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ABSTRACT

We examine three aspects of the dvnamics ef the Cooper-
rider truck travelling in a curve with consrant radius. Firsi the
critical speed is found. Second we Investigate the existence of
muliiple steady solutions to the curving problem. Third - and it
is reluied 1o the second problem - we shull examine the position
af the truck frame und the wheelsets during curving. One inter-
esting resulr is that for a given superelevation there exist curve
radii for which the critical speed is exceeded, when the vehicle
negatiates the curve with the allowed maximum cant deficiency.
These crivical speeds are lower than the critical speed on straight
treick.

INTRODUCTIQN

All railroad vehicles oscillate horizontally perpendicularly
to the wack center line, the so-called "hunting’, when the speed
of the vehicle exceeds a cerlain "crivicsl speed”. The phenomenon
has for more than a century erroneously been treared as a linear
stability problem. The dynamics of a travelling railroad vehicle
is highly nonlincar, primarily - but nut only - due to the wheel/rail
contact surlace geometry and the nenlinear stress-stmin velocity
relation in that surface. A survey of the contact problem has been
given by Kalker | 1].

Many authors have treated the hunting problem. A parely
kincmatic investigalion was presented by Kiingel [2], and in the
20th century several people investigated the dynamic problem.
The first person, who correcty formulated the problem of finding
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Whe critical speed as a bifurcation problem in nonlinear dynamics,
was Huilgol [3]. A survey of linear siability as well as of nonlin-
ear bifurcation analyses was given by Knothe and Bohm {4].

On a saight railroad lipe (he dynamic problem, formulated
in a reference frame that moves with the vehicle along the rack
center line, has a stationary solution, For sufficienty low speed
it is unique and asymptotically stable. In the great majority of
cases this solution leses stability, when the speed grows. in a
suberitical Hopf bifurcation. In the Hopf bifurcation point at the
speed ¥y o new and pedodic motion is created - 11 "branches olf”
the already known stationary solution. When the bifurcation is
‘subcritical’, the new periodic soluten exists for speeds lower
than ¥y, and it is unstable. The unsiable perindic solution gaing
asympiotic stability ut 4 lower speed in a saddle-node hifurca-
ton, which defines the critical speed V; of the vehicle, because
it is the speed at which the stationary solution. loses its unique-
ness. In the saddle-node bifurcation point the peredic soluian
turns over towards higher speeds. In the speed interval (V. , Vi)
three solutions to vur nonlinear dynamical problem exist. Two of
them - one stationary and one periodic solulion - are asymptuti-
cally stable. The initial conditions or the disturbances determine,
which of the stable solutions will emerge, therefore the stationary
solution is sensitive to finite disturbances abave the criteal speed
V.. It means that the stationary motion will jump o the periodic
motion, il a disturbarce pushes the rajeclory of the motion inla
the domain af atraclivn of the periodic moton. The dynamics
is vsually depicted in a bifurcation diagram, which plots the am-
plitude of the various soiutions versus the control paramerer - in
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Figure 1. THE COOPERRIDER TRUCK. THE SPRING SIGNATURES
INDICATE PURE SPRINGS IF THEY ONLY ARE DENOTED BY A
SPRING CONSTANT &, AND A SPRING-DAMPER COMEBINATION IF
THEY IN ADRITION ARE DENOTED BY A DAMFING CONSTANT ;.
THE SPRING-DAMPER COMBINATION DENGTED BY ks AND Dy
ACTS AGAINST THE YAW MOTIGN OF THE TAUCK FRAME
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On curved track the bifurcation diagram is similar, but True
and Birkedal Nielsen [3] found that the crifical speed may he
lower than on straight track, Petersen and Hoffmann [6} exiended
their bifurcalion analysix to larger curve radii. They found in
a student project that a jump of the Hopl bifurcation down (o
the saddle-node huppens for s lixed superelevation und growing
vurve radivs. Then the Hopf bilurcation becomes sepercritical.
Tn & supercrilical Hopl bifurcation the periudic solution only ex-
1sts for larger speeds than Vi, and the new periodic solution is
asymptoticatly stable. i

This contdbution intends to decpen the understanding of
these phenomeny and find their dependence on the paramcrers
of the railroad line.

