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Transition state theory was introduced in 1930s to account for chemical reactions. Central to this
theory is the idea of a potential energy surface (PES). It was assumed that such a surface could be
constructed using eigensolutions of the Schrödinger equation for the molecular (Coulomb) Hamilto-
nian but at that time such calculations were not possible. Nowadays quantum mechanical ab initio
electronic structure calculations are routine and from their results PESs can be constructed which
are believed to approximate those assumed derivable from the eigensolutions. It is argued here that
this belief is unfounded. It is suggested that the potential energy surface construction is more ap-
propriately regarded as a legitimate and effective modification of quantum mechanics for chemical
purposes. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4755287]

I. INTRODUCTION

The principal aim of much of contemporary quantum
chemical calculation is to calculate a potential energy surface
from solutions of the Schrödinger equation for the clamped-
nuclei electronic Hamiltonian which gives the electronic en-
ergy at a choice of nuclear positions. These electronic ener-
gies are then added to the clamped-nuclei classical Coulomb
repulsion energy and the resulting “total” energies fitted to a
functional form to provide a surface which, for a system of A
> 2 nuclei, is of dimension 3A − 6. Nuclear motion is treated
as occurring on this surface.

The idea of a potential energy surface in such a role began
with the work of Eyring and the almost contemporary work of
Polanyi in the 1930s. Its basis is described in chapter 16 of the
textbook by Eyring, Walter, and Kimball, published in 1944.1

When describing the reaction between the hydrogen molecule
and a hydrogen atom, the authors say:

The properties of this system are completely deter-
mined by the Schrödinger equation governing it, that is
by its eigenfunctions. The system itself may be repre-
sented by a point in four-dimensional space: three di-
mensions are required to express the relative positions
of the nuclei, one additional dimension is required to
specify the energy. (We assume here that the motion of
the electrons is so rapid that the electrons form a static
field for the slower nuclear motions.) The three inter-
nuclear distances... can conveniently be used to specify
the configuration of the system.

They then give the name “potential energy surface” to
the presumed calculated entity and go on to explain how tran-
sition probabilities for the hydrogen exchange reaction can
be calculated using its characteristic shape. They take it as
obvious that the nuclei can be treated as classical particles
whose positions can be fixed and do not mention the work

a)Author to whom correspondence should be addressed. Electronic mail:
bsutclif@ulb.ac.be.

of Born and Oppenheimer which, 17 years before the publi-
cation of their book, had argued that such a treatment of the
nuclei could be justified if the potential energy surface had a
unique minimum and that the nuclear motion involved only
small departures from equilibrium.2, 3

In the textbook by Pauling and Wilson4 the work of Born
and Oppenheimer is quoted as justifying their use of a wave-
function which is a simple product of an electronic and a
nuclear part in order to describe the vibration and rotation
of molecules. They then introduce the potential energy func-
tion, which they call the “electronic energy function”, for a
diatomic system. In their description of a chemical reaction
involving three atoms they attribute the idea of fixing the nu-
clei to the work of London who used such an approach in
his 1928 paper.5 It is interesting to note that London actually
called this approach “adiabatic” saying that he assumed that
as the nuclei moved they acted as adiabatic parameters in the
electronic wavefunction.

Although treating the nuclei as classical particles that
may be fixed in space to generate a potential energy surface
is often now referred to as “making the Born-Oppenheimer
approximation” it is something of a mis-attribution as can
be seen from this discussion. This was indeed recognized by
Born and in 1951 he published a paper6 in which he presented
a more general account of the separation of electronic and nu-
clear motion than that originally offered. It is to this later work
by Born that the more general idea of a potential energy sur-
face is regarded as owing its justification and it is that work
that will be considered here.

We aim to show that the potential energy surface does
not arise naturally from the solution of the Schrödinger equa-
tion for the molecular Coulomb Hamiltonian; rather its ap-
pearance requires the additional assumption that the nuclei
can at first be treated as classical distinguishable particles and
only later (after the potential energy surface has materialized)
as quantum particles. In our view this assumption, although
often very successful in practice, is ad hoc.

The outline of the paper is as follows. In Sec. II we re-
view the main features of the standard Born-Oppenheimer
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and Born adiabatic treatments following Born and Huang’s
well-known book.7 The key idea is that the nuclear kinetic
energy contribution can be treated as a small perturbation of
the electronic energy; the small parameter (κ) in the formal-
ism is obtained from the ratio of the electronic mass (m) to
the nuclear mass (Mo): m/Mo = κ4. The argument leads to the
expression of the molecular Hamiltonian as the sum of the
“clamped-nuclei” electronic Hamiltonian (independent of κ)
and the nuclear kinetic energy operator (∝ κ4), Eq. (6).

