduct in Alg.) Similarly, we have Mc(B,Kn) =
n⊗
i=1

B/[B,B]

by Remark 2.4. It follows that M(K[x],Kn) = K[x1, . . . , xn] and Mc(K[x],Kn) =

K
c[x1, . . . , xn]. Also if K is an algebraically closed field and B is the algebra of poly-

nomial functions on an affine variety V then Mc(B,Kn) is the algebra of polynomial

functions on V n.

(c) From Proposition 2.3 (c) it follows that if there is a morphism from B to A

then Z := M(B,A) 6= 0 and also Zc := Mc(B,A) 6= 0. Moreover, if K is a field, it

follows from Dedekind’s lemma that dimK Z
c (and so dimK Z) is not less than the

cardinality of the set of algebra morphisms from B to A.

(d) Conversely, suppose that Zc 6= 0. So Zc has a maximal ideal. If K is an

algebraically closed field and B is finitely generated then Proposition 2.3 (b) implies

that Zc is finitely generated and therefore, it follows from Zariski’s lemma that Zc

has a character and so there exits an algebra morphism from B to A.

(e) Suppose that K is an algebraically closed field and B is finitely generated.

Moreover, suppose that there are only finitely many morphisms from B to A. Then

Zc/J is isomorphic to the algebra K
n where J denotes the Jacobson radical and n

is the number of distinct morphisms from B to A. To see this fact, let f1, . . . , fn be
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the collection of all morphisms from B to A and let ψ : B → A ⊗ K
n be its trivial

family. Let ψ : Zc → K
n be the unique morphism which satisfies ψ = (iA ⊗ ψ)mc.

From Proposition 2.3 (c) it follows that Zc has exactly n distinct characters and

these are of the form piψ, i = 1, . . . , n, where pi : K
n → K denotes the canonical

projection on the i’th component. It follows that any maximal ideal of Zc is in the

form of ker(piψ) and so ψ induces an injective morphism from Zc/J to K
n. From

Dedekind’s Lemma it follows that dimK Z
c/J > n. So Zc/J and K

nare isomorphic.

Let A be a FR algebra. Let B1 and B2 be two algebras and f : B1 → B2 a mor-

phism. Then the universality of M(B1, A) shows that there is a unique morphism

M(f,A) = M(f) that makes the following diagram commutative:

B1

f

��

m(B1,A)// A⊗M(B1, A)

iA⊗M(f)

��
B2

m(B2,A)// A⊗M(B2, A).

Analogously, if g : B2 → B3 is another morphism we find morphisms M(g) :

M(B2, A) → M(B3, A) and M(gf) : M(B1, A) → M(B3, A). Then again the univer-

sality of M(B1, A) implies M(gf) = M(g)M(f). Similarly, we have M(iB) = iM(B,A)

for any algebra B. Analogous statements also hold for Mc. So we have proved the

theorem below.

Theorem 2.7. Let A be a FR algebra. Then M(·, A) : Alg → Alg (as well as

Mc(·, A) : Alg → Algc) is a covariant functor.

Note that for a fixed algebra B, M(B, ·) and Mc(B, ·) can be viewed as contravari-

ant functors from the category of FR algebras to Alg and Algc, respectively.

Theorem 2.8. Let A be a FR commutative algebra. Then Mc(·, A) preserves

the tensor product.

P r o o f. Suppose that B1 and B2 are two algebras. Let Ci = Mc(Bi, A) and

φi = mc(Bi, A) (i = 1, 2) and also let D = Mc(B1 ⊗B2, A) and ψ = mc(B1 ⊗B2, A).

We must show that C1 ⊗ C2 and D are isomorphic. Let αi : Bi → B1 ⊗ B2 be the

structural morphisms, i.e. α1(b1) = b1 ⊗ 1 and α2(b2) = 1 ⊗ b2 (b1 ∈ B1, b2 ∈ B2).

Then we find morphisms M(αi) : Ci → D. The coproduct structure of C1 ⊗ C2

(in Algc) induces a morphism f : C1 ⊗ C2 → D such that fγi = M(αi) where

γi : Ci → C1 ⊗ C2 are structural morphisms. Let g : D → C1 ⊗ C2 be the unique
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morphism that makes the following diagram commutative:

B1 ⊗B2

φ⊗φ

��

ψ
// A⊗D

iA⊗g

��
A⊗ (C1 ⊗ C2)

A⊗ C1 ⊗A⊗ C2

iA⊗F⊗iC2 // (A⊗A)⊗ (C1 ⊗ C2).

µA⊗iC1⊗C2

OO

Then it is easily checked that gfγi = γi. This fact together with the coproduct

universal property of C1 ⊗ C2 implies gf = i(C1⊗C2). Also it is easily checked that

(iA⊗fg)ψ = ψ. So by the universal property of D we have fg = iD. This completes

the proof. �

Remark 2.9. Let B1, B2 and A be algebras such that A is commutative and FR.

Then there is a canonical morphism from M(B1 ⊗B2, A) to M(B1, A)⊗M(B2, A),

analogous to g in the proof of Theorem 2.8.

The following theorem states an exponential law in our dual formalism.

Theorem 2.10. Let A1, A2 and B be algebras such that A1 and A2 are FR.

Then the algebrasM(B,A1 ⊗A2) and M(M(B,A1), A2) are isomorphic.

P r o o f. Let φi = m(B,Ai), φ12 = m(B,A1 ⊗ A2) and φ = m(M(B,A1), A2).

Let ψ be the unique morphism such that the diagram

(2.1) B

φ1

��

φ12 // (A1 ⊗A2)⊗M(B,A1 ⊗A2)

i(A1⊗A2)⊗ψ

��
A1 ⊗M(B,A1)

iA1⊗φ // (A1 ⊗A2)⊗M(M(B,A1), A2)

is commutative. Let ϕ and ψ′ be morphisms that make the following diagrams

commutative:

(2.2) B
φ12

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

φ1 // A1 ⊗M(B,A1)

iA1⊗ϕ

��
A1 ⊗ (A2 ⊗M(B,A1 ⊗A2))
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(2.3) M(B,A1)

ϕ

))❘❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

φ // A2 ⊗M(M(B,A1), A2)

iA2⊗ψ
′

��
A2 ⊗M(B,A1 ⊗ A2).