THE VEHICLE MODEL
We investigate the dynamics of a railroad truck for a passen-
ger car. All the imporlant nonlinearites thal inlluence the crideal
speed - the suspension elemens, the wheel/rail contact geomerry
and the contact forces - are concentrated in the wucks. We have
“chosen the s¢-called *Coeperrider truck’ {71 Fig. 1 and Fig. 2 as
© pur model, because it has been used often as a benchmark reodel.
Wa have added a yaw damper and pitch dampers to the truck and
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Figure 2. THE COOFPERRIDER TRUCK. k; AND ); DENGTE SPAING
AND DAMPER CHARACTERISTICS

use wheelsets with the §.1002 wheel profile running on UIC60
rails. which are laid with a slope of 1/40 towards the track cen-
ter line. All elements of the truck are assurned to be rigid with
the exception of the springs and dampers that have linear charac-
wristics. W, Kik’s routing RSGEQ is nsed to calculate the ideal
vontack points between the wheels and the rails in dependence on
the lateral displacement of the wheelsct in the cack. For the cal-
culation of the normal forces in the wheel-rail contact zone we
use Hertz's theory, and the tangential forces are calculated using
Shen-Hedrick-Elkins® tormula [%]. The truck model has tour-
teen degrees of freedom and an equation for each wheelsen that
expresses the conditton that the speed of rotation of the wheelset
corresponds to the specd of travel of the tuck. Due w the number
of degrees of freedomn and the nonlincarities the dynamic prob-
lem is investigated numerically. We use the routine SDIRK as the
solver and MATLAR for post processing. SDIRK is unt acronym
for Singly Diagonally Implicit Runge-Kutta, and it is an efficient
solver for stiff problems as ours. We use an error tolerance 1078
and an ouiput stepsize of 10~%. Rach branch of the solution is
found by a path following procedure. The exisience of the Hopf
bifurcatiens is verified by a numerical investigation of the vara-
tion of the eigenvalues of the Jacobian in a neighborhood of the
hifurcation points.

Befure we go vver 1o the next section 'Some results’, we
shall refresh some imparant concepts from nonlinear dynamics.
Fura deeper insight the interested reader is referred 1o the article
by True |9].

Nonlinear dynamic problems often have several steady solu-
tions, where cach of them depends on the initial conditions used.
This is a contras! 10 the Loear problems that have unique sleady
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solutions. A steady solution is defined as the asymplote Hmit of
the solution for tme. 7, going to infinity - in other words afier
the transient has died out. A steady solution may be siationary,
periodic or have a more complicated structure like chaos. The
set of all inital conditions, from which the imjectories approach
a steady solution, is called the basin of attraction of that solu-
tion. Vchicle dynamic problems are parameter dependent. Of all
the parameters the speed. V. is pardcularly interesting, because jt
varies during the ride, and V is therefore chosen as the extemal
contral parameter in our problem.

The mulplicity of solutions of a nonalingar problem depends
on the parameters. [n order w obtain an overview we most often
use hifurcation diagrams, where 2 quantity characterizing a cer-
tain solution is plalied versws Lhe parameler. A tvpical example
from vechicle dyoamics is shown in Fig. 7. A broken line denotes
an unstable solution.ihe figure shows a subcritical bifurcation of
a periedic solution from a statienary selution, X=0, at ¥=Vpy .y
and a saddle-node bilurcation at VaVoonrinersr, Where the periodic
soludon mums arcund and gains asvmptotic stability. At a sub-
critical bifurcation the bifurcating periodic solution coexists with
the s1able stalionary solution, and (he periodic solution is unsta-
ble. At u supereritical bifurcation the periodiv seludon coexists
with the unstable stationary solution, and it will be stable. Since
Vonutinerir 18 the Speed, at which the stationary solution V=0 loses
its uniqueness, the stationaty seluton becomaes sensitive to finite
disturbances above that speed. The speed Vauingy 18 thercfore
the crilical speed of the vehicle, The stationary solution will re-
main asymptotically stable, untl the vehicle reaches the speed
Viineris . Above Ve the slationary solution is unstable, and the
only stable sofution tn the probtem - at least in some higher speed
interval - is the perindic solution,

Bifurcation points like Vi and Vaggimes depend of course
on the other paramelers io the problem. In curving dvnamics we
have wo important. additional parameters, namely the radius of
the curve and the superelevadon of the track. A plot of the hi-
furcation points versus one or merc of the parameters is called a
bifurcation set. An example of a bifurcation set is Fig. 3. Itis
important 1o keep the difference between  bifurcalion diagram
and a bifurcation sct in mind, since they may look alike. The
bifurcation poinls in a bifurcation sel may merge or mirn around
or cross - just Hke the corves in a bifurcation diagram. The bifur-
catiun scL, however, Mustrates the dependence of the bifurcation
points on the paramelers. The bifurcation diagram illustrates the
dependence of a norm of the solutions eg. the amplitude on the
parameters.

