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ABSTRACT 

We try to understand and to develop some of the 

basic quantum mechanics of neutrino oscillation. First, 

we observe that measurements which identify the physical 

neutrino (mass eigenstate) involved in each event of an 

experiment destroy any oscillation pattern. We explain 

how these measurements do that. Then, we construct a 

wave packet treatment of neutrino oscillation. We find 

that it gives the same results as the standard treatment. 

Next, we estimate the distance a beam must travel before 

its different physical neutrinos, which have different 

speeds, will stop interfering with each other. Finally, 

we-consider the possibility of observing the difference 

in the arrival times of the various physical neutrinos 

at a given point. 
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1. INTRODUCTION 

In trying to understand neutrino oscillation, even at a simple level, 

one is soon confronted by some basic questions of principle about the 

quantum mechanics of this phenomenon. One such question concerns the 

role of physical neutrinos with definite masses in oscillation experiments. 

The neutrinos of definite flavor, such as ve and v , each of which is 
u 

emitted in weak decays in association with a particular charged lepton, 

are supposedly linear superpositions of these physical neutrinos. 

However, one can make measurements, at least in principle, which determine 

the mass of the neutrino in each event of an experiment, thereby deter- 

mining which of the physical neutrinos was involved. As we shall explain, 

when one knows which physical neutrino participates in each event, there 

cannot be any oscillation pattern. But then, how do the measurements 

which fix the neutrino mass destroy the oscillation? 

In this paper we try to give a clear statement of this puzzle, and 

then we solve it. The nature of the solution calls attention to the 

fact that a correct general treatment of neutrino oscillations may require 

the use of wave packets. Therefore, we construct a wave packet treatment, 

and show that it leads to the standard resu1ts.l Finally, we reexplore 

the prediction2 that, many oscillation lengths from their source, the 

different physical neutrinos in a beam will become incoherent and will 

arrive at a given detector at different times. 

II. NFUTRINO OSCILLATION 

To set the stage for what follows, we briefly present a slightly 

modified version of the usual description of neutrino oscillation. 
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Suppose that there are N physical neutrinos (mass eigenstates) vm, with 

nondegenerate masses Mm. Neutrino oscillation will then occur if the 

neutrinos vf of definite flavor (v e' vlJ' 
etc.) are not the mass eigen- 

states, but linear combinations of them: 

Vf = 
c 'fm 'rn ' 
m 

(2.1) 

Here U is an orthonormal mixing matrix. 

In the standard treatment,l it is supposed that we have a beam of 

neutrinos all having a common, fixed momentum p 
VL 

It is also usually 

assumed that all the masses M m are much smaller than p,. In this beam, 

the mass eigenstate vm will have energy Em(pv) = /m s p, + (M~/~P,). 

If a neutrino in this beam is born with definite flavor f at time t = 0, 

then at that time its wave function will be 

$(x,t=O) = C Ufm vm e”‘” . 

m 

After a time t this will evolve into 

Jl(x,t) = C Ufm Vm eipvx e 
-iE,t 

. 
m 

(2.2) 

(2.3) 

This state is a superposition cf, uff' Vf' of all the flavors. Since 

our neutrino is highly relativistic, if it was born at x= 0, then at 

time t it will be at x Z t. At that point the wave function is 

$(t,t) 2 C Ufm vm e 
-i&f., /?.p,)t 

. 
m 

(2.4) 

From this expression, it is easy to show that the probability 

(off'(pvyx)/2 
of finding the neutrino to have flavor f' at a distance x 



from its source, if originally it had flavor f, is1 
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(aff, (pv,x)12 = c u;,mu2fm + c Uf,mUfmUf,m,Ufm, ~0~27~ f- - (2.5) 

m m'h mm' 

Here the oscillation lengths Rmm, are given by 

(2.6) 

Note that the oscillating term in eff, 
I I 

2 
comes from interference between 

the differentmass eigenstates in the neutrino wave function. 