By (2.3), we have iA1 ⊗ ϕ = (i(A1⊗A2) ⊗ ψ′)(iA1 ⊗ φ) and so by (2.1) and (2.2) we

have
(i(A1⊗A2) ⊗ (ψ′ψ))φ12 = (i(A1⊗A2) ⊗ ψ′)(i(A1⊗A2) ⊗ ψ)φ12

= (i(A1⊗A2) ⊗ ψ′)(iA1 ⊗ φ)φ1

= (iA1 ⊗ ϕ)φ1 = φ12.

This equality together with the universality of M(B,A1 ⊗ A2) implies that ψ′ψ is

the identity morphism. Let b ∈ B, let f : A1 → K be a module homomorphism and

c = (f ⊗ iM(B,A1))φ1(b) (note that by Proposition 2.3 (a) such an element generates

M(B,A1)). By (2.2) and (2.1) we have

(iA2 ⊗ ψ)ϕ(c) = (iA2 ⊗ ψ)ϕ(f ⊗ iM(B,A1))φ1(b)

= (iA2 ⊗ ψ)(f ⊗ i(A2⊗M(B,A1⊗A2)))φ12(b)

= (f ⊗ i(A2⊗M(M(B,A1),A2)))(iA1 ⊗ φ)φ1(b)

= φ(f ⊗ iM(B,A1))φ1(b) = φ(c).

Thus (iA2 ⊗ ψ)ϕ = φ. This equality together with (2.3) implies,

(iA2 ⊗ (ψψ′))φ = (iA2 ⊗ ψ)(iA2 ⊗ ψ′)φ

= (iA2 ⊗ ψ)ϕ = φ.

Then the above equality together with the universality of M(M(B,A1), A2) shows

that ψψ′ is the identity morphism. This completes the proof. �

An analogue of Theorem 2.10 is also satisfied for the functor Mc. The following

lemma states a fact that will be used in Section 5.

Lemma 2.11. Let A and B be algebras such that A is commutative and FR.

Then there is a canonical isomorphism M(Bop, A) ∼= M(B,A)op.

P r o o f. Straightforward. �
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3. Algebraic families of isomorphisms

In this section we define algebraic families of isomorphisms and algebraic families

of all isomorphisms.

Definition 3.1. Let A and B be algebras and let ψ : B → A⊗C be a family of

morphisms from B to A. Suppose that there exists a family φ : A→ B⊗C such that

(iB ⊗ µC)(φ ◦ ψ) = iB ⊗ 1 and (iA ⊗ µC)(ψ ◦ φ) = iA ⊗ 1. Then ψ is called a family

of isomorphisms from B onto A or, an invertible family of morphisms from B to A.

Also, φ is called an inverse for ψ. The class of all invertible families of morphisms

from B to A is denoted by I(B,A).

Suppose that ψ : B → A ⊗ C is an invertible family and let φ1, φ2 : A → B ⊗ C

be two inverses for ψ. Then from the identity (iA ⊗ µC)(ψ ⊗ iC)φ2(a) = a ⊗ 1

(a ∈ A) it is easily seen that φ1 = (iB ⊗ µC)(φ1 ⊗ iC)(iA ⊗ µC)(ψ ⊗ iC)φ2. Also it

follows from the associativity of µC (i.e. µC(iC⊗µC) = µC(µC⊗iC)) and the identity

(iB⊗µC)(φ1⊗iC)ψ(b) = b⊗1, b ∈ B, that iB⊗C = (iB⊗µC)(φ1⊗iC)(iA⊗µC)(ψ⊗iC).

Thus we conclude φ1 = φ2. So we denote the inverse of an invertible family ψ by ψ−1.

It is also easily checked that the composition of ψ with another invertible family ψ′ :

B′ → B⊗C′ is an invertible family, too. Indeed, (ψ ◦ψ′)−1 = (iB′ ⊗F )(ψ′−1
◦ψ−1).

Example 3.2. (a) Suppose that f1, . . . , fn is a finite collection of isomorphisms

from B onto A. So the trivial family ψ : B → A⊗K
n, defined by ψ(b) =

n∑
i=1

fi(b)⊗ei,

b ∈ B, is an invertible family. Indeed, ψ−1(a) =
n∑
i=1

f−1
i (a) ⊗ ei, a ∈ A. Also, note

that the empty family of morphisms is an invertible family.

(b) Let (B,∆, ε, S) be a commutative Hopf-algebra and V a B-comodule with the

coaction ̺ : V → V ⊗B. Let ̺′ = (iV ⊗ S)̺. We have

(iV ⊗ µB)(̺
′ ◦ ̺) = (iV ⊗ µB)([(iV ⊗ S)̺]⊗ iB)̺

= (iV ⊗ µB)(iV ⊗ S ⊗ iB)(̺⊗ iB)̺

= (iV ⊗ µB)(iV ⊗ S ⊗ iB)(iV ⊗∆)̺

= (iV ⊗ [µB(S ⊗ iB)∆])̺

= (iV ⊗ ε1B)̺ = iV ⊗ 1B.

Analogously, we have (iV ⊗µB)(̺◦̺
′) = iV ⊗1B. Therefore, ̺ is an invertible family

with inverse ̺′.
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Proposition 3.3. Let A and B be FR algebras. Then there exists an I(B,A)-

universal family, say φ : B → A ⊗ Z. Moreover, this family has the following addi-

tional properties:

(a) Z is a finitely generated algebra.

(b) There is a canonical one-to-one correspondence between isomorphisms from B

onto A and characters of Z.

Analogues of the above statements also hold for the subclass Ic(B,A). Indeed, the

canonical morphism φc : B → A ⊗ Z/[Z,Z], induced by φ, is an Ic(B,A)-universal

family.

We call both φ and φc algebraic family of all isomorphisms from B onto A, and

sometimes denote them by i(B,A) and ic(B,A), and their parameter-algebras by

I(B,A) and Ic(B,A), respectively.

P r o o f. Suppose that A0 = {ai : i = 1, . . . , am} and B0 = {bj : j = 1, . . . , bn}

are, respectively, bases for A and B as free-modules. Let Z be the universal algebra

generated by zji and z′ij such that the following four classes of equations are satisfied:

(i) q
( m∑
i=1

ai ⊗ z1i, . . . ,
m∑
i=1

ai ⊗ zni

)
= 0 for every q ∈ IB0 .

(ii) p
( n∑
j=1

bj ⊗ z′1j , . . . ,
n∑
j=1

bj ⊗ z′mj

)
= 0 for every p ∈ IA0 .

