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On the Quasi-Optimality in LM of the H '-Projection
into Finite Element Spaces*

By A. H. Schatz and L. B. Wahlbin

Abstract. The Hx-projection into finite element spaces based on quasi-uniform partitions of
a bounded smooth domain in RN, N > 2 arbitrary, is shown to be stable in the maximum
norm (or, in the case of piecewise linear or bilinear functions, almost stable). It is not
assumed that the mesh-domains coincide with the basic domain.

1. Introduction. Let u be a function on a bounded closed domain "31 with smooth
boundary in RN, N > 2. With 0 < h < | a parameter, let % = U*£>, r," be
mesh-domains partitioned into finite elements t,a, and assume temporarily that
%, Ç <3l. (As will be seen in (1.6) et seq., the last restriction is easy to overcome
when applying our result.) Denote by rV^tfl,,) the class of functions with essen-
tially bounded first derivatives (in the distribution sense), and let Sh, 0 < h < \, be
finite-dimensional subspaces of W¿(%,), consisting of functions x that vanish on
d% and are such that jjj^ E G2(r,h).

Define uh = Pu E Sh as the //'-projection of u; i.e.,

(1.1)

f VtV VX= f  Vw VXJ%, •%„

Note that uh is well defined for any continuous u. All integrals occurring are
assumed to be exactly evaluated; hence, the influence of numerical quadrature is
not considered, cf. Wahlbin [25].

Concerning the spaces Sh, certain further conditions, detailed in Section 3, are
imposed. A brief summary of these is as follows: (i) The partitions of the %,'s are
quasi-uniform; (ii) With

(1.2) 8 = max   dist(;c, d<3l),

we have 8 < Ch2; (iii) For smooth functions v that vanish on 351, we can
approximate v by functions in the spaces Sh to order hr + 8, r > 2 an integer. The
exact conditions are easily verified in many concrete examples, including such with
isoparametric modifications.
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2 A. H. SCHATZ AND L. B. WAHLBIN

Our main result, Theorem 5.1, is that

(1.3) II» - uh\\L^h) < c(ln \J   mf. H« - x\\lj%»

where
-      ( 1,     r = 2,
r      1 0,     r > 3.

For r > 3, uh is thus a quasi-optimal approximation to u.
One would wish to apply the above result when u is the solution of a model

Dirichlet problem
(1.4) -Au = /   in 51,       « = 0   on 391,
so that

(1.5) f Vtv VX= f fx   forallXeSA.J%, J%,

In general, one has %, <£ 51, unless: (i) 51 is convex and the partitions of the 5tA
are straight-edged, or: (ii) 351 is a polynomial curve and isoparametric modifica-
tions are used at the boundary. Hence, in general, / is not given on all of %,, so
that uh is not well defined by (1.5) (this difficulty disappears with judicious choice
of a numerical integration procedure). In the present analysis, it is assumed that/is
suitably extended to/and that/is used in the definition (1.5) of uh. Then uh can be
regarded as the //'-projection of a function us which solves the problem

-Aus = /   in 51s,       u' = 0   on 351s,
where 51* is a domain with smooth boundary such that %, U 51 Ç 5lÄ. It is clearly
possible,   when   h   is   small   enough,    to   construct   such    domains   with
maxj£3ft dist(x, 351s) < C8; compare (1.2) for notation.

By the maximum principle and (1.3), one has

II" - «*ILM(«.nft) < II" - "* II/..(*) + 11"* - maIIl„(si,)
(1.6)

< l"Vo») + c(ln i)'   mfjl«8 - x¡Hlj*>

where C can be taken independent of 5 (see the proof of (1.3)).
From the above (1.3), or (1.6) when % (J; 51, it is possible to derive various

convergence estimates for u - uh in terms of data /. Consider only the "isopara-
metric" situation; i.e., take 8 < Chr. (In general, the highest order that can be
obtained is ||u - kJ|LoÄ) < C(/)(ln \/h)f(hr + 8).) Assume first that %, C 51.
Using approximation theory, Schauder estimates, and interpolation of function
spaces, one may establish, for a large class of finite element spaces, that

II" - "*lk(«,) < C^'^ln IJll/lle'-W,
for 2 < / =7^ r. The method of analysis indicated gives constants C, that tend to
infinity as / tends to r from above or below.
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QUASI-OPTIMAUTY OF PROJECTION INTO FINITE ELEMENT SPACES 3

For a sharper estimate when/ £ W'~2, one can proceed in many situations in
the following way (which was pointed out to us by V. Thomée): Assume that for a
suitable x in Sh, typically an interpolant,

for any p < oo large enough, where C does not depend on p; cf. Ciarlet [6,
Theorem 3.1.6]. Tracing constants in Agmon, Doughs, and Nirenberg [1], one finds
that

NI »?(«.) < Cp\\ñw;-H®.y
Taking/» = In \/h and combining with (1.3), we obtain

/     l\'r+xII" - «* II/..(«,) < chyn -j¡J   11/11 w¿\9.y

A similar result has been obtained in the piecewise linear case by Rannacher [17].
By (1.6), one has the corresponding estimates for ||u — "aIIz. (ftnft) wnen

5lA <£ 51, and the domains differ by at most Chr; here the mean value theorem
and elliptic regularity are used to handle the term \us\L (3ft) of (1.6).

We have chosen to treat the //'-projection and the model problem (1.4) in this
paper. This choice was made for notational simplicity. More general second-order
elliptic Dirichlet problems, and the corresponding projections, can be analyzed by
making appropriate modifications in our method.

Let us briefly list other work on quasi-optimal estimates for u — uh in various
norms.

The question is trivial in the H -norm.
In the L2-norm, Babuska and Aziz [2, Theorem 6.3.8] showed that when

Sh Q //2(5l) (and 5lA = 51), i.e., in practice when Sh consists of C elements, then

(l-7) II" - "a 11/,,(«,) < C   inf II» - xIIlj(9.)-

The result is false when Sh <J //2(5L); see Babuska and Osborn [3, p. 58] for a
simple counterexample. In the one-dimensional situation on an interval / for (2°
piecewise polynomials, the estimate (1.7) holds provided the infimum is taken only
over functions x in Sh that interpolate » in (?(/) at mesh-points x,; cf. Eisenstat,
Schreiber, and Schultz [9]. In a similar vein, in [3] the L2-norm is replaced by a
mesh-dependent norm,

IMIz^.U» =  [l M' + £(*7 + '¡*7"')K*;)rp K P  <  00,

and quasi-optimality in this norm is verified.
As noted also in [3], the estimate (1.3) in the maximum norm is true in one

dimension, without the logarithm when r = 2; cf. Descloux [7], Douglas, Dupont,
and Wahlbin [8], and Wheeler [26]. (It is also very easy to translate the methods of
the present paper to the one-dimensional situation.)