In Sec. III we attempt a careful reformulation of the
conventional Born-Oppenheimer argument drawing on
results from the modern mathematical literature. The cal-
culation is essentially concerned with the internal motion
of the electrons and nuclei so we require the part of the
molecular Hamiltonian that remains after the center-of-mass
contribution has been removed. We show that it is possible to
express the internal motion Hamiltonian in a form analogous
to Eq. (6); however, the electronic part, independent of κ ,
is not the clamped-nuclei Hamiltonian. Instead, the exact
electronic Hamiltonian can be expressed as a direct integral
of clamped-nuclei Hamiltonians and necessarily has a purely
continuous spectrum of energy levels; there are no potential
energy surfaces. This continuum has nothing to do with
the molecular centre-of-mass, by construction. The paper
concludes (Sec. IV) with a discussion of our finding.

II. THE BORN-OPPENHEIMER APPROXIMATION

The original Born and Oppenheimer approximation2, 3 is
summarized in the famous book by Born and Huang, and the
later Born adiabatic method6 is given in an appendix to that
book.7 Born and Huang use the same notation for both for-
mulations and it is convenient to follow initially their presen-
tation; the following is a short account focusing on the main
ideas. They work in a position representation and for simplic-
ity suppress all individual particle labels. Let us consider a
system of electrons and nuclei and denote the properties of the
former by lower-case letters (mass m, coordinates x, momenta
p) and of the latter by capital letters (mass M, coordinates
X, momenta P). The kinetic energy of the nuclei is the opera-
tor

TN =
∑ 1

2M
P 2 = −

∑ ¯2

2M

(
∂2

∂X2

)
(1)

and that of the electrons

Te =
∑ 1

2m
p2 = −

∑ ¯2

2m

(
∂2

∂x2

)
. (2)

The total Coulomb energy of the electrons will be represented
by U(x, X). We further introduce the abbreviation

Te + U = Ho

(
x,

∂

∂x
,X

)
. (3)

The full Hamiltonian for the molecule is then

H = Te + U + TN = Ho + TN. (4)

The fundamental idea of Born and Oppenheimer is that
the low-lying excitation spectrum of a typical molecule can
be calculated by regarding the nuclear kinetic energy TN as a

small perturbation of the Hamiltonian Ho. The physical basis
for the idea is the large disparity between the mass of the elec-
tron and all nuclear masses. The expansion parameter must
clearly be some power of m/Mo, where Mo can be taken as
any one of the nuclear masses or their mean. They found that
the correct choice is

κ =
(

m

Mo

) 1
4

and therefore

TN = κ4H1

(
∂

∂X

)
=

∑ (
Mo

M

)
¯2

2m

(
∂2

∂X2

)
. (5)

Thus the total Hamiltonian may be put in the form

H = Ho + κ4H1 (6)

with Schrödinger equation

(H − E)ψ(x,X) = 0. (7)

In the original paper Born and Oppenheimer say at this
point in their argument that:3

If one sets κ = 0 . . . one obtains a differential equation
in the x alone, the X appearing as parameters:[

Ho

(
x,

∂

∂x
,X

)
− W

]
ψ = 0.

This represents the electronic motion for stationary
nuclei.

and it is perhaps to this statement that the idea of an elec-
tronic Hamiltonian with fixed nuclei as arising by letting the
nuclear masses increase without limit, can be traced. In mod-
ern parlance Ho is customarily referred to as the “clamped-
nuclei Hamiltonian”.

Consider the unperturbed electronic Hamiltonian
Ho(x, Xf) at a fixed nuclear configuration Xf that corresponds
to some molecular structure. The Schrödinger equation for
Ho is (

Ho(x,Xf ) − Eo(Xf )m

)
ϕ(x,Xf )m = 0. (8)

This Hamiltonian’s natural domain, Do, is the set of square
integrable electronic wavefunctions {ϕm} with square inte-
grable first and second derivatives; Do is independent of Xf.
We may suppose that the {ϕm} are orthonormalized indepen-
dently of Xf ∫

dxϕ(x,Xf )∗nϕ(x,Xf )m = δnm.