(iii)
m∑
i=1

z′ikzji = 0 and
m∑
i=1

z′ijzji = 1 for 1 6 j, k 6 n with j 6= k.

(iv)
n∑
j=1

zjlz
′
ij = 0 and

n∑
j=1

zjiz
′
ij = 1 for 1 6 i, l 6 m with i 6= l.

(i) shows that the assignment bj 7→
m∑
i=1

ai ⊗ zji defines a morphism φ : B →

A⊗Z. Similarly, (ii) shows that the assignment ai 7→
n∑
j=1

bj⊗z
′
ij defines a morphism

φ′ : A → B ⊗ Z. (iii) shows that (iB ⊗ µZ)(φ
′ ⊗ iZ)φ(bj) = bj ⊗ 1. Similarly, (iv)

shows that (iA⊗µZ)(φ⊗ iZ)φ
′(ai) = ai⊗1. So φ is a family of isomorphisms from B

onto A with inverse φ′. Now suppose that ψ : B → A⊗C is a family of isomorphisms

and let cji and c′ij in C be such that ψ(bj) =
m∑
i=1

ai ⊗ cji and ψ−1(ai) =
n∑
j=1

bj ⊗ c′ij .

Then the analogs of the above four classes of equations are satisfied for cji and c′ij .

Thus, the universality of Z shows that the assignments zji 7→ cji and z′ij 7→ c′ij define

an algebra morphism ψ : Z → C which satisfies ψ = (iA⊗ψ)φ. Uniqueness of ψ also

follows from universality of Z. Therefore φ is a universal family of isomorphisms.

(a) is trivial by the construction of Z. Let ψ : B → A be an isomorphism. Then ψ

can be viewed as a family of isomorphisms with the parameter-algebra K, and so, ψ

is a character on Z. This proves (b). The other statements follow from Lemma 2.2.

�
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Remark 3.4. Let A and B be FR algebras.

(a) It follows from Proposition 3.3 (b) that if there is an isomorphism from B onto

A then I(B,A) 6= 0 and also Ic(B,A) 6= 0.

(b) Conversely, if K is an algebraically closed field, then from Ic(B,A) 6= 0 it

follows that B and A are isomorphic (see Remark 2.6 (d)).

Let us call two algebras A and B quasi-isomorphic if there is a nonempty algebraic

family of isomorphisms from B onto A. (Note that this notion is very far from the

notion of quasi-isomorphic chain complexes in homological algebra.) Then quasi-

isomorphism is an equivalence relation on the class of algebras. It is clear that

isomorphism (of algebras) implies quasi-isomorphism. But there are non-isomorphic

algebras which are quasi-isomorphic: Let C be an algebra which has not IBN, see [8],

that is there are natural numbers n and m with n 6= m such that Cn and Cm are

isomorphic left free C-modules. Equivalently, there are elements sji and tij in C

for 1 6 i 6 m and 1 6 j 6 n such that
m∑
i=1

sjitij′ = δjj′ and
n∑
j=1

tijsji′ = δii′ . Let

A = K[x1, . . . , xm] and B = K[y1, . . . , yn] and let the families ψ : A → B ⊗ C and

φ : B → A ⊗ C be defined by ψ(xi) =
n∑
j=1

yj ⊗ sji and φ(yj) =
m∑
i=1

xi ⊗ tij . Then

it is easily checked that ψ = φ−1. So, A and B are quasi-isomorphic. Indeed, this

is the case for every n and m; this follows from the fact that if C is the algebra

of all module endomorphisms on the infinite direct sum
∞⊕
i=1

K then Cn and Cm are

isomorphic for every n and m as left C-modules (see [8], Example 1.4).

We end this section by a list of interesting questions. Is there any relation be-

tween quasi-isomorphism and Morita equivalence, or algebraic homotopy equivalence

(see [5], [7])? Morita equivalent algebras are characterized by the existence of some

specific bimodules, see [8], Section 18C. Is it possible to characterize quasi-isomorphic

algebras in this manner? For any fixed algebra C, let Alg∗ be a category whose ob-

jects are algebras and a typical morphism from B to A is a family φ : B → A⊗C⊗n,

for some n > 0, together with the composition of families as the composition law

of the category. (Note that if C = K then Alg∗ = Alg.) Is there a Quillen’s model

category structure (see [3]) on Alg∗ such that algebraic families of isomorphisms

play the role of quasi-equivalences of the model? Indeed the term quasi-isomorphism

introduced above refers to this (conjectured) property.
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4. Some other universal families of morphisms

Let A and B be fixed algebras. Consider the following four types of algebraic

families.

(1) Let M be a K-module and let β : M → B and α : M → A be module homo-

morphisms. M1 denotes the class of all families ψ : B → A⊗ C satisfying

α(m)⊗ 1 = ψβ(m), m ∈M.

(2) Let M ′ be a K-module and let β′ : B → M and α′ : A→ M be module homo-

morphisms. M2 denotes the class of all families ψ : B → A⊗ C satisfying

β′(b)⊗ 1 = (α′ ⊗ iC)ψ(b), b ∈ B.

(3) Let ∆: B → B⊗B and Γ: A→ A⊗A be module homomorphisms. M3 denotes

the class of all families ψ : B → A⊗ C satisfying

(Γ⊗ iC)ψ = (iA⊗A ⊗ µC)(iA ⊗ F ⊗ iC)(ψ ⊗ ψ)∆.

(4) Let N be a K-module and let Λ: B → B ⊗N and Θ: A → A ⊗N be module

homomorphisms. M4 denotes the class of all families ψ : B → A⊗C satisfying

(iA ⊗ F )(Θ⊗ iC)ψ = (ψ ⊗ iN )Λ.

The algebraic families introduced in (1)–(4) are respectively analogues of the fol-

lowing four classes of classical families of maps:

(1′) Families of bundle morphisms between two fibre bundles over a classical space.

(2′) Families of continuous maps between two classical spaces which are identity

over a common subspace.

(3′) Families of continuous group homomorphisms between two topological groups.

(4′) Families of G-maps between two G-spaces for a topological group G.

All proofs of theorems below are analogous to the proofs of Propositions 2.3

and 3.3, and are omitted for brevity.