Concerning estimates in the maximum norm in any number of space dimensions,
much work has been devoted to showing quasi-optimality in the W^-norm (or the
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4 A. H. SCHATZ AND L. B. WAHLBIN

norm || • \\Lx + h\\ ■ \\wi); cf. Natterer [14], Nitsche [15], Rannacher [17], and
Scott [23]. A typical result is that (when % = 51)

II" - «all wim <C   inf ||M - xll wim-

Note that there is no logarithmic factor for r = 2; this is a recent result of
Rannacher and Scott [18]. (An example by Fried [10] and Jespersen [12] indicates
that the logarithmic factor in (1.3) might be necessary for r = 2.)

In the maximum norm itself, quasi-optimality (modulo logarithmic factors or
factors h~', e small) is previously known on plane polygonal domains, for meshes
with or without refinements, and on convex polyhedral domains in R3; see Schatz
[19] and Schatz and Wahlbin [21].

It is frequently of interest to localize stability estimates of the form above. As an
example, one has results of the type

« -  "(. <c(lnÍÍ X^JI" - Xllz.^') + c'All ¿„(a) *» M1" TI     im  II" _ aNz.„(b') T «-III" _ «Ailla».

where ß c ß1 c %, and ||j • |||^ denotes some weak norm measuring global
effects; cf. Bramble, Nitsche, and Schatz [4], Bramble and Schatz [5], Nitsche and
Schatz [16], and Schatz and Wahlbin [20], [22].

Our technique of analysis in the present paper does not distinguish between
different dimensions N and requires no relations between r and N; for r = N = 2,
however, a shorter proof is possible; see Remark 5.3. In a broad outline our
argument is a simplification of that in [20], but additional and lengthy details are
needed to take into account the discrepancy between 51 and %,.

We shall use standard notation for the Sobolev spaces Wk(Q) and Hk(£l) =
W2(ü), k a nonnegative integer, 1 < p < oo, and for the Holder spaces C'(ß). We
also set ||t?||¿i(a) = || Vv|| L (S!) with a slight abuse of the norm notation. Generic
constants C and c will be independent of h and of essential variables and functions
involved; these essential quantities are separately indicated. Two important con-
stants which are not generic are c' and Ct.

We thank K. Eriksson and V. Thomée for many valuable suggestions in
connection with this paper.

2. Preliminaries. Consider the problem of finding w such that, with 17 given,

Aw = Tj    in 51,
(2-1) i w = 0 on 351,
where, for simplicity, the boundary 351 is infinitely differentiable. It is well known
that IMIj,^ < C||tj||l (ft), a result we shall use many times. Also,

w(x) = f       Gx(y)rj(y) dy,
■'supp 1)

where Gx(y) is the Green's function for (2.1). It is known (see, e.g., Krasovskiï [13])
that, for x, y in 51,

Í C(l + |ln|jc - v| |)     for |a| = 0, N = 2,
(2.2) ftvWK   ChiAp-m    o¿L,
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QUASI-OPTIMALITY OF PROJECTION INTO FINITE ELEMENT SPACES 5

Our most common use of this will be the following: Assume that dist(ß, supp n) =
d > 0. Then, for / *= 0,

\M\wiw < Cd2'»-'[      \v{y)\dy
(2.3) •'supp i)

< G/2-"-'(diam(supp 7,))"/2|h||w

3. The Finite Element Spaces. In A.1-A.6 we collect the assumptions that we
shall need on the finite element spaces. We phrase these assumptions so that they can
be readily verified in many concrete situations.

Let 0 < h < \ be a parameter and 5^, with 5lA Ç 51, mesh-domains made up of
closures of disjoint open elements t*, i = 1, . . ., 1(h),

/(A) _

%=   U    T*.
1

Denote by 8 = 8h the maximal distance between 35lA and 351,
5 =  max   dist(x, 351).

We let the notation Wk'h(Q), for ñ C %,, stand for the piecewise norms relative to
the partitions above.

We assume the following two properties of the partitions.
A.l. 5lA Q 51, where 351 is infinitely differentiable. The boundaries 35lA are

sectionally smooth and uniformly Lipschitz for 0 < h < \, and there exists a
constant C such that 8 < Ch2.

A.2. There exists a constant C such that, for any / E I*7(t*), 0<A <|,
/ = !,..., 1(h),

/ J/l < c{/r'ii/ii^) + 11/11 „,,(,.)}.
'3t,

The assumption A.2 is easy to verify for quasi-uniform partitions occurring in
practice.

Let Sh = Sh(%,) be a finite-dimensional subspace of Wxoa(%) n U/r¿A(5lA), and
let furthermore the functions in Sh vanish on 35lA. Here W¡;h(<%h) is defined by the
norm

i/p
II»II w»(%.) = ( S IIv\\V,'(r*)j     ,

with the appropriate modifications forp = oo. Also, //'* = W2,h.
After extension by zero, we can regard functions in SA as being in 11^(51).
For the spaces Sh we first assume an inverse property:
A.3 (Inverse Property). There exist constants C and c' > 0 such that, for any X in

Sh and t = t,\

( 2   \\Dax\\%S" <Chm-'-^x^-x^\\x\\w:r(T>
V|«| = / ^   /

for 0 < m < / < 2, 1 < q < p < oo, where r' = {x E r: dist(x, 3t) > c'h).
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6 A. H. SCHATZ AND L. B. WAHLBIN

This assumption is like a well-known one valid for quasi-uniform partitions,
except for the smaller domain r' on the right. Its proof, however, would be the
same in all concrete cases.

We shall finally list three different approximation hypotheses:
A.4 (High Order Local Approximation). There exist integers r > 2 and M, and

constants C and c > 0 such that the following holds.
For any v E W£,(51) with v vanishing on 351, there exists x in Sh with the

following property.
Let B = B(y, d) and B' = B(y, 2d) be concentric balls of radii d and 2d,

respectively, where d > ch, and set Dh = B n 5lA, D' = B' n 51. Then

h~X\\v - x\\l„(d„) + II» - X\\wl(D„) + h\\v - xWw&DJ
(3.1) M

<Ch'-x\\v\\fV^D,)+ Ch-X8 S dm-x\\v\\wziD,y
m = \

We have phrased this assumption in terms of certain concentric balls, but it is
easily extended to more general domains.