In the absence of degeneracies (“curve-crossing”) they may
be chosen to be real; otherwise there is a phase factor to be
considered. For every Xf, Ho is self-adjoint on the electronic
Hilbert space H(Xf ), and therefore the set of states {ϕ(x,
Xf)m} form a complete set for the electronic Hilbert space in-
dexed by Xf.

The clamped-nuclei Hamiltonian can be analysed with
the HVZ theorem which shows that it has both discrete and
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FIG. 1. The spectrum σ (r) for a diatomic molecule.8

continuous parts to its spectrum,8–12

σ (Xf ) ≡ σ (Ho(x,Xf ))

=
[
Eo(Xf )0, . . . E

o(Xf )m

) ⋃ [
�(Xf ),∞

)
, (9)

where the {Eo(Xf)k} are isolated eigenvalues of finite multi-
plicities. �(Xf) is the bottom of the essential spectrum mark-
ing the lowest continuum threshold. In the case of a diatomic
molecule the electronic eigenvalues depend only on the in-
ternuclear separation r and have the form of the familiar po-
tential curves shown in Fig. 1. For the general polyatomic
molecule, the discrete eigenvalues are molecular potential en-
ergy surfaces.

Born and Oppenheimer used the set {ϕm} to calculate
approximate eigenvalues of the full molecular Hamiltonian
H on the assumption that the nuclear motion is confined to
a small vicinity of a special (equilibrium) configuration X0

f .
Their great success was in establishing that the energy levels
of the low-lying states typical of small polyatomic molecules
obtained from molecular spectroscopy could be written as an
expansion in powers of κ2

EnvJ ≈ V (0)
n + κ2E(2)

nv + κ4E
(4)
nvJ + · · · , (10)

where V (0)
n is the minimum value of the electronic energy

which characterises the molecule at rest, E(2)
nv is the energy

of the nuclear vibrations, and E
(4)
nvJ contains the rotational

energy.2 The corresponding approximate wavefunctions are
simple products of an electronic function ϕm and a nuclear
wavefunction; this is known as the adiabatic approximation.
In the original perturbation formulation the simple product
form is valid through κ4, but not for higher order terms.

About 25 years later Born observed that the results of
molecular spectroscopy suggest that the adiabatic approxima-
tion has a wider application than predicted by the original
theory, and he proposed an alternative formulation.6, 7 It is as-
sumed that the functions Eo(X)m and ϕ(x, X)m arising from
Eq. (8) which represent the energy and wavefunction of the
electrons in the state m for a fixed nuclear configuration X are
known. Born proposed to solve the wave equation (7) by an
expansion

ψ(x,X) =
∑
m

	(X)mϕ(x,X)m (11)

with coefficients {	(X)m} that play the role of nuclear
wavefunctions. Substituting this expansion into the full
Schrödinger equation (7), multiplying the result by ϕ(x,X)∗n

and integrating over the electronic coordinates x leads to a
system of coupled equations for the nuclear functions {	},(

TN + Eo(X)n − E
)
	(X)n +

∑
nn′

C(X,P )nn′	(X)n′ = 0,

(12)
where the coupling coefficients {C(X,P )nn′} have a well-
known form which we need not record here.7 In this formu-
lation the adiabatic approximation consists of retaining only
the diagonal terms in the coupling matrix C(X, P), for then

ψ(x,X) ≈ ψ(x,X)AD
n = ϕ(x,X)n	(X)n. (13)

An obvious defect in this presentation, recognized by
Born and Huang,7 is that the kinetic energy of the overall
center-of-mass is retained in the Schrödinger equation (7);
this is easily corrected, either by the explicit separation of
the center-of-mass kinetic energy operator (see Sec. III),
or implicitly, as in the computational scheme proposed by
Handy et al.13, 14 and Kutzelnigg.15 For many years now these
equations have been regarded in the theoretical molecular
spectroscopy/quantum chemistry literature as defining the
“Born-Oppenheimer approximation,” the original pertur-
bation method being relegated to the status of historical
curiosity. Commonly they are said to provide an exact
(in principle) solution16–20 for the stationary states of the
molecular Schrödinger equation (7), it being recognized that
in practice drastic truncation of the infinite set of coupled
equation (12) is required. In Sec. III we make a critical
evaluation of this conventional account.