Theorem 4.1. Together with the assumptions of (1) suppose that A is FR. Then

there exists anM1-universal family, denoted by φ1 : B → A ⊗ Z1. Moreover, there

is a canonical one-to-one correspondence between characters of Z1 and morphisms

f : B → A satisfying fβ = α.
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Theorem 4.2. Together with the assumptions of (2) suppose that A is FR and

M ′ is free as module. Then there is anM2-universal family, denoted by φ2 : B →

A⊗Z2. Moreover, there is a canonical one-to-one correspondence between characters

of Z2 and morphisms f : B → A satisfying β′ = α′f .

Theorem 4.3. Together with the assumptions of (3) suppose that B is free as

module and A is FR. Then there is an M3-universal family, denoted by φ3 : B →

A⊗Z3. Moreover, there is a canonical one-to-one correspondence between characters

of Z3 and morphisms f : B → A satisfying (f ⊗ f)∆ = Γf .

Theorem 4.4. Together with the assumptions of (4) suppose that B and N are

free as modules and A is FR. Then there is an M4-universal family, denoted by

φ4 : B → A⊗Z4. Moreover, there is a canonical one-to-one correspondence between

characters of Z4 and morphisms f : B → A satisfying (f ⊗ iN)Λ = Θf .

Remark 4.5. Under the assumptions of Theorems 4.1–4.4, it follows from

Lemma 2.2 that there exists an Mc
i -universal family. Moreover, the parameter-

algebra Zc
i of that family is canonically isomorphic to Zi/[Zi, Zi]. Also, if there is

a morphism f : B → A which satisfies the conditions of Theorems 4.1–4.4, then

Zc
i 6= 0.

Let Ii, i = 1, . . . , 4, denote the subclass of Mi containing invertible families.

Theorem 4.6. Suppose that A and B are FR and the assumptions of Theo-

rems 4.1–4.4 are satisfied. Then Ii and Ic
i have universal families.

In the next sections, we show that the constructions achieved in this section may

be endowed with Hopf-algebra structures in somewhat natural manner.

5. The action of M(·, A) on Hopf-algebras

This section is devoted to the construction of a Hopf-algebra structure on

parameter-algebras of families of morphisms from FR commutative algebras to

Hopf-algebras. Most of the results in this section are purely algebraic analogs of the

results of [17] and [13]. By using the fact that any commutative finite dimensional

C*-algebra is isomorphic to a finite product C⊕ . . .⊕ C, So ltan in [17] showed that

this construction in the C*-case is a special case of the Wang free product of compact

quantum groups [19], see also Remark 5.7 below.

Let A be a FR commutative algebra and B an arbitrary algebra. Let φ = m(B,A)

and C = M(B,A). Suppose that ∆ is a comultiplication on B and let ∆: C → C⊗C

be the composition of M(∆) with the canonical morphism from M(B ⊗ B,A) to
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C ⊗C (see Remark 2.9). More explicitly, ∆ is the unique morphism that makes the

following diagram commutative:

B
φ

//

∆

��

A⊗ C

iA⊗∆
��

B ⊗B

φ⊗φ

��

A⊗ (C ⊗ C)

A⊗ C ⊗A⊗ C
iA⊗F⊗iC // (A⊗A)⊗ (C ⊗ C).

µA⊗iC⊗C

OO

Lemma 5.1. ∆ is a comultiplication on C.

P r o o f. By virtue of the universality of C, it is enough to show that the equality

(iA⊗iC⊗∆)(iA⊗∆)φ = (iA⊗∆⊗iC)(iA⊗∆)φ

is satisfied. We have

(iA⊗iC⊗∆)(iA⊗∆) = (iA⊗iC⊗∆)(µA⊗iC⊗C)F (φ⊗φ)∆φ(5.1)

= (µA⊗iC⊗∆)F (φ⊗φ)∆ = (µA⊗iC⊗C⊗C)F (iA⊗C⊗A⊗∆)(φ⊗φ)∆

= (µA⊗iC⊗C⊗C)F (iA⊗C⊗A⊗∆)(φ⊗iA⊗C)(iB⊗φ)∆

= (µA⊗iC⊗C⊗C)F (φ⊗iA⊗C⊗C)(iB⊗iA⊗∆)(iB⊗φ)∆

= (µA⊗iC⊗C⊗C)F (φ⊗iA⊗∆)(iB⊗φ)∆

= (µA⊗iC⊗C⊗C)F (φ⊗[(iA⊗∆)φ])∆

= (µA⊗iC⊗C⊗C)F (φ⊗[(µA⊗iC⊗C)F (φ⊗φ)∆])∆

= (µA⊗iC⊗C⊗C)F (iA⊗C⊗µA⊗iC⊗C)F (φ⊗φ⊗φ)(iB⊗∆)∆,

(iA⊗∆⊗iC)(iA⊗∆) = (iA⊗∆⊗iC)(µA⊗iC⊗C)F (φ⊗φ)∆φ(5.2)

= (µA⊗∆⊗iC)F (φ⊗φ)∆

= (µA⊗iC⊗C⊗C)F (iA⊗∆⊗iA⊗iC)(φ⊗φ)∆

= (µA⊗iC⊗C⊗C)F ([(iA⊗∆)φ]⊗φ)∆

= (µA⊗iC⊗C⊗C)F ([(µA⊗iC⊗C)F (φ⊗φ)∆]⊗φ)∆

= (µA⊗iC⊗C⊗C)F (µA⊗iC⊗C⊗A⊗C)F (φ⊗φ⊗φ)(∆⊗iB)∆.

It is easily checked that the morphisms

(µA⊗iC⊗C⊗C)F (iA⊗C⊗µA⊗iC⊗C)F and (µA⊗iC⊗C⊗C)F (µA⊗iC⊗C⊗A⊗C)F

appearing, respectively, in the last rows of (5.1) and of (5.2) are equal to each other.

Now, we get the result by using the identity (iB⊗∆)∆ = (∆⊗iB)∆. �
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Lemma 5.2. ∆ is cocommutative if ∆ is.

P r o o f. Straightforward. �

Suppose that ε : B → K is a left counit for B. Let ε̃ : B → A be defined by

b 7→ ε(b)1 and let ε̄ be the unique character of C satisfying (iA ⊗ ε̄)φ = ε̃ (indeed,

using the notation of Theorem 2.7, ε̄ = M(ε)).

Lemma 5.3. The character ε̄ is a left counit on C.

P r o o f. By the universal property of C it is enough to show that

(iA⊗[(ε̄⊗ iC)∆])φ = φ.