The last term on the right of (3.1) merits some elucidation: For concreteness,
consider a space Sh which comes from a larger finite element space Sh by
restricting functions to be zero on 35^. Assume that Sh admits an interpolant
X = X(») sucn that

b~X\\v - xlltjA) + II» - X\\wl(Dh) + h\\v - xWw^d,,) < Chr-x\\v\\w^Dy
Such an estimate can often be derived, e.g., by use of the Bramble-Hilbert lemma.

To obtain x in Sh, X is cut down to be zero on 35lA. Often then x and x differ
only in a boundary layer Lh of width approximately h and by the inverse property

A_1HX - Xll¿„(£») + IIX - Xll wl(Lh) + *||X- X\\wl\L„)
<Ch-l\\x- Mljw < Ch-l\x\Lm>(a9tnB).

The last inequality would often be true in practical situations. If the interpolation
process uses only point values of v, and not derivatives, then the above estimates
can often be continued as

< Ch~ M/^iaajnB') < Ch   S||»||^((a\aA)nÄ')'

where the last step used the mean value theorem. Therefore, (3.1) would obtain
with M = 1 (and D' replaced by (51 \ %¡) n B' in the last term). Higher M are
needed for interpolation processes that involve derivatives of v, and where conse-
quently tangential derivatives along 35^, are cut down to zero. Most often, the last
part of (3.1) could be improved to

M
Ch~x8 2 Am~1||tj||w,m((a\ali)nB')'

m = l

but we shall have no use for such an improvement.
A.5 (Low-Order Global Approximation). There exists a constant C such that, for v

in //2(5l) and vanishing on 351, there exists x in Sh such that

h~x\\v - xIIl2(91) + II» - Xlljï'(a) + All» - Xlltf^a») < Ch\\v\\Him.
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QUASI-OPTIMALITY OF PROJECTION INTO FINITE ELEMENT SPACES 7

Let us briefly comment on how one would check A.5 in concrete cases. Since
ll»llz.2(a\%,) < C8\\v\\H¡m and ||o||Ä.(ftxftit) < C8x/2\\v\\Him, by A.1 it suffices to
consider the mesh-domain %, on the left. For N high one has to apply a
preliminary smoothing argument since an interpolant, requiring point values,
cannot immediately be used; see Hubert [11] and Strang [24]. In our low-order
case, this preliminary smoothing of v can be arranged to preserve the boundary
condition v = 0 on 351. For, first flatten the boundary patchwise, then extend v
oddly over the boundary, thus preserving H2, and then employ an even smoothing
kernel. The analysis of [11], [24], combined with ideas outlined in the comment
after A.4, could then be carried through in many practical examples.

A.6 ("Superapproximation"). There exist constants C and c > 0, and an integer
K, such that the following holds:

Let B¡ = B(y, id) with d > ch, and set £>A = B¡ n 5lA. Let w be an infinitely
differentiable function with support in B3 and such that

INI w"(RK) < Ld~k,       k = 0, . . . , K, and w = 1 on B2.

Then for any vh in SA there exists x in SA with support in £)A4 and with x = »a on
Dhx. Further,

I|w2»a - Xll«'(Af) < CLh{d-2\\vh\\LÁDÍXBi) + d-x\\vh\\H,(D^BÔ}.

Again the above is easily extended to more general domains.
For a discussion of superapproximation, see Nitsche and Schatz [16] and also

Bramble, Nitsche, and Schatz [4]. The proofs there are easily adjusted to include,
e.g., isoparametric modifications. Often, x can simply be taken as a local inter-
polant of w2uA.

4. Local //'-Estimates. This section is devoted to proving Theorem 4.1 below. It
is assumed that 5LA Q 51.

The result and proof are similar to those in [16], but care needs to be exercised to
account for the discrepancy between %, and 51, and to trace constants depending
on sizes of domains. Therefore we feel that a self-contained proof is in order.

Let B = B(y, d) and B' = B(y, 2d) be closed concentric balls centered at v and
of radii d and 2d, respectively. Set

Dh = B n %,,       D'h = B' n %,.
For a domain ß, let

SÍ (8)= {xGSA:supPXCßn5lA}.

Theorem 4.1. Assume that 5lA C 51 and that the assumptions of Section 3 hold.
There exist constants C and c > 0, independent ofy, d and h, such that for d > ch the
following holds: If v E //'(5l) and vh E Sh with

(4.1) fv(v-vh)-VX = 0   forxeSÍ(Dl),
then

(4.2) ||ü - ty¿,w < C(\\v\\¿i{B0 + ¿-'iMktAí) + d~x\\v - vh\\Li(DÍ)).
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8 A. H. SCHATZ AND L. B. WAHLBIN

Remark 4.1. Writing v - vh = (v — x) ~ (»a ~ x) f°r any X E SA, the first two
terms on the right of (4.2) can be replaced by

inf (||» - xlU'(Ztf) + d~x\\v - xW^dí))-
xesh

Proof. We shall need a few auxiliary domains "between" Dh and £>A; for this let
Bk = B(y, (1 + l/k) -d),k=\,2,..., and Dk = 5* n %, k = 2, 3, 4. Then
Z)A Ç D* ç /)A3 Ç />A2 £ />„'.

Consider first functions vh E Sh which are "discrete harmonic" in Z)A2, i.e., such
that

(4.3) ( Vtv VX = 0   forXes/(Z)2).

We shall show then that for d > ch, c large enough,

(4-4) \H\\¿>(Dh)<Cd-x\\vh\\LÁD¿).

We introduce an infinitely differentiable cutoff function u, 0 < w < 1, such that

w=l    on 5,       supp u Q B5,

and with

(4.5) \\*\\wi.(*") < C*d-k,       A: = 1,2,....
Such a function is easily constructed by change of variables in one valid for d = 1.
Now

(4-6) II»aII¿'(oa) < ll"»All¿'(at).
Here

IIw»aII «'(%,) = f V(<^»a)- V(«t>A)-'a*

= /" Vco • uAV(un;A) + f  VuA • <oV(«t;A)
•'a* •'a*

= f V« • t>A V(ut;A) + f  Vt>A • V(w2t;A) - f VoA - (Vw)wt;A.
-'ea. -'<s¡>. •'«SB.