III. THE MOLECULAR SCHRÖDINGER EQUATION

We now start again and reconsider the Hamiltonian
for a collection of electrons and nuclei, assuming that their
interactions are restricted to the usual Coulombic form. The
key idea in Sec. II is the decomposition of the molecular
Hamiltonian (4) into a part containing all contributions of
the nuclear momenta, and a remainder. This must be done
in conjunction with a proper treatment of the center-of-mass
motion. These two ideas guide the following discussion.

Let the position variables for the particles in a laboratory
fixed frame be designated as {xi}. When it is necessary to dis-
tinguish between electrons and nuclei, the position variables
may be split up into two sets, one set consisting of N coor-
dinates, xe

i , describing the electrons with charge −e and mass
m, and the other set of A coordinates, xn

g , describing the nuclei
with charges +Zge and masses mg, g = 1, . . . , A; then n = N
+ A. We define corresponding canonically conjugate momen-
tum variables {pi} for the electrons and nuclei. With this nota-
tion, and after the usual canonical quantization, the Hamilto-
nian operator for a system of N electrons and A atomic nuclei
with Coulombic interactions may be written as

H =
A∑
g

p2
g

2mg

+ e2

4πε0

A∑
g<h

ZgZh

rgh

+ e2

4πε0

N∑
i<j

1

rij

+
N∑
i

(
p2

i

2m
− e2

4πε0

A∑
g

Zg

rig

)
. (14)

It is easily seen that the Coulomb interaction is transla-
tion invariant. Thus the total momentum operator, which in
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the present notation is

P =
n∑
i

pi ,

commutes with H. Physically the center-of-mass of the whole
system, with position operator

R = 1

MT

n∑
i

mixi , MT =
n∑
i

mi

behaves like a free particle. It is then desirable to introduce R
and its conjugate PR, together with appropriate internal coor-
dinates, into H to make explicit the separation of the center-of-
mass and the internal dynamics. Formally H may be written
as a direct integral21

H =
∫ ⊕

R3
H (P )dP, (15)

where22

H (P ) = P 2

2MT

+ H′ (16)

is the Hamiltonian at fixed total momentum P. This represen-
tation shows directly that H has purely continuous spectrum.
The internal Hamiltonian H′ is independent of the center-of-
mass variables and acts on L2(R3(n − 1)); it is explicitly trans-
lation invariant.

There are infinitely many possible choices of internal co-
ordinates that are unitarily equivalent, so that the form of H′ is
not determined uniquely, but whatever coordinates are chosen
the essential point is that H′ is the same operator specified by
the decomposition (16). A simple procedure to make the in-
ternal Hamiltonian explicit is to refer the particle coordinates
to a point moving with the system, for example, the center-of-
mass itself, the center-of-nuclear-mass or one of the moving
particles.23

As a result of the transformation to internal variables
the kinetic energy operators are no longer diagonal in the par-
ticle indices and certain choices of the moving point, such
as the choice of a single nucleus, result in an operator in
which the nuclear and electronic indices are mixed. However
the choice of the center-of-nuclear-mass as the point of origin
avoids this mixing; the explicit equations for this choice were
given in Sutcliffe and Woolley.24 There are A − 1 translation-
ally invariant coordinates tn

i expressed entirely in terms of the
original xn

g that may be associated with the nuclei, and there
are N translationally invariant coordinates for the electrons
te
i which are simply the original electronic coordinates xe

i re-
ferred to the center-of-nuclear-mass. There are correspond-
ing canonically conjugate internal momentum operators. The
classical total kinetic energy still separates in the form

T0 ≡ TN + Te = TCM + TNu + Tel

and the same is true after quantization. TCM is the kinetic
energy for the center-of-mass and, for example, Tel only in-
volves electronic variables

Tel = 1

2μ

N∑
i=1

(
π e

i

)2 + 1

2M

N∑
ij=1

′(
π e

i

) · (
π e

j

)
(17)

with

M =
A∑

g=1

mg,
1

μ
= 1

m
+ 1

M
.

The nuclear kinetic energy term is like the second term in (17)
expressed in terms of internal nuclear momentum variables
{�n

g} with a mass factor in the denominator composed from
the nuclear masses.

After this unitary transformation the original Coulomb
Hamiltonian operator for the molecule can be rewritten in the
form

H(xe, pe, xn, pn) = TCM + TNu + Helec, (18)

where Helec is composed of (17) together with all the Coulomb
interaction operators expressed in terms of the {te, tn} posi-
tion operators.

