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Abstract: Experimental and theoretical studies on the reaction between (E)-3,3,3-trichloro-1-nitroprop-
1-ene and N-(4-bromophenyl)-C-arylnitrylimine were performed. It was found that the title process
unexpectedly led to 1-(4-bromophenyl)-3-phenyl-5-nitropyrazole instead of the expected
∆2-pyrazoline molecular system. This was the result of a unique CHCl3 elimination process. The
observed mechanism of transformation was explained in the framework of the molecular elec-
tron density theory (MEDT). The theoretical results showed that both of the possible channels of
[3 + 2] cycloaddition were favorable from a kinetic point of view, due to which the creation of
1-(4-bromophenyl)-3-aryl-4-tricholomethyl-5-nitro-∆2-pyrazoline was more probable. On the other
hand, according to the experimental data, the presented reactions occurred with full regioselectivity.

Keywords: pyrazoline; pyrazole; nitrocompound; nitrylimine; cycloaddition reaction; molecular
electron density theory; synthesis

1. Introduction

Pyrazolines are heterocyclic systems containing nitrogen in their structure. They
are significant organic compounds with many applications, not only as components for
further organic synthesis but also as complete products. Pyrazolines and their analogs
are five-membered heterocyclic compounds with one unsaturated double bond and two
adjacent nitrogen atoms [1–3], which make them readily undergo various transformations.
Due to the presence of the unsaturated bond and nitrogen atoms, pyrazolines have great
biological activity and have many properties related to this. Many of these compounds
are widely used in medicine as well as in other departments of industry. In particular,
pyrazoline analogs show anticancer [4], anti-inflammatory [5], antiobesity, analgesic and
antidepressant properties [6,7]. These compounds are also effective in treating Alzheimer’s
disease [8]. What is more, there are many drugs based on pyrazoline’s structure, e.g.,
celecoxib [9], rimonabant, difenamizole and fezolamine. In industry, pyrazolines have been
known since the early 1970s [10–12]. They were successfully applied as insecticides but also
as inhibitors that control sodium channel functions [13,14]. Furthermore, the pyrazoline
ring can be found in a variety of pesticides, mainly in fungicides [15,16], insecticides [17]
and herbicides, including patented products such as fenpyroximate [18], fipronil [19,20],
tebufenpyrad [21] and tolfenpyrad [20].
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At this moment, several methods of pyrazoline preparation are known. The most
common include the cyclocondensation of α,β-unsaturated carbonyl compounds with hy-
drazine; the 1,3-alkylation reaction of hydrazines with 1,3-dihalopropanes; the intramolecu-
lar cyclization of hydrazones; as well as [3 + 2] the cycloaddition reaction (32CA) of alkene
with diazocompounds, nitrylimines and also azomethine imines [22].

In the framework of this paper, we decided to shed a light on the possibility of the
synthesis of new nitro-substituted analogs of pyrazoline on the basis of a 32CA reaction [23].
For the model of nitroalkene, we selected (E)-3,3,3-trichloro-1-nitroprop-1-ene (TNP) (1).
TNP can be characterized by a very reactive structure for organic synthesis and the ability to
insert different CX3 and NO2 groups into the main product, which additionally stimulates
many important biologically active functions [24–28]. Moreover, this nitroalkene was suc-
cessfully tested in 32CA reactions with many organic compounds, such as nitrones [29–31],
nitrile N-oxides [32,33], diazocompounds [2,3,34] and N-azomethine ylides [35–37], and in
other reactions [38–40]. In turn, to model the three-atom component (TAC) [23], we decided
to use N-(4-bromophenyl)-C-phenylnitrylimine (NI) (2a). For such defined addends, reac-
tions can be theoretically realized with two regioisomeric paths, leading to cycloadducts
with a nitro group at the fourth (4a) or fifth (5a) position of a ring (Scheme 1).
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Scheme 1. Theoretically possible reaction paths of 32CA between TNP (1) and NIs (2a–c). 
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2. Result and Discussion

In the first part of our research, we decided to shed a light on the nature of the
interactions between (E)-3,3,3-trichloro-1-nitroprop-1-ene (1) and N-(4-bromophenyl)-C-
phenylnitryl-imine (2a) and (on the margins of the main stream of the research) its sub-
stituted analogs (2b,c) (Scheme 1). For this purpose, the approach in the framework of
the molecular electron density theory (MEDT) [41] was applied. Therefore, we calculated
the respective global and local electronic properties of the model reaction components
using conceptual density functional theory (CDFT) [42,43] methodologies. The CDFT
is known as a strong implement that helps predict the reactivity of the components in
polar processes such as cycloaddition. According to Domingo recommendations, all of
the indices were determined via calculations based at the B3LYP/6-31G(d) level of theory
in the gas phase [42–44]. The global reactivity indices, namely the electronic chemical
potential µ, chemical hardness η, global electrophilicity ω and global nucleophilicity N,
were determined and given in Table 1.
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Table 1. Global electronic properties (electronic chemical potential µ, chemical hardness η, global
electrophilicityω and nucleophilicity N; all in eV) for the studied reagents.