The last term on the right equals

-f V(^A)-(Vco)üA+r |V(o|2ÜA2

and hence, cancelling terms and using the discrete harmonicity of vh, (4.3),

W^h\\2hH%.) = f lVwl2»A + [ Vt>„ ■ V(co2t;A - X)   for any x 6 Sf{D2).J% J%

For the rest of the proof we drop the h's in the notation for Dh, Dk, and DL
We next use Schwarz' inequality, the properties of w, and, for choosing x, the

superapproximation hypothesis A.6. Note that, since « is supported in Bs, only the
behavior of vh on DA need influence x, provided d is sufficiently large relative to h.
We obtain

ll«»A II//'(*») < C¿~2II»aIIz.2(£>4)
+ C||üa||¿.(o4){M-2||üa||L2(^) + hd-x\\vh\\¿KDt)).
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QUASI-OFTIMALITY OF PROJECTION INTO FINITE ELEMENT SPACES 9

Via (4.6) we arrive at

INfod» < Cd-2\\vh\\2L2(Dt) + 0|K||¿i(í>yr2IHIz,(z>4)

+ Chd-x\\vh\\2inD.)

< Cd-2H\\2L¿D*) + CM-»||oA||2¿1(Z)<).

In the last step we used the fact that hd ~ ' < C.
Repeat the above procedure, with appropriate notational changes, on the last

term on the right to obtain

Hlfoo» < C*~2Nlirfx><) + cm- 1(¿-2||»A|ii2(D3) + hd-x\\vh\\2AKD^)

< C¿~2|I»aIIÍ2(/>>) + Cd-2h2\\vh\fo(D>y
The inverse assumption A.3 is now applied to the last term to complete the proof of
(4-4).

We proceed to prove (4.2). This time we employ a cutoff function, still denoted
by w, such that

w=l    on B2,       supp (o Q B',
and satisfying (4.5).  Let P be the //'(5^)-projection to SA. Note that since
%, C 51, P is also the //'(5l)-projection to SA, if functions in SA are extended by
zero. Now,

II» - »aIU'(O) - II"» - »aII//'(0)
(4 7) < II"» - P{w)\\h>(%,) + H-rV») - »aIIH\D)-
Using (4.5), we have

(4.8)      \\ao - P(<¿v)\\í,K%¡) < |MI¿>(^) < cIMU'(z>') + Cd-x\\v\\L¿Dy
Since (o = 1 on B2, using (4.1) it is easily seen that P(uv) — vh E SA is discrete
harmonic on D2, (4.3). Therefore, from (4.4),

H/VO - *Uhpi < cd-x\\p(iov) - v„\\Li(D^
(4-9)

< Cd~x\\P(ow) - (ot;||L2(ß2) + Cd~x\\v - vh\\L2(D2y

By (4.7)-(4.9) we find that

(4.10) "° ~ ü*ll¿,<0) < NI^Km + Ci/_'ll»llz.2(ß')
+ Gr1||t> - »AIL2(z,') + Cd-x\\P(o>v) - «oll^^.

To handle the last term on the right, we utilize a duality argument over the
domain 51, which has //2-regularity for the Dirichlet problem. Thus,

(4.11) || P(o>v) - 03V11^.) =     sup       f(P(ow)- iov)(p.
•peGfXö') J
IWItj-l

For each fixed <p, let \¡/ be the solution of the problem

-At/- = <p   in 51,       tf = 0   on 351.
Since />((ou) = 0 on 351?,, we have, from Green's formula,

(4.12) f{P{uv) - wu)qp = ( V(/»(wd) -uiv)-Vxp - f   (ou -^ = /, + /2.
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10 A. H. SCHATZ AND L. B. WAHLBIN

Here, by the properties of the projection P, by the low-order approximation
assumption A.5, and by elliptic regularity,

/, = _ f V((Oü)V(t// - Ptf < C\\ow\\¿l(%)h\\xp\\HHm
(4.13) J**

<Ch{\\v\\lil(D.) + d-l\\v\\LÁD,)}.

For the term I2 we note that it only enters if B' n 35lA is not empty. We have

(4.14) |/2| < M^aaJV^o^).
Since 35lA is uniformly Lipschitz, one knows (or easily deduces) that

1 /2
Mz.2(3aA) < c(lMlz.2(%,)IMI//'(a»))

(4.15) < C(rf-'||t;||2L2(fl.) + ||»||z,(z>')ll»ll¿'(D'))1/2

< C{d-^2\\v\\L2(D,) + ¿1/2||»||¿.(0')).

Further,

\VMl2(b^) < c(ll'/'ll//'(a4)ll«/'ll//2(%i))    .

Here, by elliptic regularity, IMI«^) < C. Also,

ll^lltt'ra) = )   *I*P < \\HL2(D'y

Since B(y, 2d) n $%, is not empty, \p vanishes at some points on the boundary
351 that are within a distance 0(8) <s d of £>'. Considering the domain B(y, 4d) n
51 D D', \p vanishes on a part of its boundary which contains a fixed fraction of its
total surface measure, and hence, by Poincaré's inequality,

ll«r'IL2(/)')  < Cd\W\\ù,W,
where it is not hard to see that the constant may be taken uniformly in d and y.
Therefore, H^H/jira) < Cd, and hence, |Vt//|L(3a) < Cdl/2. Combining this with
(4.14), (4.15),

l^l < COMIz^/r) + ¿ll»ll//'(ß'))-
So, by(4.10)-(4.13), since W1 < C,

II» - »aIIw'(D) < C|l»ll¿'(/>') + Cd~x\\v\\L2(D1 + Cd~x\\v - vh\\L¿Dy
This completes the proof of Theorem 4.1.

5. The Main Result. This section contains the main result of the paper.

Theorem 5.1. Let the assumptions of Section 3 hold. There exists a constant C such
that ifu in C°(5l) and uh in Sh, uh = Pu, satisfy (1.1), then

(5-1) II" - "*IIl.(«*) < c(ln ¿) x»rfJI" - XIL.(«.).
where r = 1 for r = 2, r = 0 for r > 3.
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The rest of the section is devoted to a proof of Theorem 5.1. We first note, for
simplicity in writing, that it suffices to establish the estimate

(5.1)' II« - "Alli.„(aA) < c(ln {)'||«|

for then (5.1) would follow upon writing u — uh = (u — x) ~ ("a — X) f°r X e SA.
We may also assume in the proof that » G 6'(51).