The spectrum of the Coulomb operator H′ formed by
dropping TCM from (18) was considered by Kato26 who
showed in Lemma 4 of his paper that for a Coulomb potential
V and for any function f in the domain D0 of the full kinetic
energy operator T0, the domain, DV , of the internal Hamilto-
nian H′ contains D0 and there are two constants a, b such that

‖Vf ‖ ≤ a‖T0f ‖ + b‖f ‖,
where a can be taken as small as is liked. This result is often
summarised by saying that the Coulomb potential is small
compared to the kinetic energy. Given this result he proved in
Lemma 5 (the Kato-Rellich theorem) that the usual operator
is indeed, for all practical purposes, self-adjoint and so is
guaranteed a complete set of eigenfunctions, and is bounded
from below.

In the present context the important point to note is that
the Coulomb term is small only in comparison with the ki-
netic energy term involving the same set of variables. So the
absence of one or more kinetic energy terms from the Hamil-
tonian may mean that the Coulomb potential term cannot be
treated as small. Such a defective Hamiltonian will no longer
be self-adjoint in the way demonstrated by Kato.

With our choice of coordinates the translationally invari-
ant Hamiltonian may be written as the sum of the last two
terms in (18) and the electronic Hamiltonian now becomes

Helec = − ¯
2

2m

N∑
i=1

∇2
(
te
i

) − ¯2

2M

N∑
i,j=1

�∇(
te
i

) · �∇(
te
j

)

− e2

4πε0

A∑
i=1

N∑
j=1

Zi∣∣te
j − xn

i

∣∣
+ e2

8πε0

N∑
i,j=1

′ 1∣∣te
i − te

j

∣∣ +
A∑

i,j=1

′ ZiZj∣∣xn
i − xn

j

∣∣ , (19)

where it is understood that the xn
i are to be realised by

a suitable linear combination of the tn
i . The electronic

Hamiltonian is properly translationally invariant and, were
the nuclear masses to increase without limit, the second term
in (19) would vanish and the electronic Hamiltonian would
have the same form as that usually invoked in molecular
electronic structure calculations. If the nuclear positions were
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chosen directly as a translationally invariant set, it would be
those values which would appear in the place of the nuclear
variables. The nuclear part involves only kinetic energy
operators and has the form

TNu = −¯
2

2

A−1∑
i,j=1

1

μij

�∇(
tn
i

)
. �∇(

tn
j

)
(20)

with the inverse mass matrix μ given in terms of the coeffi-
cients that define the translationally invariant coordinates and
the nuclear masses.

Helec has the same invariance under the rotation-reflection
group O(3) as does the full translationally invariant Hamil-
tonian H′ and, in the case of the molecule containing some
identical nuclei, it has somewhat extended invariance un-
der nuclear permutations, since the nuclear masses appear
only in symmetrical sums. In a position representation the
Schrödinger equation for Helec may be written as

Helec�(te, tn)m = Em�(te, tn)m, (21)

where m is used to denote a set of quantum numbers (JMprk)
in which J and M are for the angular momentum state: p spec-
ifying the parity of the state: r specifying the permutationally
allowed irreps within the group(s) of identical particles and k
to specify a particular energy value.24

Before discussing (21) for the general case, let us con-
sider a specific example for which high-quality computational
results exist. It might be hoped, in the light of the claim in the
original paper by Born and Oppenheimer quoted in Sec. II,
that the solutions of (21) would actually be those that would
have been obtained from an exactly solved problem by letting
the nuclear masses increase without limit. Although there are
no exactly solved molecular problems, the work of Frolov25

provides extremely accurate numerical solutions for a prob-
lem with two nuclei and a single electron. Frolov investigated
what happens when the masses of one and then two of the nu-
clei increase without limit in his calculations. To appreciate
his results, consider a system with two nuclei; the natural nu-
clear coordinate is the internuclear distance which will be de-
noted here simply as t. When needed to express the electron-
nuclei attraction terms, xn

i is simply of the form αit where αi

is a signed ratio of the nuclear mass to the total nuclear mass;
in the case of a homonuclear system αi = ± 1

2 .
The di-nuclear electronic Hamiltonian after the elimina-

tion of the center-of-mass contribution is

H′e(te
) = − ¯

2

2m

N∑
i=1

∇2
(
te
i

) − ¯2

2(m1 + m2)

N∑
i,j=1

�∇(
te
i

) · �∇(
te
j

)