III. WHEN THE NEUTRINO MASS IS MEASURED 

Imagine performing the typical neutrino oscillation experiment 

sketched in Fig. 1. Here the neutrino source is a region in which pions 

in flight decay via the mode IT + + 
+pv. Downstream from the source is 

lJ 

a target-detector that looks for neutrino interactions which produce an 

electron. This experiment searches, in other words, for v,, @ ve oscil- 

lations. Suppose that these are found and that, in particular, when the 

source-to-detector distance x is varied, the oscillatory x-dependence 

predicted by Eq. (2.5) is observed. 

Now imagine adding apparatus which measures the momenta of the pion 

and muon in each event. Suppose that these momenta are measured so pre- 
1 

cisely that they determine the mass-squared of the neutrino, M 
2 
V’ 

with an 

error A(M:) less than all Mi-Mi, ! 
I I 

Then one will know, for each event, 

which physical neutrino vm was involved. 

In this situation, event rates at the detector clearly no longer 

oscillate with x. Now only a single physical neutrino, as ordinary a 

beam particle as a proton, contributes to any given event. One does not 
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have the coherent contributions from several vm whose interference with 

one another is the origin of oscillatory x-dependence. 

The events involving a particular vm will have a rate proportional 

to the probability for a R to decay to a LI together with this specific 

V U2 
m' urn' times the probability for this urn to produce an e in the target, 

u2 
em' 

While this rate does not vary with x, it does reflect the fact that 

the neutrinos of definite flavor are linear combinations of the mass 

eigenstates, since it would vanish otherwise. 

The disappearance of oscillation with x as a result of momentum 

measurements which determine Mt raises an interesting question. Namely, 

what do these measurements do to destroy the oscillation pattern? The 

answer to this question is given by the uncertainty principle. To deter- 

mine M 2 
V 

one must measure the momenta of both the pion and the muon. Now, 

the more accurately the pion momentum is measured, the more uncertain the 

pion position will be. Consequently, the more uncertain the point where 

the neutrino is born will be. One might guess that just when the pion 

momentum is measured accurately enough for A(Mt) to be less than all 

the uncertainty in the neutrino source point will exceed all 

the oscillation lengths. lD,, Obviously, it will then be impossible to 

observe any oscillation pattern. 

This guess is precisely correct. Indeed, we can easily show that, 

independent of the details of the neutrino source and detector, if 

measurements made at either place become sufficiently accurate to reveal 

which urn is involved in each event, then the consequent uncertainty in 

the neutrino source or detection point (depending on where the~measure- 

ments are made) grows larger than all the oscillation lengths. 
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In a given event, the neutrino mass Mu is related to the neutrino energy 

Ev and momentum p, by 

M2 = E2 - p; . 
V V 

(3.1) 

If measurements from which Ev and p, can be deduced are made with uncor- 

related errors AEv and Apv, then the error A(M the resultant value 

of Mt will be 

+;) = [(=‘v)2 (AEv)2 + (2~~)~ (AP,>" ] ' . 

Now, to know which urn is involved in each event, we require that 

AM: < M;-M;, 
0 I I 

(3.2) 

(3.3) 

for all m,m'. If this requirement is to be met, we see from Eq. (3.2) 

that the error in p, must satisfy 

2p, Ap, < /M; - $,/ . (3.4) 

Then, depending on where the p, and Ev measurements are made, either the 

neutrino source point or its detection point will have an uncertainty 

Ax obeying 

for all m,in': 

the right-hand 

Ax > 
M;?i2 1 

m' 

(3.5) 

From Eq. (2.6) we see that, apart from a factor of 2r, 

side of this relation is precisely the oscillation length 
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IV. WAVE PACKET TREATMENT OF OSCILLATIONS 