For further simplicity in writing, we shall often employ the convention that, in
norms and integrals over the mesh-domain 5lA, the domain is surpressed in the
notation. Thus, \\u\\L = \\u\\L (iR. y We remind the reader that 5lA Q 51 is as-
sumed.

Let x0 be a point in 5lA where

(5-2) |(« - «a)(*o)I = II" - "aIIz.„-
We shall first show that we may assume that dist(x0, 351,,) > c'h for some c' > 0;
cf. Remark 5.1 below.

Lemma 5.1. There exists a constant c' > 0 such that //dist(x0, 35lA) < c'h, then

(5-3) II" - "aIL„ < 2||«|L„.
Proof. Set 50 = dist(x0, 35lA). Since uh = 0 on 35lA, we have, by the mean value

theorem,

II" - "aIL„ < l«(*o)l + k(*o)l < Il «IL. + «ol|v«A|Lœ.
Using the inverse property A.3,

II" - «aIL„ < ll«IL„ + ^0«-'||«A||¿oo
< (1 + cSoh-^WuW^ + c80h-x\\u - »„U^.

If c80h - ' < 1/3, we obtain (5.3). This proves the lemma.
Thus, in the remainder of this section we assume that dist(x0, 35lA) > c'h,

c' > 0. We need some more notation. Let r be a finite element in the partition that
has x0 in it, and let r' be the part of r with disuV, 35lA) > c'h. Then x0 E r' is
assumed. Assume also that c' is so small that the employment of the inverse
property A.3 over r' is justified.

The notation just introduced will be fixed for the rest of the section.
We have, by A.3,

|(« - «A)(x0)| < n«!!^ + \uh(x0)\ < \\u\\Lx + c/r^iKH^

(5-4) < ||»||L=o + CA-^II»!!^,) + C«-^/2||« - «A||L2M

< C\\u\\Lx + Ch~N/2\\u - uh\\L2(Ty

We proceed to estimate the last term on the right. We first use a duality argument:

(5.5) II" - "aIIz.2(t) =     sup      f(u-uh)<p.
IMI¿2=1

For each fixed <p, let v be the solution of the Dirichlet problem

(5.6) -Au = 9   in 51,       v = 0   on 351.
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f{u-uh)<p = -f    »|^+ f V(u-uh)-Vv•v •'aa..    on     Ja¡..

Such a v can be considered, loosely, as a scaled smooth "Green's function" with
singularity at x0. By Green's formula, and letting vh E SA be the H '-projection
of v,

dv
u

'aaA
(5-7)

= ~f    "l£ + Í  V"' V(o-tfc)=/, + /2.
To estimate /,, we have

IAI < ll«IL f   |V©|,
and we appeal then to the following result.

Lemma 5.2. For v as in (5.6) with tp E G™(r') of unit L2-norm,

(5.8) f   \Vv\ < ChN'2,

(5.9) f      \Vv\ < C8hN'2.
•'axa,,

Admitting this lemma for a moment, we have

(5.10) |/,| < cä^ii«!!^.
To estimate I2, use Green's formula over each element,

h = "SU« - »a) + 2 /   « ¿(» - »a)-
Then, from A.2,

l'ai < C|l«llz.„(l|V(» - cOHirp + *~W« - »a)IIz.,).
We now record the crucial

Lemma 5.3. For v as in (5.6) with <p G C"(t') o/ unit L2-norm, and vh its
Hx-projection,

(5.11) ||V(o - vh)\\w¡,(%¡) + *-'||V(e - »A)||Ll(a,) < CA"/2(ln ±)''.

The proof of this will be given later in this section. Using the lemma,

|/2|<C^/2(lni)r||»||^.

Combining the above estimate with (5.10) into (5.7) and (5.5),

ll"-«Allz.2(T-)<C^/2(ln-i)r||»||^,

so that by (5.4) the desired result (5.1)' obtains.
It remains now to prove Lemmas 5.2 and 5.3.
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Proof of Lemma 5.2. Let us first consider

3c

13

•'aa -'aal on
which equals

3or    av
i •'aa 9"

sup
111/.„(a a)
riee^aa)

If w denotes the harmonic extension of 17 into 51, then, since v = 0 on 351, Green's
second formula gives

3©
'aaan •'a

where we used the maximum principle in the last step. Hence,

-(   ^ = - í (Aü)w = / ^ < CA"/2|M|L2||w||^w < ChN'2,
J^cs, on J<¡¡> J-> 2

(5.12) f   |Vo| < ChN'2.
•'aa

We need to show the same estimate with 351 replaced by 35lA. To do so, let us
work on a coordinate patch, where, after a smooth transformation,

x = (x',xN),       x' EM CC RN~X,

351 = {x:x„ =0,x' Go'},
35lA = {x: xN = b(x'), x' G ß'},

with A. 1, 0 < b(x') < C8 < Ch2, and where b(x') is sectionally smooth and
uniformly Lipschitz. Note that hence (1 + \Vb\2)x/2 is uniformly bounded below
and above so that we may freely go from integrals over ß' to surface integrals over
the corresponding part of 35lA, and vice versa. With Dv a generic first derivative,

Dv(x', b(x')) = Dv(x', 0) + [b(x)^-Dv(x', z) dz.
J0       oxN

Here, v(x) = JT, Gx(y)<p(y) dy, so that, by the properties of the Green's function,
(2.2), (2.3), and since dist(r', d%) > c'h and |z| < Ch2,

e-jx*-..) £1
C

7¿\<p{y)\dy
ChN'2

K-\y-(x',z)\N \x'-x'0\N + hN'

with x0 = (x'o, x0N).
Remark 5.1. To ensure the above estimate is the reason for our assumption that

dist(r', 35lA) > c'h and the ensuing additional work in Lemma 5.1.
Hence, using (5.12) and an elementary calculation,

f \Dv(x', b(x'))\ dx'Jq'

< f \Dv(x', 0)| dx' + ChN'2 [CS dz f-~-
•V 4>        Ja \x' - x'n\N + hN

< ChN'2 + ChN'2~x8 < Ch»/2.

This proves (5.8).
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14 A. H. SCHATZ AND L. B. WAHLBIN

For (5.9), in the transformed coordinates we have the estimate (5.8) over any
level piece {x = (x', xN), x' G ß', xN = k, k < C8). An integration in the xN
direction then gives (5.9).