SOME RESULTS

On a straight track the first Hopf bifurcation point for the
Cooperrider wuck is 117.3 m/s and the critical speed is 53.97
m/s~194 km/h. {6]. These values are not unusual for a modeen
tuck desigized for passenger cars with a maximurn service speed
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Figure 3. THE CRITICAL SPEEDS FOUND BY PETERSEN AND
HOFFMANN [6]. THE SUPERELEVATION IS 2. NEAR R=1200m A
SUBCRITICAL HOPF BIFURCATION SUDDENLY CHANGES TO A 8-
PERCRITICAL HOFF BIFURCATION

of 160 km/h. The Hopf bifurcation - in the following called "the
linear critical speed” - and the critical speed - or correspondingly
‘nonlinear critical speed’ - in curves with a radius in the interval
6U0m < R<22000m were found by Petersen and Heoftmann 6], 1o
Fig. 2 we show their results as a bifurcation set for a track with a
superclevation of 2%,

We sce that the lincar critical speed grows - but ool
monotonously - from R=600m 10 R~1200 m. The Hopf bilurca-
tion is very sensitive to the wheel-rail contact geomerry, which
depends on the vaw angle and the lateral displacements of the
wheelsets. They in mrn depend primarily on the supercleva-
tion and the radius in the curve. The noniinear critical speed
also grows, but much slower and monotonously, up unrl a radius
of R~~1100 m, At R~1100m the bifarcation points are located
close to their comesponding values on straight track, but then
the ponlinear criticul speed decreases {or growing R, Around
R=1200m the linear critical speed jumps down to the nonlin-
ear critical speed, whereby the two bifurcation points merge and
create a single supercritical Hopf bifurcation. The critical speed
then drops to around 38 in/s at R=140{m, but from R=1300m the
lingar eritical speed and (he nonlinear erilical speed separale and
merpe again at R~1800m. where a minimum exists: When R
grows beyond [B0Om, the situation seems to approach the situa-
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Figure 5. AN EMLARGEMENT OF A SECTION OF 1G4

tion on straight track, but further analysis is necessary to confirm
that postulate.

. The nonlinear ¢ritical speeds in the diagram are quite large,
and it is therefore interesting to test the relevance for a real sit-
vation. UIC has set standards for the maximum allowed ‘un-
cempensated lateral acecleration” on railroad lines. From these
il s easy to calculate the maximum speed in & curve with a iven
raidivs and superelevation. In our cxample most of the critical
speeds will lie above the maximum speed allowed on the basis
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Figure 5. A PLOT SHOWING THE ASYMPTOTICALLY STABLE RE-
GIONS OF THE STATIONARY 'SOLUTION IN DEPENDENCE ON THE
CURVE RADIUS R ARQUND R=1230m. )

- of the UIC standard, but it will nat be the case for R=1800m. If

the vehicle travels through that curve with the allowed uncom-
pensated laleral acceleration of 0.67 mie, then it will start 1o
hunt. The critical speed in that curve is only 33 m/s~119 km/h,
whereas the critical speed on straight track was 194 km/h.

© We want to invesdgate the merger of the nonlingar and lin-
gar critical speeds around R=1200m. The numerical calculadons
revealed the bifurcation sets shown in Fig. 4 and Fig. 5. Tuis seen
in Fig. 5 that a merger of two Hopf bifurcation peints appears at
a specd~55 m/fs for R=1226.6m, whereby the Inwcest lincar erit-
ical speed jumps down fTam 90 mfs. The values are not exactly
the same as those in Fig. 3, because the wheel profile has been
slightly modificd in the model we consider in this work, and there
arc no pikch dampers in Petersen and Hoffmann's model. The
Iower branch from the merger, vipemys, Wigales violently around
R=1230m, until it merges with vyontiery around R=1232 4mand
the speed V=46.2 m/s. The diagram in Fig. 6 shows qualitatively
the regions of asympiotical stability of the stationary solution in
dependence on the curve radios R.