As we have seen, the usual treatment of neutrino oscillation 

assumes that one has neutrinos of a single, fixed momentum p,. However, 

our discussion of momentum measurements and the uncertainty principle 

calls attention to the obvious fact that neutrino oscillations cannot 

be observed unless the neutrino source is localized within a region much 

smaller than the oscillation lengths Rmm,. But then, by the uncertainty 

principle, the neutrino momentum must have a spread of at least N l/h, 

where h is the length of the source along the beam direction. Now, one 

can imagine determining the value of p, in each event in terms of a known 

target momentum and measurements of the momenta of the final state parti- 

cles in the detector. However, one wants the error in the neutrino 

interaction point to be much less than an oscillation length, or much 

less than LOS=, the shortest of the oscillation lengths, when there are 

several. Thus, any determination of p, had better involve an uncertainty 

Ap, obeying Ap, >> 1/Rose. This uncertainty may be smaller than l/h, if 

h is tiny compared to RoSC, but it must not be smaller than, say, h/Lost, 

with 10 < X < 100. The amplitudes corresponding to different momenta 

within this minimal interval must be considered coherently. This means 

that a proper treatment of neutrino oscillation should use a wave packet 

of this minimal width in momentum space. Will such a treatment yield the 

usual results? 

The fractional momentum-space width of this wave packet, 

APV 
-= 

pV 

(4.1) 
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is infinitesimal for neutrino masses in the electron-volt range and 

typical neutrino momenta. Thus, the wave packet treatment will surely 

reproduce the results obtained assuming fixed p,, unless some factor in 

the packet has unusually rapid pv-dependence. To see whether anything 

unusual does happen, we construct the wave packet treatment. We do this 

also to help lay to rest obvious questions raised by the fixed-py discus- 

sion. Namely, why should one assume that the differnt mass eigenstates 

V 
m in a beam have a common momentum but different energies? Why not 

assume they have a common energy but different momenta? Or different 

momenta and different energies? And what oscillation pattern is predicted 

if one does make one of these alternate assumptions? The wave packet 

treatment eliminates the need to make some idealizing assumption by taking 

both momentum and energy variations properly into account. 

While the correct way to construct the wave packet description is 

not totally obvious, we believe one should proceed as follows. Consider 

neutrinos born in association with a definite charged lepton L, of flavor 

f in, say, ~~decay. If we neglect momenta transverse to the beam direction, 

then a given neutrino momentum p, corresponds, for any particular mass 

eigenstate v 
m' 

to a unique pion momentum p:(p,). We then take the ampli- 

tude for creation of a neutrino of type urn and momentum p to be 
V 

UfmaCP~(PV) 1. Here Ufm, defined by Eq. (2.1), is the amplitude for 

production of urn in association with 1,. The factor a[p:(pv)I is the 

amplitude for the parent 7~ to have the momentum p:(p,) which leads to 

neutrino momentum p, in the decay a -t Rfvm. One may think of the IT as 

being confined in a box of dimension h << Lost along the beam direction 

so that the oscillation pattern to which its daughter neutrino contributes 
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can be studied. The amplitude a for the n to have a given momentum 

then simply reflects its confinement within the box. 

Suppose that an experiment studies neutrinos with momenta in the 

narrowest band allowed, with width Ap, = A/Los= around p,. (Recall that 

10 < X < 100 and Lost E Min 
t 
4rp,,/ jM2 - M;, I) .) A t the time of neutrino 

mSm' 
m 

emission, t= 0, the amplitude for finding a neutrino urn in this band at 

a distance x from the neutrino source is 

p,+$j+ 
osc 

bm(x,t=o) = 
ipz 

. 

1 a 
PV-Lt----- 

osc 

(4.2) 

This corresponds to a neutrino state,$(x,t=O) = cm bm(x,t=O) urn, which 

will evolve after time t into 

$(p,t) = 
/ 

dp:, c Ufma(pf(p;)) vmeip'x e-iEm(P')t 
m 

1 a 
?/-7R 

osc 

(4.3) 

dp:, x,Ufma P;(P;) vme ( ) 
ipb(x-t) 

m 
1x 

pV 
-XL 

Now, over the range of integration, the phase of the factor e 
ip$(x-t) 

varies by (XIRosc) (x-t). Thus, $(x,t) will be appreciable only in the 
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region (x-t) << Rose, where this phase variation is not so large as to 

lead to cancellations. Therefore, let us specialize to the point x= t 

in this region: 

tJ(t,t) = c 
m 

Ufm urn / dp; a(p:(pG)) ~iP’J2p’)t . (4.5) 

1x 
PV-TF--- 

osc 

Over the range of'integration, the phase of the factor e 
-i(Mi/2p:)t 

varies by 
M2 

(4.6) A+++ . 