This completes the proof of Lemma 5.2.
We are now left with proving Lemma 5.3; this will occupy us for the rest of this

section.
Proof of Lemma 5.3. Set e = v - vh. We shall first show that

(5.13) lively < CA"/2+I(ln {)'.

It will be seen later that this is the hard step in proving (5.11). Recall our notational
convention that a nondisplayed domain equals 5lA.

We need some auxiliary notation. For this, recall our fixed notation x0 and t', cf.
(5.2) and the discussion immediately before (5.4). Set

(5.14) Aj = [x: 2~J < \x - x0\ < 2~J+X},      /integer,

(5.15) ß;. = A. n %.

Assume for simplicity that 5lA = U°°_0 fy- Next let C„ > 1 be a quantity to be
chosen later (sufficiently large but independent of h) and let J = J(C+, h) be the
integer such that

(5.16) 2~J > Cth >2-J~x.

Further introduce

(5.17) Bm = {x: \x - x0\ < 2~J),       ß„ = Bt n %,.

For C„ large enough, ßt contains r' which contains x0. Also set

(5.18) a) = 2-J,
and

(5.19)

Note that

Aj = Aj_x u Aj U AJ+l,   A¡ = A'j_x u Aj U Aj+l,
Aj  = Aj_i U Aj   U Aj+1;

a; = Aj n % (= üj_x u ß7- u QJ+l), ...,si] = A/n %,.

(5.20) % = Í y a,.) u a,;

assume also that C„ is large enough so that with a positive constant c,

(5.21) dist(T', Af) > cdj,      j = 0, . . . , J + 1.
A sketch of the situation might be helpful, Figure 1. (In the sketch we place x0

quite close to 35lA, this being the harder case. Note also that the sketch is not to
scale.)
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Figure 1

We have now

(5-22) ||*¿||l, - l|Velk(B.) + 2 l|V¿||LlW.

Here, by the low-order approximation property A.5 and by elliptic regularity for

(5.6),
l|Ve|li|(0.)< CC^ "/2|M|¿1(a,>

(5.23) <CC?W2  inf »ü-xIUw

< CC?/2hN/2+x\\v\\HHcA) < CC?/2hN/2+x.

Next,

||Ve||LiW < 2"<f/2IMI*W,
so that, with

(5-24) S-S^II'iÄW
o

we have, by (5.22), (5.23),
(5.25) ||Ve||Li < CCNJ2hN'2+x + 2N/2S.
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16 A. H. SCHATZ AND L. B. WAHLBIN

Remark 5.2. Note that for the function v, which is harmonic away from the
region Qm, one has

</2ll»llw.(«y) < Mwm < Cif/2INI//'(«;)>
with positive constants c and C. A similar estimate can be derived for the "discrete
harmonic" function vh. Therefore, the bound in (5.25) appears sharp. Note further
that the right-hand side of (5.25) can be bounded by a weighted H '-norm, viz.,

(1 \l/2/ \l/2
In -J     ¡J (dist(x,r')+ C,h)N\Ve(x)\2dx\    ,

cf. [14], [15], [17].
To estimate each term in S we use the local // -estimates of Theorem 4.1. Since

Aj can be covered by a bounded number of balls of radius dj/4, Theorem 4.1
applies with Dh = ßy, D'h = ßj, and d = dj. Heeding Remark 4.1, we thus obtain

<f/2lklUw < df/2C   inf (||t; - xWh'^ + dfx\\v - X\\^

,5.2«) ^</-V,kw)
< cdf m (II» - Jäwjm + 4"'li» -xllt.«))

+Gf/2-,|M|L2(iC).
By the local approximation property A.4, and since A^.-1 < C,

inf (||» - XÏÏwlW) + 4"1Ht' - Xlli-(iç))
x fc J*

< CA'-'llüll^^.nft) + Ch-X8 S  4m_1|l»ll^(^na).
m=l

Recall, (5.21), that dist(r', Aj') > cdj, c > 0 may be assumed. Since <p is supported
in t', the properties of the Green's function, (2.2), (2.3), give

(5.28) N| H^/na) < Cd2~N-lhN'2,       1=1,..., Max(r, M).

Substituting now (5.28) into (5.27), and the result of that into (5.26), we obtain

(5 29) 4"/2IMU'W) < Cd*-*"1*'-* + Cdj8hN'2-x

+ Cdf/2-x\\e\\LÁaj).

Inserting this into (5.25) and summing the geometric series and, for r = 2, noting
that the sum involves approximately ln(l/A) terms, and also remembering that
8 < Ch2, we find that

Pe\\u^<CCNJ2hN^x+2N'2S

< CC^2hN/2+x + CA"/2+'242-rAr-2 + ChN/2+x(8h~2)^di
(5.30) o o

+ c¿</2-'lM|,2(a;,
o

< Ch»'2+x(c»J2 + (in I)') + C SV^-IMI^.
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Remark 5.3. If r = 2, N = 2, we may now easily conclude the proof of (5.13).
For then we estimate the last sum in (5.30) by

J+l I        1 \l/2 / l \l/2

1 \\e\\LM) < C\ln - j    \\e\\Li < CA2(ln ̂ j    ;

the last estimate here is well known by the low-order approximation hypothesis A.5
and a duality argument.

In general, our argument is more involved; to estimate |M|L(a) we call on an
additional local duality procedure. Write

(5.31) IMk(%)=     SUP      /«J-,eG?(o,) \
Nlz.2=l

For each such fixed r¡, let w be the solution of

-Aw = T}   in 51,       w = 0   on 351.
Then, for any x in SA,

(5.32) f eq= ( Ve • Vh> = f Ve ■ V(w - x).
•'a,-       •'a •'a

We shall now construct an approximation x to w that, roughly speaking, will be
the low-order approximation of A.5 on ßy, and will be the high-order local
approximation of A.4 outside of fiy. The blending of the two will be accomplished
via "superapproximation", A.6. (We thank K. Eriksson for his help in this argu-
ment.)

Let (o, 0 < (o < 1, be a smooth function on R N such that (cf. (5.19) for notation)

(5.33) (o2 = 1    on Aj",        supp co2 Q Af,

and

(5.34) IMI wL(R^ < Cdj~k,       k = 0,...,K   (cf. A6),

where C is independent of/. (Construct such a function on unit size domains and
then scale.)

Let Xh De tne high-order local approximant to w of A.4, and let Xl denote the
low-order global approximant to w of A.5. Set \p = (o2(x£ — Xw). and let \ps E SA
be the "super"-approximaion to \p given in A.6. Then

(5.35) ^ = 0   outside ßj,
and

(5.36) ^ = xj,   in ß/.