− e2

4πε0

N∑
j=1

(
Z1∣∣te

j + α1t
∣∣ + Z2∣∣te

j + α2t
∣∣
)

+ e2

8πε0

N∑
i,j=1

′ 1∣∣te
i − te

j

∣∣ + Z1Z2

R
, R = |t| (22)

while the nuclear kinetic energy part is

TNu(t) = −¯
2

2

(
1

m1
+ 1

m2

)
∇2(t) ≡ − ¯

2

2μ
∇2(t). (23)

The full internal motion Hamiltonian for the three-particle
system is then

H′(te, t) = H′e(te) + TNu(t). (24)

It is seen from (23), that if only one nuclear mass increases
without limit then the kinetic energy term in the nuclear
variable remains in the full problem and so the Hamiltonian
(24) remains self-adjoint in the Kato sense. Frolov’s calcula-
tions showed that when one mass increased without limit (the
atomic case), any discrete spectrum persisted but when two
masses were allowed to increase without limit (the molecu-
lar case), the Hamiltonian ceased to be well-defined and this
failure led to what he called adiabatic divergence in attempts
to compute discrete eigenstates of (24). This divergence is
discussed in some mathematical detail in the Appendix to
Frolov.25 It does not arise from the choice of a translation-
ally invariant form for the electronic Hamiltonian; rather it is
due to the lack of any kinetic energy term to dominate the
Coulomb potential. Thus it is really essential to characterize
the spectrum of Helec to see whether the traditional approach
can be validated.

As before, the nuclear kinetic energy operator is propor-
tional to κ4, so after dropping the uninteresting center-of-
mass kinetic energy term, (18) is seen to be of the same form
as (6). There is however a fundamental difference between (6)
and (18) which may be seen as follows; with the center-of-
nuclear-mass chosen as the electronic origin Helec is indepen-
dent of the nuclear momentum operators and so it commutes
with the nuclear position operators

[Helec, tn] = 0.

They may therefore be simultaneously diagonalized and we
use this property to characterize the Hilbert space H for Helec.
Let b be some eigenvalue of the tn corresponding to choices
{xg = ag, g = 1, . . . A} in the laboratory-fixed frame; then
the {ag} describe a classical nuclear geometry. The set, X,
of all b is R3(A − 1). We denote the Hamiltonian Helec evalu-
ated at the nuclear position eigenvalue b as H(b, te)o = Ho for
short; this Ho is very like the usual clamped-nuclei Hamilto-
nian but it is explicitly translationally invariant, and has an
extra term, the second term in (17) (or (22)), which is of-
ten called the Hughes-Eckart term, or the mass polarization
term. The Schrödinger equation for Ho is of the same form
as (8), with eigenvalues Eo(b)k and corresponding eigenfunc-
tions ϕ(te, b)k, and with spectrum σ (b) analogous to (9).

In general the symmetries of H(b, te)o considered as a
function of the electronic coordinates, te, are much lower than
those of Helec, since they are determined by the (point group)
transformations that leave the geometrical figure defined by
the {ag} invariant. In a chiral structure there is no symme-
try operation other than the identity so even space-inversion
symmetry (parity) is lost.

At any choice of b the eigenvalues of Ho will depend
only upon the shape of the geometrical figure formed by
the {ag} and not at all upon its orientation. For other than
diatomic molecules, it is technically possible to produce a
new coordinate system from the b with angular variables
describing the orientation of the figure and 3A-6 internal
variables describing its geometry. However this cannot be
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done without angular momentum terms arising in which
electronic and nuclear momentum operators are coupled.
Thus the kinetic energy can no longer be expressed as a sum
of separate electronic and nuclear parts. There are also many
possible choices of angular and internal variables which span
different (though often overlapping) domains, so it is not
possible to produce a single account of the separation of
electronic and nuclear motion, applicable to all choices.