2PV 
osc 

For t of the order of the oscillation lengths or less, A$ << 1, and this 

factor may be removed from the integral. Then 

where 

dJ(t,t> g C Ufm urn e 
-i(Mf /2p,,)t g 

m , 
m 

Pv+++ 
osc 

gm E 
/ 

q) a($(p:)) l 

(4.7) 

(4.8) 

1x 
PV-ZZ- 

osc 

Note that if the integral gm does not depend significantly on m, then 

Eq. (4.7) agrees with Eq. (2.4), apart from an overall factor of no 

consequence. Now, since the amplitude a reflects the localization of 

the pions within a region of size h, it will not vary appreciably until 
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its argument changes by an amount of order l/h. Thus, gm will have 

negligible m-dependence if 

/P;(P;) - Pf(P:)/ << + l 
(4.9) 

We shall demonstrate that this condition does indeed hold for nonrelativ- 

istic parent pions. 

Recall that pz(pv) is the TF momentum which leads to neutrino momentum 

p, in the decay % + R, m v when momenta transverse to the neutrino beam 

direction are neglected. If the IT is nonrelativistic, 

P; = 
P,-p; 

Elt 
M* ' 

(4.10) 

Here pz and Ez are, respectively, the momentum and energy of urn in the 

pion rest frame, and Mr is the pion mass. If M 
1, 

is the mass of R,, 

we have 

E; = f . 
IT 

Then for fixed p, and ML 
f 

, 

. 

(4.11) 

(4.12) 

Here 8, is the speed of the nonrelativistic pion, so the second term on 

the right-hand side is negligible compared to the. first. Also, for 

small B,, pi = p,, 
m 

so Eq. (4.12) indicates that the values of~p, which 

correspond to two different neutrinos vm and vm, differ by 
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iP:(Pv) - P;tPv)I g + 1 - 1 /Mi - ML,1 l 

i J 

(4.13) 

m 

Since [(MT/E:)-1 1 is of order unity, Ip, "-p:'I is of order l/R,m, 

[cf. Eq. (2.6)l. This implies that Ip:- p:'I << l/h, since h << Lm, . 

Hence, we have shown in this example that gm is indeed essentially 

m-independent. Then, apart from an insignificant overall factor, the 

neutrino state of Eq. (4.7) does agree with that of Eq. (2.4). Thus, 

the wave packet and fixed-pv treatments lead to the same prediction, 

Eq. (2.5), for neutrino oscillations. 

In any practical experiment, the neutrino momentum spectrum will 

be considerably broader than A/l 
osc' 

Amplitudes for momenta in non- 

overlapping bands of width X/l osc need not be considered coherently with 

each other, of course, since in principle one can make final state 

measurements at the detector which determine p, to an accuracy of A/Los= 

without disturbing the oscillation pattern. However, from Eqs. (2.5) 

and (2.6) we see that if there is a broad momentum spectrum of width Apv, 

the oscillation pattern will be washed out for4p5 

pV 
-L x'Apv mm' l 

(4.14) 

This means that in any realistic experiment, oscillations will certainly 

be gone beyond, say, one hundred oscillation lengths. Now, Eq. (4.6) 

shows that when 

(4.15) 
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the factor e 
-i(Mt/2pi)t 

can no longer be removed from the integral in 

Eq. (4.5)) and the analysis which led to the wave packet result of 

Eq. (4.7) no longer goes through. However, this value of x is an 

enormous number of oscillation lengths; by the time this point is 

reached, oscillations have long since disappeared, and the wave packet 

treatment is no longer relevant. 

V. SEPARATION OF MASS EIGENSTATES OF DIFFERENT SPEEDS 

For highly relativistic neutrinos, normal spreading of the wave 

packet can easily be shown to be negligible. However, at a given 

momentum, the different mass eigenstates urn in the packet travel at 

different speeds. Nussinov2 has made the very interesting point that, 

as a result, the packet will split into nonoverlapping pieces when the 

various v m components become more widely separated than the length d of 

the original packet. Once they no longer overlap, the different urn 

cannot interfere to produce neutrino oscillations. Nussinov estimated 

that d N CT (with c the speed of light) when neutrinos are emitted by 

particles of lifetime T, and collisions among the parent particles may 

be neglected. 