We now set x = Xw + ^s'> tnen> on °/. X = Xh + i = Xl, and on 5lA \ ßj,
X = Xn-
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18 A. H. SCHATZ AND L. B. WAHLBIN

We use the x Just constructed in (5.32). Then,

f Ve ■ V(w - x) = [ Ve • V(w2w + (1 - œ2)w - Xh ~ fc)
•% ■'a

= f Ve ■ V(w2(w - xj)
(5.37) J*

+ fVe- V((l - (o2)(w - x„)) + f Ve • V(> - *s)
■% •'a

= y, + /2 + /3.

We proceed to estimate the three terms above.
For/,: By (5.33), (5.34), and A.5,

\J\\ < Cllell^n^v^.-'Hw - xjli^a) + \\w - XilU'(a))

< c(llv'»llz.2((a\at)n.4/') + \\e\\H'(%,nAi"))h.
By the Green's function representation, v(x) = jT, Gx(y)y(y) dy (cf. (5.6)), and by
(5.21),

Ilv»ll£2((a\a,,)n4i'') < C(8df~x)    \\Vv\\Lj{^%)nAj^

< C(8df-iy/2d/-NhN/2 = C8x'2dxl2-N'2hN'2.

Thus,

(5.38) L/,1 < chN'2-x8x'2dx'2~Nl2 + Ch\\e\\H^nA;).

For J2: Note that 1 - w2 is supported in 51 \ Aj". Since 51 \ Aj" = (% \ Aj")
U ((51 \%)\ Aj"),

|/2|=|/V*- V((l - (o2)(w - x„))

(5.39) < WVeW^Cidj-'Ww - x„ll^(a^r) + l|V(w - x*)ll¿.(*.yr>}
+ llv»IL,(a\%,)C{4~1IMI^((a\a,,)\-4;") + \\Vw\\l„«<¡h\<3iw)}-

We note that for k ¥=j - 3, . . . ,j + 3, k > J + 5 say, we have by A.4 and the
Green's function representation w(x) = }a Gx(y)r¡(y) dy,

dj^Ww - XhWlJP.) + II v> - xjllz.jn.)
A/

< CA'-I|MI«„(ftn/<:)+ ÇA"'« S  ¿¡T'IMIh-«^;)
m=\

■,2-N-
<Chr-x{m&x(dk,dj)y-"-rdf/2

M
+ CA-Ô S ^-'(maxK,4))2-"-'"<///2.

m = l

Since 5lA \ Aj" is the union of such Qk and a small inner "core" domain, for which
a similar estimate is easily derived (for C„ large enough), we find that

(5.40)
dj  x\\w - Xh\\l„(%.\aj") + II v(w - Xff)llz.„(all\4'")

< Chr-Xd2-N'2-' + Ch~x8dx-N'2.
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By Lemma 5.2,

(5.41) IIY«Jk(«u«U < ChN/28

and, again by the Green's function representation,

(5.42) 4-1IMk((^*,)W) + HVwlL.((«.v«,M'") <    Cdx~N'2.
Using (5.40), (5.41) and (5.42) in (5.39), we see that

(5.43) |/2| < C||Ve||LÄ){A'-'42-"/2-r + h~x8d/-N/2} + ChNl28dx~N'2

For Jy By (5.35) and (5.36) and A.6,

\J3\=\fVe-V(t-ts) < llell//'(atn/f;)ll,r' - ^sWh'íCSí^a^sa;)

< C\\e\\H,(ISihnAjyh{dj-2\\xL - XhII/.,((«,rM;)\¿/)

+ 4_1HXl ~ X«ll¿'((aín/<;)\/f;)}

< C\\e\\H^hnA;)h{dj-2\\xL - Hk + dj-x\\xL - HI*'

+ 4~2HX« ~ wIL2((**n^/)H")

+ 4_1HX// - H,ll//l((a,n/(;M")}-

Here, by A.5,

4~2llx¿ - HL2 + Ota - W\\H< < CHHUw < c-
Further, by A.4 and the Green's function representation,

dj~2\\xH - w\\iái%n4M) K Cdi2df/2\\XH - M\i.jt%aAj)\Aj)

< Crf//2-2ÍA'||w||^(ft^;) + C8 2 ^''iMli^yç)}

< crf//2"2^/-"-'*///2 + es 2 ¿/-'¿/-"-"vf72] < C,

and, similarly,

4""'llX// _ Wllff'((a»nv</M") < c-
Thus,

(5.44) |/3| < Ch\\e\\AH%nAjy

Using (5.44), (5.43) and (5.38) in (5.37), and the result in (5.32) and (5.31),
lklL2(a,) < ch\\e\\H>(%nAJ) + ca"/2+'s'/24'/2-"/2

+ C||Ve||L|(%)(A— df-*"*-' + h-x8dx~N/2)

+ Ch"/28d/-N/2.
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Hence, from (5.30),

\\Ve\\L¡ < CCNJ2hN'2+x + 2N'2S < ChN'2+x(cNJ2 + (in -j-)')

y+i

(5.45)
+ C||Ve||/,]2(A'-14,-' + A-'S)

y+i
+ c2 A¿//2-'|Mi¿1(^n,,;)

o

+ C ^'(A^ô + hN/2+x8l^dj-^2).
o

2Here, remembering that 8 < CA ,
j+\ , i /-
2 (hr-xdjX-r + A"'«) < Chr~x(C,h)    r + Ch In - <

A      /^ V-'(c.)'-

Further, cf. (5.24) for notation,

2 K/2-x\Hhk^aj)

< C2 W//2^lk||¿,(í2y) +CA(C,Af/2"Vll«.(a,)
o

< c~s + ccNJ2-xhN'2+x <-ß-S+ cc^2~xhN/2+x.
dj W

Also,
j +
2 (*"/2S + hN/2+x8x/2dj-x/2) < ChN/2+x(h In | + A'/2) < CA"/2+1.

Inserting the above three estimates in (5.45),

||Ve||L  <CC^2hN/2+x +2N/2S

< CA-/2+'(cr + (in I)') + HVelL—^—

Taking now C+ large enough, we deduce in succession that

s < ck-^cH" + (in {)') + l»«lt.-^n

and that

||Ve||¿, < CA"/2+'(c^2 + (in ±)').