For every b ∈ B we have

(iA⊗[(ε̄⊗ iC)∆])φ(b) = (iA⊗ε̄⊗iC)(iA⊗∆)φ(b)

= (iA⊗ε̄⊗iC)(m⊗iC⊗C)(iA⊗F⊗iC)(φ⊗φ)∆(b)

= (µA⊗ε̄⊗iC)(iA⊗F⊗iC)(φ⊗φ)∆(b)

= (µA⊗iC)(iA⊗ε̄⊗iA⊗iC)(φ⊗φ)∆(b)

= (µA⊗iC)([(iA ⊗ ε̄)φ]⊗ φ)∆(b)

= (µA⊗iC)(ε̃⊗ φ)∆(b)

= (µA⊗iC)(iA ⊗ φ)(ε̃⊗ iB)∆(b)

= (µA⊗iC)(iA ⊗ φ)(1A ⊗ b) = φ(b).

�

The analogue of the above result holds for a right counit. In particular, if ε is

a counit for B then ε̄ is a counit for C.

Remark 5.4. Let B and D be algebras such that D is commutative. Then

any bialgebra structure (B,∆, ε) induces a monoidal structure ([9], Chapter 9) ⊗̂

on the category M(B,D) as follows. For any two families ψ1 : B → D ⊗ E1 and

ψ2 : B → D ⊗ E2 of morphisms from B to D let

ψ1⊗̂ψ2 = (µD ⊗ iE1⊗E2)(iD ⊗ F ⊗ iE2)(ψ1 ⊗ ψ2)∆.

The associativity of the bifunctor ⊗̂ follows from the coassociativity of ∆, and the

unit object of the monoidal structure is a family B → D defined by b 7→ ε(b)1. If ∆ is

cocommutative then ⊗̂ is a symmetric monoidal structure. Moreover, suppose that B

is a cocommutative Hopf-algebra. Then for any character ξ of B, the family B → D,

defined by b 7→ ξ(b)1, is an invertible object of M(B,D). Moreover, any invertible

object is of this form. It follows that the Picard group (see [6], [10]) of M(B,D) is

isomorphic to the group of characters of B (with group operation induced by ∆).
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Suppose now that (B,∆, ε, S) is a Hopf-algebra. Let S = M(S) : C → Cop,

where Cop is identified with M(Bop, A) (see Lemma 2.11). We shall show that S is

an antipode for the bialgebra (C,∆, ε̄). Suppose b ∈ B and f : A→ K is a K-module

homomorphism. Let c = (f ⊗ iC)φ(b), and note that, by Proposition 2.3 (a), such

elements generate C. Then

µC(iC ⊗ S)∆(c) = µC(iC ⊗ S)∆(f ⊗ iC)φ(b)

= (f ⊗ µC)(iA ⊗ iC ⊗ S)(iA ⊗∆)φ(b)

= (f ⊗ µC)(iA ⊗ iC ⊗ S)(µA ⊗ iC⊗C)(iA ⊗ F ⊗ iC)(φ⊗ φ)∆(b)

= (fµA ⊗ µC)(iA ⊗ iC ⊗ S)(φ⊗ φ)∆(b)

= (fµA ⊗ µC)(iA ⊗ F ⊗ iC)(iA⊗C ⊗ iA ⊗ S)(φ ⊗ φ)∆(b)

= (fµA ⊗ µC)(iA ⊗ F ⊗ iC)(φ ⊗ [(iA ⊗ S)φ])∆(b)

= (fµA ⊗ µC)(iA ⊗ F ⊗ iC)(φ ⊗ φS)∆(b)

= (fµA ⊗ µC)(iA ⊗ F ⊗ iC)(φ ⊗ φ)(iB ⊗ S)∆(b)

= (f ⊗ iC)µA⊗C(φ⊗ φ)(iB ⊗ S)∆(b) = (f ⊗ iC)φµB(iB ⊗ S)∆(b)

= (f ⊗ iC)φ(ε(b)1B) = ε(b)f(1A)1C = ε̄(c)1C .

Analogously, we have µC(S ⊗ iC)∆(c) = ε̄(c)1C . Thus S is an antipode for C. We

have proved the following theorem.

Theorem 5.5. Let A be a FR commutative algebra and let B be a (cocommuta-

tive) bialgebra. ThenM(B,A) has a canonical (cocommutative) bialgebra structure.

Moreover,M(B,A) is a Hopf-algebra if B is.

The analogue of this result is satisfied for Mc:

Theorem 5.6. Let A be a FR commutative algebra and let B be a Hopf-algebra

or bialgebra. ThenMc(B,A) has, respectively, a canonical Hopf-algebra or bialgebra

structure.

P r o o f. For every commutative algebraD, the set Alg(B,A⊗D) has a canonical

group or monoid structure and thus the functor Alg(B,A⊗·) is group or monoid val-

ued, respectively. By the analog of Proposition 2.3 (d) for Mc, the algebra Mc(B,A)

represents Alg(B,A⊗·), and thus has a canonical Hopf-algebra or bialgebra structure

(see [11], Chapter I).

The theorem can of course be proved by another method: By Theorem 5.5,

M(B,A) is a Hopf-algebra or bialgebra. On the other hand, the algebra Mc(B,A)

is the quotient of M(B,A) by the commutator ideal. Since the commutator ideal is

also a Hopf-ideal or biideal it follows that Mc(B,A) is a quotient Hopf-algebra or

bialgebra, respectively.
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In the case when B is commutative, there is still another proof: B is a group

or monoid object in Algc. By Theorem 2.8, Mc(·, A) transforms coproducts to co-

products and thus transforms group or monoid objects to group or monoid objects,

respectively. �

Remark 5.7. (a) It follows from Remark 2.6 (b) that the free or tensor product of

finitely many copies of a (commutative) Hopf-algebra or bialgebra has, respectively,

a canonical Hopf-algebra or bialgebra structure. For example, the usual bialgebra

structures on K[x1, . . . , xn] = M(K[x],Kn) and K
c[x1, . . . , xn] = Mc(K[x],Kn) ([18],

Section 3.2) are induced by the usual bialgebra structure on K[x].

(b) It has been shown by Wang [19] that the free product of finitely many (C*-

algebraic) compact quantum groups is a compact quantum group.