As in Sec. II, Ho is self-adjoint on an electronic Hilbert
space H(b), so we have a family of Hilbert spaces {H(b)}
which are parameterized by the nuclear position vectors
b ∈ X that are the “eigenspaces” of the family of self-adjoint
operators Ho; from them we can construct a big Hilbert space
as a direct integral over all the b values

H =
∫ ⊕

X

H(b)db (25)

and this is the Hilbert space for Helec in (18). The internal
molecular Hamiltonian H′ in (16) and the clamped-nuclei
like operator Ho just defined can be shown to be self-adjoint
(on their respective Hilbert spaces) by reference to the Kato-
Rellich theorem9 because in both cases there are kinetic en-
ergy operators that dominate the (singular) Coulomb interac-
tion; they therefore have a complete set of eigenfunctions.
This argument cannot be made for Helec because it contains
nuclear position operators in some Coulombic terms but there
are no corresponding nuclear kinetic energy terms to domi-
nate those Coulomb potentials. It therefore cannot be thought
of as being self-adjoint on the full Hilbert space of electronic
and nuclear variables. Thus even though Helec is evidently
Hermitian symmetric, this is not sufficient to guarantee a com-
plete set of eigenfunctions because the operator is unbounded,
and an expansion analogous to (11) seems quite problematic.

However that may be, Eq. (25) leads directly to a funda-
mental result; since Helec commutes with all the {tn}, it has
the direct integral decomposition

Helec =
∫ ⊕

X

H(b, te)odb. (26)

This result implies at once that the spectrum of Helec is purely
continuous

σ = σ (Helec) =
⋃

b

σ (b) ≡ [V0,∞),

where V0 is the minimum value of E(b)0; in the diatomic
molecule case this is the minimum value of E0(r) (see Fig. 1).
Helec has no normalizable eigenvectors. We conclude there-
fore that the decomposition of the molecular Hamiltonian into
a nuclear kinetic energy operator contribution, proportional to
κ4, and a remainder does not yield molecular potential energy
surfaces.

IV. DISCUSSION

The rigorous mathematical analysis of the original per-
turbation approach proposed by Born and Oppenheimer2 for a
molecular Hamiltonian with Coulombic interactions was ini-
tiated by Combes et al.8, 27, 28 with results for the diatomic
molecule. A perturbation expansion in powers of κ leads to a

singular perturbation problem because κ is a coefficient of dif-
ferential operators of the highest order in the problem; the re-
sulting series expansion of the energy is an asymptotic series,
closely related to the WKB approximation. Some properties
of the operator Helec, (Eq. (26)), seem to have been first dis-
cussed in this work. Since the initial work of Combes, a con-
siderable amount of mathematical work has been published
using both time-independent and time-dependent techniques
with developments for the polyatomic case; for a recent re-
view of rigorous results about the separation of electronic and
nuclear motions see Hagedorn and Joye29 which covers the
literature to 2006.

If it can be assumed that (a) the electronic wavefunction
vanishes strongly outside a region close to a particular nuclear
geometry and (b) that the electronic energy at the given ge-
ometry is an isolated minimum, then it is possible to present
a rigorous account of the separation of electronic and nuclear
motion which corresponds in some measure to the original
Born-Oppenheimer treatment; such an account is provided
for a polyatomic molecule by Klein et al.30 Because of the
continuous spectrum of the electronic Hamiltonian Helec, it is
not possible to use regular perturbation theory in the analy-
sis; instead asymptotic expansion theory is used so that the
result has essentially the character of a WKB approximation.
Neither is it possible to consider rotational symmetry for the
reasons outlined in Sec. III. However it is possible to impose
inversion symmetry and the nature of the results derived un-
der this requirement depend on the shape of the geometrical
figure at the minimum energy configuration. If the geometry
at the minimum is either linear or planar then inversion can be
dealt with in terms of a single minimum in the electronic en-
ergy. If the geometry at the minimum is other than these two
forms, inversion produces a second potential minimum and
the problem must be dealt with as a two-minimum problem;
then extra consideration is necessary to establish whether the
two wells have negligible interaction so that only one of the
wells need be considered for the nuclear motion. The nuclei
are treated as distinguishable particles that can be numbered
uniquely. The symmetry requirements on the total wavefunc-
tion that would arise from the invariance of the Hamiltonian
operator under the permutation of identical nuclei are not
considered.

It is similarly possible to consider such phenomena as
Landau-Zener crossing by using a time-dependent approach
to the problem and looking at the relations between the elec-
tronic and nuclear parts of a wave packet.31 This is essentially
a use of standard coherent state theory where again the nuclei
are treated as distinguishable particles and the method is that
of asymptotic expansion.

To summarize: what the rigorous work so far presented
has done is to show that if an electronic wavefunction has
certain local properties and if the nuclei can be treated as dis-
tinguishable particles then the eigenfunctions and eigenvalues
of the molecular (Coulomb) Hamiltonian can be obtained in a
WKB expansion in terms of κ to arbitrary order.