Having discussed several aspects of the quantum mechanics of 

neutrino oscillations, we would now like to reexamine this question of 

separation of the different urn. First, we wish to argue that d will 

typically be less than cr. Consider, for example, neutrinos produced 

in 71 + pv. In principle, one can record the arrival time of each u at 

a detector a known distance from the pion decay region (assumed small), 
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and from'that arrival time infer the instant of decay, and hence the 

distance travelled down the beam line by the neutrino since the decay.6 

If the arrival time is measured with an accuracy of, say, 10 -9 seconds, 

the neutrino position can be inferred to an accuracy of less than 5% of 

-lT N 8 m. A more striking example is provided by the neutrinos from the 

8 decay of a nucleus with ~~~~ m 1 second. Here ~~~~~ N lo5 km! Clearly, 

by observing the B particle, one can pin down the location of its 

associated neutrino to a region whose length is many orders of magnitude 

less than lo5 km. 

What, then, is the length of the wave packet? It is h, the length - 

of the region within which the parent of the neutrino is effectively 

localized, either through preparation of the state of the parent, or by 

measurements of the decay fragments which accompany the neutrino, or both. 

If we are interested in a neutrino emitted at time t= 0, but we can learn 

only that the emitter was somewhere in a region of length h, then the 

amplitudes for the emission to have occured at t = 0 at the various points 

in this region must be added coherently. Thus, the neutrino wave packet 

will have a length d N h. In Section IV, we have in Eq. (4.3) an 

explicit wave packet corresponding to a pion in a box of length h. If 

we specialize to the simple case of a nonrelativistic pion, and extend 

the momentum integration to include the full range where aCpz(p:)I is 

appreciable, we easily find that the length of the resulting packet is 

@O-d 9 Finally,we may consider a gedanken experiment such as that 

sketched in Fig. 2. Here a slow pion is confined to a "box" of length h, 

and we neglect motion transverse to the beam direction. A muon detector 

a known distance R upstream from the end of the box records, with 
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infinite precision, the time of arrival tA of the u from the r decay. As 

remarked earlier, such a set-up can reduce the uncertainty in the neutrino 

position at time tA and thereafter to well below cam. However, since the 

decay occurs at an unknown point in the box, there will obviously still 

be an uncertainty of order h in the neutrino position, so once again we 

conclude that the neutrino wave packet has length d - h. 

Now, suppose a neutrino is born at t and x - 0 with some definite 

flavor, and with reasonably sharp momentum p,. If two mass eigenstates 

v1 and v2 have speeds B1 and B2, respectively, at this momentum, then 

the vland v2 components of the neutrino wave packet of length h will no 

longer overlap when tB1 - t$, > h, or when 

h 
x > 

%- 82 
(5.1) 

Here R,, = 4apv/lM;-M;\ is the oscillation length corresponding to the 

M2 
-Ml mass difference. Now, current neutrino oscillation experiments 

involve values of p, between 1 MeV and 100 GeV. For p, in this range, 

hpV 
= 1 for some h between lo-l6 cmand10 . -11 cm Thus, even though 

v1 and v2 stop overlapping sooner than they would if d were c'c instead 

of h, Eq.-(5.1) implies that for any macroscopic value of h, they will 

still c0ntinu.e to overlap for a tremendous number of oscillation lengths. 

Long before neutrino oscillations are eradicated by the separation of 

mass eigenstates of a given p,, they will have disappeared anyway due to 

the reasonably broad p, spectrum in any practical neutrino experiment. 
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On the other hand, it is interesting that after the mass eigenstates 

separate, they will arrive at any given detector at progressively more 

and more widely separated times as the beam continues to travel. Can this 

difference in arrival times be observed? For two mass eigenstates with 

masses M 
1 

and M 2 the difference is 

At 2 x 
M;-M; 

2P? 
(5.2) 

after the beam has gone a distance x. For Mi - M: = 1 eV2 and p, = 10 MeV, 

this becomes At N 10 
-14 

x. If we assume that the shortest time interval 

that can be measured is 10 -9 set, then x must exceed 10 
10 km for V1- V2 

separation to be observable. Thus, unless Mi - M: is much bigger than 

we supposed, this separation can be seen only among extraterrestrial 

neutrinos. 