6. Quantum group of gauge transformations

In this short section we apply the construction of the preceding section to obtain

a notion for Hopf-algebra of gauge transformations. We refer the reader to [4] for

basic ideas and notions on the gauge theory on noncommutative spaces. Let B

be a Hopf-algebra with comultiplication ∆ and counit ε and let E be a trivial left

quantum vector bundle with fiber V and base A in the sense of [4]. This means

that A is an algebra and V is a left B-comodule algebra with a coaction ̺ and E

is (isomorphic to) the algebra V ⊗ A. We slightly change the definitions in [4] and

define γ to be a quantum gauge transformation of E if γ is a morphism from B to A.

Then it is natural to define a gauge field just to be a morphism from V to A. Now,

it is clear that if A is commutative and FR then the Hopf-algebra C = M(B,A)

and the algebra H = M(V,A), respectively, play the role of the quantum group of

gauge transformations and the quantum space of gauge fields in our dual setting.

In the classical case, there is a canonical action of gauge transformations on gauge

fields. This is also the case in our setting: Let ∆, ε̄ and φ be as in the preceding

section and let ϕ = m(V,A). Let ¯̺: H → C ⊗H be the unique morphism satisfying

(iA ⊗ ¯̺)ϕ = (µA ⊗ iC⊗H)F (φ⊗ ϕ)̺. We show that ¯̺ is a coaction:

(iA ⊗ [(∆⊗ iH)¯̺])ϕ = (iA ⊗∆⊗ iH)(iA ⊗ ¯̺)ϕ

= (iA ⊗∆⊗ iH)(µA ⊗ iC⊗H)F (φ⊗ ϕ)̺

= (µA ⊗ iC⊗C⊗H)F ([(iA ⊗∆)φ] ⊗ ϕ)̺

= (µA ⊗ iC⊗C⊗H)F ([(µA ⊗ iC⊗C)F (φ⊗ φ)∆] ⊗ ϕ)̺

= (µA ⊗ iC⊗C⊗H)F (φ ⊗ φ⊗ ϕ)(∆⊗ iV )̺,
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(iA ⊗ [(iC ⊗ ¯̺) ¯̺])ϕ = (iA ⊗ iC ⊗ ¯̺)(iA ⊗ ¯̺)ϕ

= (iA⊗C ⊗ ¯̺)(µA ⊗ iC⊗H)F (φ⊗ ϕ)̺

= (µA ⊗ iC⊗C⊗H)F (iA⊗C ⊗ iA ⊗ ¯̺)(φ⊗ ϕ)̺

= (µA ⊗ iC⊗C⊗H)F (φ ⊗ [(iA ⊗ ¯̺)ϕ])̺

= (µA ⊗ iC⊗C⊗H)F (φ ⊗ [(µA ⊗ iC⊗H)F (φ⊗ ϕ)̺])̺

= (µA ⊗ iC⊗C⊗H)F (φ ⊗ φ⊗ ϕ)(iB ⊗ ̺)̺.

Thus (iA⊗[(∆⊗iH)¯̺])ϕ = (iA⊗[(iC⊗ ¯̺) ¯̺])ϕ and it follows that (∆⊗iH)¯̺ = (iC⊗ ¯̺) ¯̺.

It remains to prove the counit identity (ε̄⊗iH)¯̺ = iH . It follows from the calculation

below:

(iA ⊗ [(ε̄⊗ iH)¯̺])ϕ = (iA ⊗ ε̄⊗ iH)(iA ⊗ ¯̺)ϕ

= (iA ⊗ ε̄⊗ iH)(µA ⊗ iC⊗H)F (φ ⊗ ϕ)̺

= (µA ⊗ iH)F ([(iA ⊗ ε̄)φ]⊗ ϕ)̺

= ϕ(ε⊗ iV )̺ = ϕ.

7. Pontryagin dual of a FR Hopf-algebra

In this section we consider, in our dual formalism, a construction analogous to

the construction of the (semi)group of homomorphisms from a (semi)group to an

abelian (semi)group, and as a consequence we obtain a notion of Pontryagin dual for

FR Hopf-algebras.

Let (B,∆, ε) be a cocommutative bialgebra and letA be a FR commutative algebra

together with an arbitrary morphism Γ: A → A ⊗ A. Suppose that B is free as

module. Then, by Theorem 4.3, the class M3 has a universal family, which we

denote by ψ : B → A⊗D. Let χ : B → A⊗ (D ⊗D) be the composition

(µA ⊗ iD⊗D)(iA ⊗ F ⊗ iD)(ψ ⊗ ψ)∆.

It follows from the coassociativity and cocommutativity of ∆ that,

(iA⊗A ⊗ µD⊗D)(iA ⊗ F ⊗ iD⊗D)(χ⊗ χ)∆

= (µA⊗A ⊗ iD⊗D)(iA⊗A ⊗ F ⊗ iD)([(Γ⊗ iD)ψ]⊗ [(Γ⊗ iD)ψ])∆

= (Γ⊗ iD⊗D)χ.

So, χ is in M3. Since ψ is the universal family of M3, there is a unique morphism

∆̃ : D → D ⊗D for which χ = (iA ⊗ ∆̃)ψ. In a manner analogous to the proofs of
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Lemma 5.1 and Lemma 5.2, it is shown that ∆̃ is a cocommutative comultiplication.

It is easily checked that the family ε′ : B → A ⊗ K defined by b 7→ ε(b)1 belongs

to M3. So, by the universal property of D, there is a unique character ε̃ on D

for which (iA ⊗ ε̃)ψ = ε′. A proof analogous to the proof of Lemma 5.3 shows

that ε̃ is a counit for ∆̃. Moreover, if the bialgebra B has an antipode S, then the

appropriately modified versions of Lemma 2.11 and the above proofs show that D

has an antipode. So, we have proved the theorem below.

Theorem 7.1. Let B be a cocommutative bialgebra with comultiplication ∆,

let A be a FR commutative algebra, and let Γ: A→ A⊗A be a morphism. Suppose

that B is free as K-module and letD be the parameter-algebra of the universal family

of the class of families ψ′ : B → A⊗D′ for which (Γ⊗ iD′)ψ′ = (iA⊗A ⊗ µD′)(iA ⊗

F ⊗ iD′)(ψ′ ⊗ ψ′)∆. Then D has a canonical cocommutative bialgebra structure.

Moreover, D is a Hopf-algebra if B is.

A similar result also holds for the universal family of Mc
3.