This proves the desired estimate (5.13).
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It remains now to show (5.11). In the notation of (5.14)—(5.21),
j

\\Ve\\w\->(%,) = IIVe||».¡.»(o.) + 2 l|Ve||^,.*(i2).
o

Here, for any Xj e SA, by the inverse property A.3 (where, by subtracting constants
over each element, it is seen that it suffices to include the pure gradient term),

l|Ve||^W) < ||V(u - Xj)\\wm) + Ch-x\\V(Xj - vh)\\LiW)

<CI{v-Xj,Vj, 1) + CA-'||Ve||L|(n;),
where we have used the shorter notation

I(g,Sl,p) = HVgll^o) + A-'||Vg||vn).
Similarly,

l|Ve||^(n>) < Cl(v - x„ ß* U ßy, 1) + CA-'HVell^^.

Hence,

j
|| Ve|| ̂ j^) < Cl(v - x„ a, U QJt 1) + C2 /(» - Xj, ß; i)

(5.46)
+ Ch~x\\Ve\\w.

Here, by low-order approximation A.5,

*(v " x*' ß* U ß" !) < (8C*A)"/2/(» - X., %, 2)
(5-47)

< C(C,A)*/2|M|„W < ChN'2.

By local approximation A.4 and the Green's function representation of Section 2,
using (5.21),

I(v - xj, 0> O < 4Nd/l(v - Xj, ßj, oo)

< Cdflh'^UvW^n^ + Ch~28 2 f-lMwx*nA?]
(5.48) V «-] /

< CdjN{hr-2d2-N-rhN/2 + Ch-28dx~NhN/2)

< ch"/2(hr-2d2-r + dj),

where the last step used that 8 < CA2.
Inserting (5.47) and (5.48) in (5.46) and using (5.13) for the last term of (5.46),

l|V*|Um) < CA"/2(ln \J +A"/22(Ar-242-' + dj) < CA^2(ln \J.

This completes the proof of Lemma 5.3.
Theorem 5.1 is now completely verified.

Department of Mathematics
Cornell University
Ithaca, New York 14853

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



22 A. H. SCHATZ AND L. B. WAHLBIN

1. S. Agmon, A. Douglis & L. Nirenberg, "Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions. I," Comm. Pure Appl. Math., v. 12,
1959, pp. 623-727.

2.1. Babuska & A. K. Aziz, "Survey lectures on the mathematical foundations of the finite element
method," The Mathematical Foundations of the Finite Element Method (A. K. Aziz, Ed.), Academic
Press, New York, 1972.

3. I. Babuska & J. Osborn, "Analysis of finite element methods for second order boundary value
problems using mesh dependent norms," Numer. Math., v. 34, 1980, pp. 41-62.

4. J. H. Bramble, J. A. Nitsche & A. H. Schatz, "Maximum norm interior estimates for
Ritz-Galerkin methods," Math. Comp., v. 29, 1975, pp. 677-688.

5. J. H. Bramble & A. H. Schatz, "Estimates for spline projections," RAIRO Anal. Numer., v. 10,
1976, pp. 5-37.

6. Ph. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
7. J. Descloux, "On finite element matrices," SIAM J. Numer. Anal., v. 9, 1972, pp. 260-265.
8. J. Douglas, Jr., T. Dupont & L. B. Wahlbin, "Optimal Lx error estimates for Galerkin

approximations of solutions of two-point boundary value problems," Math. Comp., v. 29, 1975, pp.
475-483.

9. S. C. Eisenstat, R. Schreiber & M. H. Schultz, "On the optimality of the Rayleigh-Ritz
approximation," Research Report 83, Dept. of Comput. Sei., Yale University, 1976.

10. I. Fried, "On the optimality of the pointwise accuracy of the finite element solution," Internat. J.
Numer. Methods Engrg., v. 15, 1980, pp. 451-456.

11. S. Hilbert, "A mollifier useful for approximations in Sobolev spaces and some applications to
approximating solutions of differential equations," Math. Comp., v. 27, 1973, pp. 81-89.

12. D. Jespersen, "Ritz-Galerkin methods for singular boundary value problems," SIAM J. Numer.
Anal., v. 15, 1978, pp. 813-834.

13. Ju. P. Krasovskii, "Isolation of singularities of the Green's function," Math. USSR-Izv., v. 1,
1967, pp. 935-966.

14. F. Natterer, "Über die punktweise Konvergenz finiter Elemente," Numer. Math., v. 25, 1975,
pp. 67-77.

15. J. A. Nitsche, "¿^-convergence of finite element approximations," Mathematical Aspects of
Finite Element Methods, Lecture Notes in Math., Vol. 606, Springer-Verlag, New York, 1977, pp.
261-274.

16. J. A. Nitsche & A. H. Schatz, "Interior estimates for Ritz-Galerkin methods," Math. Comp.,
v. 28, 1974, pp. 937-958.

17. R. Rannacher, "Zur ¿"-Konvergenz linearer finiter Elemente," Math. Z., v. 149, 1976, pp.
69-77.

18. R. Rannacher & R. Scott, "Some optimal error estimates for pieeewise linear finite element
approximations," Math. Comp. (To appear.)

19. A. H. Schatz, "A weak discrete maximum principle and stability of the finite element method in
Lx on plane polygonal domains," Math. Comp., v. 34, 1980, pp. 77-91.

20. A. H. Schatz & L. B. Wahlbin, "Interior maximum norm estimates for finite element methods,"
Math. Comp., v. 31, 1977, pp. 414-442.

21. A. H. Schatz & L. B. Wahlbin (To appear).
22. A. H. Schatz & L. B. Wahlbin, "On a local asymptotic error estimate in finite elements and its

use: Numerical examples," Advances in Computer Methods for Partial Differential Equations-W (R.
Vichnevetsky and R. S. Stepleman, Eds.), IMACS, New Brunswick, Brussels, 1981.

23. R. Scott, "Optimal ¿°° estimates for the finite element method on irregular meshes," Math.
Comp., v. 30, 1976, pp. 681-697.

24. G. Strang, "Approximation in the finite element method," Numer. Math., v. 19, 1972, pp. 81-98.
25. L. B. Wahlbin, "Maximum norm error estimates in the finite element method with isoparametric

quadratic elements and numerical integration," RAIRO Anal. Numer., v. 12, 1978, pp. 173-202.
26. M. F. Wheeler, "An optimal Lx error estimate for Galerkin approximations to solutions of

two-point boundary value problems," SIAM J. Numer. Anal., v. 10, 1973, pp. 914-917.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