An intriguing suggestion to look for precisely this effect in the 

neutrino burst from a supernova has been made by LoSecco.7 He points out 

that the distance from a supernova explosion in our galaxy to us can 

easily be of the order of 10 kiloparsecs, or 10 
17 km, since that is the 

galactic radius. For this value of x, At N 10 
-2 set if Mi-M: = 1 eV2 

and P, = 10 MeV. Such a time interval is easy to observe. However, the 

proposed experiment is clearly difficult. There is, of course, the fact 

that supernova explosions are rather infrequent. Quite apart from that, 

we would like to raise two issues. First, if the neutrino has on average 

a mass M 
V’ 

then the momentum spread Ap, of the neutrinos coming out of 

a supernova will by itself lead to a spread of arrival times 
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At = x 
from 

APV 

(5.3) 

For the experiment to work, this must be less than the difference of 

arrival times, Eq. (5.2), of neutrinos with different masses and the same 

momentum. We see that if Mz is of the order of Mi-M:, this will be the 

case if Ap,/p, <C 1. Unfortunately, it appears that the neutrino spectrum 

emerging from a supernova is probably rather broad, with Apv/pv * 1.8 

On the other hand, it may be that when the momentum-dependence of the 

cross section at the detector is taken into account, the effective 

spectrum is harmlessly narrow.g The second issue is the question of 

whether the neutrino pulse from the supernova is shorter than 10 
-2 

sec., 

or at least has significant structure shorter than that, to begin with. 

It has been estimated that the great majority of the neutrinos in the 

burst stream out of the supernova during a period that lasts about 

100 sec.1° Thus, for the experiment to succeed, there must be some 

structure, or M 
2 
2-Mf must be somewhat bigger than we assumed. This 

experiment would indeed be a very interesting one; we hope it can be 

made to work. 

VI. SUMMARY 

We have tried to understand some of the quantum mechanics of 

neutrino oscillations. First, we considered an oscillation experiment 

in which particle momenta and energies are measured, either at the 

neutrino source or at the detector, with enough precision to determine 

which of the physical neutrinos urn is involved in each event. 
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When this is done, the oscillation pattern is wiped out, and we saw that 

this can easily be understood in terms of the uncertainty principle. 

Namely, when the momentum measurements are accurate enough to identify 

the vm in each event, they make the neutrino source point, or its detec- 

tion point, more uncertain than an oscillation length. 

This underlines the fact that neutrino oscillations cannot be 

observed unless the neutrino source and detection points are both local- 

ized to well within an oscillation length, so that there is necessarily 

some uncertainty in the neutrino momentum. We proceeded to take account 

of this momentum spread by constructing a wave packet treatment of 

neutrino oscillations. We found that this treatment gives the same 

results as the standard one, at least for distances less than an extremely 

large multiple of an oscillation length. Beyond that, it is not clear 

what the wave packet treatment gives, but at such distances there are 

no longer any oscillations anyhow. 

We then examined the eventual separation of the urn from each other 

as a neutrino beam travels to large distances from its source. We argued 

that loss of interference between the urn will occur sooner than previously 

estimated. However, so long as the dimensions of the region within which 

the neutrino's parent is effectively localized are macroscopic, this loss 

will not occur until oscillations have already been washed out by the 

broad momentum spread in any realistic neutrino experiment. 

Once the urn have separated, the difference between their arrival 

times at a given detector may be observable. For neutrino masses in the 

electron-volt range, this would be the case only for extraterrestrial 

neutrinos. For them, however, it remains an intriguing possibility. 
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FIGURE CAPTIONS 

Fig. 1. A typical neutrino oscillation experiment. 

Fig. 2. A gedanken experiment in which pion confinement and 

muon detection determine the position of a neutrino, 

but with a residual uncertainty. 
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