In order to depict the merger qualitatvely we consider the
hifurcation diagrams in the three sections denoted "A’, 'B” and
'C" in Fig. 6. In this way the character of the merger will become
clear, In Fig. 7 the section "A is shown. The bifurcation diagram
is that of a normal subentical Hopf bifurcation, where the vnsta-
ble, periodic solution gains stability in a saddle-node hifurcation.
In Fig. 8§ (section B) we see that two new Hopf bifurcation points
Vineriz A0 Vg3 have appeared in the diagram. Thew lic be-
low the old vy, which rom now on will be denoted Vigeri -
Between vigperpr and Vigerys the stationary solufion has becomi
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Figure 7. SECTION A FROM FIG.6 SHOWING THE SUBCRITICAL
HOPF AND THE SADDLE-NCOE BIFURCATIQNS

hunting amplitude
>,

Figure 8. SECTION B FROM FIG.E SHOWING THE SUBCRITICAL
HOPF BIFURCATION TOGETHER WITH THE SMALL AMPLITUDE STA-
BLE PERIODIC SOLUTION

unstable, and a new asympiotically stable periodic solution with
small amplitude has been created in the intcrval. For larger R
the amplitude of the new periedic solution and the values of the
biltreation points Vg and Vigesa all grow until vig) and
Vyneries Codlesee and the new pericdic solution "hits™ the unstable
periodic solution that emerges fom Vierir1 . The details of what
looks like a kind of "exchange of stability’ at this point is under
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Figure 8. SECTION C FROM FiG.6 SHOWING THE SUBCRITICAL
HCPF BIFUACATION TGGETHER WITH THE SMALL AMPLITURE UN-
STABLE PERICDIC SOLUTION

investigation. For still larger values of R the saddle-node bitur-
cation point disappears, and the Jarge amplilude hunting motion
has become stable. and its bifurcation point is now 4 supercritical
Hopf bifurcation. The small amplitude periodic solution has be-
come unstable between the bifurcation points vy,q.qh3 and viucied,
while the stationary solition now has become asymptotically sta-
blz in the same speed interval. This station s shown in Fig. 9
{ssction C). For still higher values of R the amplicude of the small
amplitnde periodic solution decreases. while Vi3 and Vi
approach each other, meet and finally annthilate each other. The
existence of two perindic, stable solutions is demonstrated in the
plets in Fig. 10. :

The Hopf bifurcation points depend not only on the radius of
the curve bul also on the superelevation of the track. The eritical
speed for the Hopl bifurcation only changes little, but the Hopf
bifurcation poinis tend towards lower radii of curvature, when the
superelevation increases. The Incation of the Hopf bifurcation
points depend on the contact surface geometry. and that in wra
depends on the position of the wheelsets in the cuive. [n Table 1
we show the interval [Winenr2, Viggernz] for selocted values of the
superclevation 9.

The onset of hunting in curves with growing speed depends
on a delicate balance between the gravitational séiffncss of the
displaced wheelscts. the centrifugal and gravialional forces and
the peometry of the entire wheel and rail profiles. In order o try
o find some relations we have compared the yaw of the truck
wheelsels versus the speed with the radial alignment for various
radii. The supeselevation @ is again 2. The results are shown
in Fig. 11 and Fig. 12. [t is inleresting (o patice that there might
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Table 1. THE INFLUENCE OF THE SUPERELEVATION 4
¢ Reri
0° [1265, 1267.5] -
|27 112265.1226.6)
3 [1207.5, 1210]
|42 {1112.5.1115)

8% 1997.3, 1000]

1

be a conneetion belween the start of the pegodic motion and the
speed at which ihe position of a wheelset becomes radial. For low
speeds bath the leading and the trailing wheelsets have a larger
vaw angle than the radin). meaning that they wnd e steer the
wheelsets out of the curve away from the center. The tendency is
most pronounced for the railing wheelset. In spite of the larger
initial yaw angle the trailing axle will align radially first and then
tend 1o sieer the axle towards the center of the curve, when the
speed increases. The leading axle follows suit. When the ra-
dius is larger than 1235m hunling starts helorc any of the axles
reaches a radial position. :
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Figura 11, THE YAW ANGLES OF THE LEADING AND TRAILING
AXLES VERSUS THE $PEED. d=2"

Conclusion

In 1983 Neil Cooperrider visited The Technical University
of Denmark and had the opportunity to ride in the cab on ane
of the Danish "Lyntog’ - a fast (140} km/h) diesel trainset, which
basically was the same as the famous German TEE VT 11 trains.
After the ride he reported to one of the authors (HT) that he had
noticed a hunting motion in a couple of curves, through which the
train had travelled with its maximum speed. On the rest of the
line the train was ranoing very calmly. Tt was noleworlhy that (he
track condition was excellent all the way, and the hunting wok
place in curves with large radii - larger than 1000m. Neil Coop-
erfider expected thal o happen, but he had never experienced it
before. and he offered no explanation.