We want now to offer a notion for Pontryagin dual of a FR commutative Hopf-

algebra. For clarity of the discussion, we first recall some standard facts. Given a FR

Hopf-algebra A there is another FR Hopf-algebra which we call algebraic dual of A

and denote by A∗. The underlying module of A∗ is HomK(A,K), the set of all module

homomorphisms from A to K. (Co)multiplication of A∗ is induces by that of A via

canonical isomorphism HomK(A ⊗ A,K) ≃ HomK(A,K) ⊗ HomK(A,K). (Co)unit

and antipode are induced by the usual duality between A and HomK(A,K). Note

that A∗∗ ≃ A as Hopf-algebras. For a finite group G the group algebra KG (with

convolution multiplication) is also a FR Hopf-algebra with comultiplication, counit

and antipode given, respectively, by 1g 7→ 1g ⊗ 1g, 1g 7→ 1 and 1g 7→ 1g−1 , where

1g : G → K is defined by 1g(g) = 1 and 1g(g
′) = 0 for g 6= g′. Then the algebraic

dual of KG is canonically isomorphic to the function algebra on G, denoted by K(G),

with pointwise multiplication and with comultiplication, counit and antipode given,

respectively, by 1g 7→
∑
h∈G

1h ⊗ 1h−1g, 1g 7→ 1g(e) and 1g 7→ 1g−1 .

Recall that, in classical harmonic analysis, to any compact or discrete abelian

group G there corresponds its Pontryagin dual Ĝ which is, respectively, a discrete

or compact abelian group. Ĝ is the pointwise multiplication group of all group ho-

momorphisms from G to the multiplicative group of complex numbers of absolute

value 1. Similarly to the algebraic dual of Hopf-algebras we have Pontryagin’s dual-

ity: G ≃
̂̂
G. It is not hard to see that if G is finite then G ≃ Ĝ, CG ≃ C(Ĝ) and

C(G) ≃ CĜ (see [9]). Also note that in this case any group homomorphisms from G

to C− {0} takes values automatically on the unit circle.
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A purely algebraic analog of the group C − {0} is the Hopf-algebra (K†,∆, ε, S)

that represents the affine group scheme of invertible elements of K-algebras (see [11]).

The underlying algebra of K† is K
c[x, y]/(xy − 1) and the Hopf-algebra operations

are defined by ∆(x) = x⊗ x, ∆(y) = y⊗ y, ε(x) = ε(y) = 1, S(x) = y and S(y) = x.

Note that K
† is a free module.

Now we are in a position to introduce the notion of the Pontryagin dual: Let A

be a FR commutative Hopf-algebra. Denote by p : K
† → A ⊗ P(A) the universal

family defined by Theorem 7.1 with B = K
†. The corresponding universal family

with commutative parameter-algebra is denoted by pc : K
† → A ⊗Pc(A). Then, it

is reasonable to call both the Hopf-algebras P(A) and Pc(A) the Pontryagin dual

of A.

It is not clear to the author how in general A∗ and P(A) are related. But we have

the following observation in the special case of finite groups. Let G be a finite abelian

group and suppose that K is a field (or more generally, a ring for which any equation

zn = 1 has only finitely many solutions where n is any divisor of |G|). Then the

multiplicative group ĜK of all group homomorphisms from G to the group of units

of K is finite. Let A = K(G) and let the family ψ : K
† → A⊗K(ĜK) be defined by

ψ(x) =
∑
α(g)1g⊗1α and ψ(y) =

∑
α(g)−11g⊗1α where the sums are taken over all

g ∈ G and α ∈ ĜK. It is easily checked that ψ satisfies the condition of Theorem 7.1

and so there is a unique morphism ϕ : Pc(A) → K(ĜK) for which ψ = (iK(G)⊗ϕ)pc.

Now if K is an algebraically closed field then a deduction analogous to Remark 2.6 (e)

shows that Pc(A)/J ≃ K(ĜK) and so if K = C then Pc(A)/J ≃ A∗ as Hopf-algebras.

8. Hopf-algebra structure of the family of all automorphisms

In this section we consider a canonical bialgebra structure on the parameter-

algebra of the family of all endomorphisms of a FR algebra. This construction

is analogous to the semigroup of self-maps on an ordinary space.

Let A be a FR algebra and let C = M(A,A) and φ = m(A,A). Let Γ: C → C⊗C

be the unique morphism satisfying (iA ⊗ Γ)φ = φ ◦ φ. Then

(iA ⊗ [(Γ⊗ iC)Γ])φ = (iA ⊗ Γ⊗ iC)(iA ⊗ Γ)φ = (iA ⊗ Γ⊗ iC)(φ ◦ φ)

= (iA ⊗ Γ⊗ iC)(φ ⊗ iC)φ = ([(iA ⊗ Γ)φ]⊗ iC)φ

= ([(φ⊗ iC)φ]⊗ iC)φ = (φ⊗ iC⊗C)(φ ⊗ iC)φ,

and also,

(iA ⊗ [(iC ⊗ Γ)Γ])φ = (iA ⊗ iC ⊗ Γ)(iA ⊗ Γ)φ = (iA ⊗ iC ⊗ Γ)(φ ⊗ iC)φ

= (φ⊗ Γ)φ = (φ ⊗ iC⊗C)(iA ⊗ Γ)φ = (φ⊗ iC⊗C)(φ⊗ iC)φ.
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So, (iA⊗[(Γ⊗iC)Γ])φ = (iA⊗[(iC⊗Γ)Γ])φ. This identity together with the universal

property of C implies (Γ⊗iC)Γ = (iC⊗Γ)Γ. Thus, Γ is a comultiplication. (One may

also apply the method of the proof of [15], Theorem 4.1, using Proposition 2.3 (a).)

Now, let ε : C → K be the unique character satisfying (iA ⊗ ε)φ = iA ⊗ 1. Then

(iA ⊗ [(iC ⊗ ε)Γ])φ = (iA ⊗ iC ⊗ ε)(iA ⊗ Γ)φ = (iA ⊗ iC ⊗ ε)(φ⊗ iC)φ

= (φ⊗ iK)(iA ⊗ ε)φ = φ⊗ 1 = (iA ⊗ [iC ⊗ 1])φ.

This equality together with the universal property of C implies (iC ⊗ ε)Γ = iC ⊗ 1.

Analogously, (ε⊗ iC)Γ = iC ⊗ 1. So, ε is a counit for Γ and (C,Γ, ε) is a bialgebra.