In this paper we have attempted to discuss the Born
approach to the molecular theory in terms first set out by
Combes.27 The essential point is that the decomposition of
the molecular Hamiltonian (with center-of-mass contribution
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removed) into the nuclear kinetic energy, proportional to κ4

and a remainder, is specified by Eq. (18), not by (6), or in
other words, Eq. (6) cannot be written with an = sign. Allow-
ing the nuclear masses to increase without limit in Helec does
not produce an operator with a discrete spectrum since this
would just cause the mass polarisation term to vanish and the
effective electronic mass to become the rest mass. It is thus
not possible to reduce the molecular Schrödinger equation to
a system of coupled differential equations of classical type for
nuclei moving on potential energy surfaces, as suggested by
Born, without a further approximation of an essentially em-
pirical character. An extra choice of fixed nuclear positions
must be made to give any discrete spectrum and normalizable
L2 eigenfunctions. In our view this choice, that is, the intro-
duction of the clamped-nuclei Hamiltonian, by hand, into the
molecular theory as in Sec. II is the essence of the “Born-
Oppenheimer approximation”

Helec =
∫ ⊕

X

H(b, te)odb

→ H(b, te)o Born-Oppenheimer approximation.

(27)

If the molecular Hamiltonian H were classical, the removal of
the nuclear kinetic energy terms would indeed leave a Hamil-
tonian representing the electronic motion for stationary nu-
clei, as claimed by Born and Oppenheimer.2, 3 As we have
seen, quantization of H changes the situation drastically, so an
implicit appeal to the classical limit for the nuclei is required.
The argument is a subtle one, for subsequently, once the clas-
sical energy surface has emerged, the nuclei are treated as
quantum particles (though indistinguishability is rarely car-
ried through); this can be seen from the complexity of the
mathematical account given by Klein et al.30

We have long argued that the solutions of the time-
independent Schrödinger equation for the molecular Hamil-
tonian are of limited interest for chemistry, being really
only relevant to a quantum mechanical account of the phys-
ical properties (mainly spectroscopic) of atoms and diatomic
molecules in the gas-phase. Towards the end of his life, P.-
O. Löwdin made an extended study of a quantum mechan-
ical definition of a molecule; in one of his late papers32 he
lamented

The Coulombic Hamiltonian H′ does not provide much obvi-
ous information or guidance, since there is [sic] no specific
assignments of the electrons occurring in the systems to the
atomic nuclei involved - hence there are no atoms, isomers,
conformations etc. In particular one sees no molecular symme-
try, and one may even wonder where it comes from. Still it is
evident that all this information must be contained somehow in
the Coulombic Hamiltonian.

In our view it is not at all evident that the Coulombic
Hamiltonian on its own will give rise to the chemically in-
teresting features Löwdin required of it, nor will they be ap-
proachable by regular perturbation theory (supposedly con-
vergent) starting from its eigenstates. Fundamental modifica-
tions of the quantum theory of the Coulomb Hamiltonian for a
generic molecule have to be made for a chemically significant

account of dipole moments, functional groups and isomerism,
optical activity and so on.33–37 In other words one should not
expect useful contact between the quantum theory of an iso-
lated molecule (which is what the eigenstates of the Coulom-
bic Hamiltonian refer to) and a quantum account of individ-
ual molecules, as met in ordinary chemical situations where
persistent interactions (due to the quantized electromagnetic
field, other molecules in bulk media) and finite temperatures
are the norm.38, 39

The usual practice in computational chemistry in which
clamped-nuclei electronic energy calculations are used to de-
fine a potential energy surface upon which a quantum me-
chanical nuclear motion problem is solved, is a practice that is
well defined mathematically. Solutions obtained to the equa-
tions formulated in this context do not have the symmetry
of the full internal motion Hamiltonian and their relation-
ship to solutions of that Hamiltonian is, as has been seen,
uncertain.

That said, the conventional account, treating formally
identical nuclei as identifiable particles when it seems chemi-
cally prudent to do so, has enabled a coherent and progres-
sive account of much chemical experience to be provided.
But it is not derived by continuous approximations from the
eigensolutions of the Schrödinger equation for the molecular
Coulomb Hamiltonian, requiring as it does an essential empir-
ical input. The tremendous success of the usual practice might
perhaps be best regarded as a tribute to the insight and inge-
nuity of the practitioners for inventing an effective variant of
quantum theory for chemistry.
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