"Truc and Birkedal Nielsen [3] found that the critical speed
in curves is lower than on straight (rack, hut their results were
limited to curve radii smaller than $00m. In these curves the crit-
ical speeds were higher than the maximum speed allowed by the
UIC limits on the maximum uncampensated lateral acceleration
in curves,

Petersen and Hoffmann (6] calculated the critical speeds in
curves with radii larger than 600m. They found that in curves
with large radii the eritical speed may be lower than the max-
imum allowed speed and also lower than the critical speed on
straight track, so the vehicle may hant in the corves only. That
expluing Neil Cooperrider’s obsarvation.
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Figure 12, SCHEMATIC PLOT OF THE POSITICIN OF THE WHEELSETS AND THE TRUCK FRAME RELATIVE TQ THE RADIAL LINE AT DIFFERENT
SPEEDS. THE SPEED INCREASES FROM FOSITION 1 TO POSITION 4
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This resulthas implications for the design parameters of rail-
way vechicles, sinee it means that the reduction of the enlical
speed in curves must he taken into consideration in the design
of the vehicle.

Petersen and Hoffmann [6] also feund the jump of the linear
critical speed - the Hopf hifureation - down to the nonlinear crit-
ical speed that takes place at a certain combination of the radius
of the curve and the superclevation in the curve. [n the present
contrbution we investigated the dynamics of the curving Coop-
errider wmck in an interval around the radius, where the jump
occurs, and hoped to relate the jump to a sudden ehange in the
position of the truck on the track. The jump is connceted with an
. interesting development of 4 new small amplitude periodic mo-
tion for speeds smalier than the original Hopf bifurcation. The

creation of the new periodic motion seems o he cnnnected with
" the'speeds at which first the trailing and then the leading wheelsot
in the truck croesses the radial line, Al larger curve radii the new
perodic mution “moves up’ towards the oniginal Hopf bifurca-
tion. Ara certain radius the two periodic motians - the unstable
large amplitude motion and the stable small amplitude motion -
moet in what suppesedly is - a kind of transeritical bifurcativn.
The bifurcation takes place in the bifurcation set with respect to
changes of the radius. For sdll larger radii the former subcritical
Hopf bifurcation turns supercritical, and the periodic branch be-
comes asymptotically stable. The small ampliwde periodic mo-
tion now ¢xists supercritically and is unstable. In twm the station-
ary soluton has gained asymptotic stability in the speed interval
where it coexists with both the periodic solutons.

We found no discontinuities in the position of the wheclsets
as a function of the speed and the radius of the curve. Therefore
the jump from the subcritical to the supercritical Hopf bifurca-
tion is related to the smooth process of a kind of transcritical
bilurcation in the bifurcation sel,

We intend 1o continue our studies in this area. The details
of what locks like a kind of transcritical bifurcation is of theo-
retical interest. 1t concems the neighhorhood of the radius where
the two different periodic solutions meet. ‘We would also like to
extend our results, which were limiled 1o radit beween 600m and
2000m, 1o smaller radii and 1o radii tendinp towards infinity. It
is necessary in order to establish the connection between our re-
sults and the results found by True and Birkedal Nielsen {5] for
the smaller radii and verify the postlate on page 4. We intend to
extend cur investigation to the case of maximum superelevation.
Since the guiding forces are large in the curves, it is fmportant ©
calculate the wheel-rail contact forces in the curves for as well
the stationary as for the periodic motions. The results must be
related w the position of the truck in the curves. The wheel/rail
contag) forces are, however, influenced by the dynamics of the
track. g0 the "rigid mack assumption’ in this work must then be
dropped. The contact force problem will be-investigated fo a re-
cenl cooperalion between the authors and the Polish Academy of
Sciences.
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The influence of the wheelbase and the stiffness of the pri-
mary suspension on the dynamics needs to be investigated. High-
specd trains have trucks with larger wheelbascs than the 2.tm of
the Couoperrider iruck, and the tesults of this work apply mainly
to trains running fast chrongh curves with large radii. The wheel-
base and the stiffness of the primary suspension are supposedly
the two most important parameters in this case, but it is of course
desirable to examine the quasi-slationary curving dynamics of a
wider range of existing truck constructions.
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