Also, it is easily seen that A is a C-comodule via φ. We now show that φ is a uni-

versal coaction among all coactions of bialgebras on A. Let D be a bialgebra with

a comultiplication Θ, and suppose that we are given a coaction ϕ : A→ A⊗D of D

on A. Let ψ : C → D be the unique morphism satisfying (iA ⊗ ψ)φ = ϕ. Then

(iA ⊗ [(ψ ⊗ ψ)Γ])φ = (iA ⊗ ψ ⊗ ψ)(iA ⊗ Γ)φ = (iA ⊗ ψ ⊗ ψ)(φ ⊗ iC)φ

= ([(iA ⊗ ψ)φ]⊗ ψ)φ = (ϕ⊗ ψ)φ = (ϕ⊗ iD)(iA ⊗ ψ)φ

= (ϕ⊗ iD)ϕ = (iA ⊗Θ)ϕ = (iA ⊗Θ)(iA ⊗ ψ)φ = (iA ⊗Θψ)φ.

The above identity together with the universal property of C implies Θψ = (ψ⊗ψ)Γ,

which means ψ is a bialgebra morphism. So, we have proved the theorem below.

Theorem 8.1. Let A be a FR algebra. ThenM(A,A) is a bialgebra in a canonical

way and A is an M(A,A)-comodule via m(A,A). Moreover, m(A,A) is a universal

coaction in the following sense: For any bialgebra D and any coaction ϕ : A→ A⊗D

of D on A, the unique morphism ψ : M(A,A) → D satisfying (iA ⊗ ψ)m(A,A) = ϕ

is also a bialgebra morphism and is compatible with the comodule structures on A.

An analogue of this result also holds for Mc(A,A).

Now, we consider the family of isomorphisms. Let G = I(A,A), and ξ = i(A,A).

Since ξ ◦ ξ : A→ A⊗ (G⊗G) and iA ⊗ 1: A→ A⊗K are families of isomorphisms

from A onto A, there are unique morphisms Λ: G → G ⊗ G and δ : G → K which

satisfy (iA ⊗ Λ)ξ = ξ ◦ ξ and (iA ⊗ δ)ξ = iA ⊗ 1. A proof analogous to the above

proof shows that,

(iA ⊗ [(iG ⊗ Λ)Λ])ξ = (ξ ⊗ iG⊗G)(ξ ⊗ iG)ξ = (iA ⊗ [(iG ⊗ Λ)Λ])ξ.

Since the middle term of the above equality is an invertible family, the universal

property of G shows that (Λ ⊗ iG)Λ = (iG ⊗ Λ)Λ. Also, we may similarly conclude

(δ ⊗ iG)Λ = iG ⊗ 1. So, we have proved that (G,Λ, δ) is a bialgebra. Analogously, if
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we use Gc = Ic(A,A) and ξc = ic(A,A) instead of G and ξ above, we find a bialgebra

(Gc,Λc, δc) which is also a quotient of G. Actually, Gc is a Hopf-algebra algebra:

Let S : Gc → Gc be the unique morphism satisfying (ξc)−1 = (iA ⊗ S)ξc. Then

(iA ⊗ [µGc(S ⊗ iGc)Λc])ξc = (iA ⊗ µGc)(iA ⊗ S ⊗ iGc)(iA ⊗ Λc)ξc

= (iA ⊗ µGc)(iA ⊗ S ⊗ iGc)(ξc ◦ ξc)

= (iA ⊗ µGc)(iA ⊗ S ⊗ iGc)(ξc ⊗ iGc)ξc

= (iA ⊗ µGc)((ξc)−1 ⊗ iGc)ξc

= iA ⊗ 1 = (iA ⊗ δc1)ξc.

Since iA ⊗ 1: A → A ⊗Gc is an invertible family, the above identity together with

the universal property of Gc shows that µGc(S ⊗ iGc)Λc = δc. Similarly we prove

that, µGc(iGc ⊗S)Λc = δc. So, S is an antipode and (Gc,Λc, δc, S) is a Hopf-algebra.

Also, note that A is a Gc-comodule via the coaction ξc. If D is another commutative

Hopf-algebra with a coaction ϕ : A → A ⊗ D on A, then Example 3.2 (b) shows

that ϕ is an invertible family and so there is a canonical morphism from Gc to D

which is, analogously to the above, a Hopf-algebra morphism. So, we have proved

the next theorem.

Theorem 8.2. Let A be a FR algebra. Then Ic(A,A) has a canonical Hopf-

algebra structure and A is a Ic(A,A)-comodule via ic(A,A). Moreover, ic(A,A)

is a universal coaction in the following sense: If D is a commutative Hopf-algebra

with a coaction ϕ : A→ A⊗D on A, then the unique morphism ψ : Ic(A,A) → D

satisfying ϕ = (iA ⊗ ψ)ic(A,A) is also a Hopf-algebra morphism and is compatible

with the coactions on A.

At the end of this note, we consider a notion dual to the notion of the Galois

group. Let A be a FR algebra and let B be a subalgebra of A. The results of

Section 4 (see (1), Theorem 4.1 and Theorem 4.6 in the case i = 1) show that

there is commutative algebra G together with a morphism g : A→ A⊗G satisfying

g(b) = b ⊗ 1 for every b ∈ B, and with the following universal property: For every

commutative algebra D and any morphism ϕ : A → A ⊗D satisfying ϕ(b) = b ⊗ 1

for every b ∈ B, there is a unique morphism ψ : G → D such that ϕ = (iA ⊗ ψ)g.

A proof, analogous to the proof of Theorem 8.2, shows that G has a canonical Hopf-

algebra structure and also A is a G-comodule via g. Moreover, if in the above

mentioned universal property, D is a Hopf-algebra and ϕ is a coaction then ψ is

a Hopf-algebra morphism. A result analogous to the second part of Theorem 4.1

shows that there is a one-to-one correspondence between the characters on G and

the algebra automorphisms of A which preserve B. Indeed, the usual Galois group
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Gal(A/B) of the algebra extension A/B is isomorphic to the character group of the

Hopf-algebra G. Also, an expression, analogous to Remark 2.6 (e), shows that if

K is an algebraically closed field then G/J is isomorphic to K(Gal(A/B)) as Hopf-

algebras, where J denotes the Jacobson radical. Summarizing, it is reasonable to

call G = Gal(A/B) the Galois-Hopf-algebra of the algebra extension A/B.
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