Reagent µ η ω N

1 −5.84 5.22 3.27 0.66
2a −3.32 3.84 1.66 3.76
2b −3.51 3.70 1.84 3.86
2c −3.55 3.42 1.43 3.88

The value of the electronic chemical potential [42] µ can estimate the direction of the
electron density flux between reagents in the determined path of the reaction. In the case
of the reaction between (E)-3,3,3-trichloro-1-nitroprop-1-ene (1) and N-(4-bromophenyl)-
C-phenylnitryl-imine (2a), the electronic chemical potentials µ were equal to −5.84 eV
and −3.32 eV, respectively (Table 1). This indicated that in the course of this reaction, the
flux of the electron density would take place in the conversion from nitrylimine (2a) to
nitroalkene (1). Analogously, equal results could be observed for the other reagent systems,
as, in all cases, nitrylimine (2b–c) was characterized by a higher value of the electronic
chemical potential than nitroalkene (1). To sum up, all presented cycloaddition reactions
should be classified as forward electron density fluxes (FEDF) in agreement with the CDFT
analysis [45–48].

Next, the calculated values were global indices of the electrophilicity [44] ω and
nucleophilicity [49] N of the reagents. The electrophilicityω indices of nitrylimines (2a–c)
fell within a range from 1.43 eV to 1.84 eV (Table 1), which allowed the conclusion that these
compounds act like moderate electrophiles in a polar reaction due to the electrophilicity
scale [42,50]. In turn, the nucleophilicity N indices of nitrylimines 2a–c equaled from
3.88 eV to 3.86 eV, respectively (Table 1), which allowed the characterization of nitrylimines
(2a–c) as rather strong nucleophiles in polar reactions, which was in agreement with the
nucleophilicity scale [42,50].

Both the presence of an ER group, such as –OCH3, or an EW group, such as –Cl, at the
fourth position of the phenyl ring in nitrylimines (2a–c) insignificantly changed the global
electronic properties of these TAC. On the other hand, (E)-3,3,3-trichloro-1-nitroprop-1-
ene (1) was characterized by an electrophilicity index ω of 3.27 eV and a nucleophilicity
index N of 0.66 eV (Table 1). These values allowed the categorization of nitroalkene (1)
as a super-strong electrophile and as a marginal nucleophile in polar reactions within the
electrophilicity and nucleophilicity scales [42,50].

To be able to consider this reaction as a polar process, the character of the compo-
nents need to be determined. Polar processes occur between good electrophiles and good
nucleophiles. According to CDFT calculations (Table 1), the analyzed reactions between
(E)-3,3,3-trichloro-1-nitroprop-1-ene (1) and nitrylimines (2a–c) are characterized by the
major difference in their electrophilicity index (∆ω > 1 eV) [51,52]. According to this, the
presented reactions should be classified as polar processes.

The regioselectivity of the polar process in which nonsymmetric reagents take part can
be easily determined by measuring the interactions between the most electrophilic center,
located in the electrophile, and the most nucleophilic center, located in the nucleophile. The
most exact way to describe local reactivity is through electrophilic (radical-anionic) Parr
functions Pk

+ and nucleophilic (radical-cationic) Parr functions Pk
− [52–55]. To determine

the abovementioned centers of the components, the Parr functions for the reagents were
calculated and given in Figure 1.
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(3D) of Mulliken atomic spin densities for the nitroalkene 1˙− radical anion and the nitrylimines
2a–c˙+ radical cations, together with values of the electrophilic (Pk

+) Parr function of 1 and the
nucleophilic (Pk

−) Parr functions of 2a–c.

The analysis of the electrophilic Parr function Pk
+ of (E)-3,3,3-trichloro-1-nitroprop-

1-ene (1) showed that the most electrophilic center was located on the Cβ carbon atom,
PCβ

+ = 0.278, which means that this center should react with the most nucleophilic center
of substituted nitrylimines. In turn, the results of the nucleophilic Parr functions Pk

− for
nitrylimines (2a–c) showed that the most nucleophilic center was located on the carbon
atom of the –N=N=C-structure fragment. Both of the presented centers determined the
most favorable path of the considered reactions to be path B, leading to the products 5a–c
(Scheme 1) [52,55].

Next, we searched for good conditions for the reaction involving (E)-3,3,3-trichloro-
1-nitroprop-1-ene (1) and N-(4-bromophenyl)-C-phenylnitrylimine (2a). For this purpose,
we conducted several tests using different reaction conditions, solvents and temperatures
(Table 2). It was found that the analyzed process proceeded easily in benzene solution at
room temperature. The TLC and HPLC examination of the postreaction mixture showed,
without any doubts, the presence of only one reaction product (Rf = 0.56 and Rt = 6.1 min,
respectively). It was easily isolated through column chromatography (see experimental
part), and a solid material characterized by its adequate purity for analysis was obtained.

Table 2. Selected examples of reactions between TNP (1) and NI (2a) under different conditions.

Temperature [◦C] Solvent Reaction Time [h] Catalyst Yield [%]

25 Benzene 6 - -
25 Benzene 24 - -
25 Benzene 6 Et3N 93
80 Benzene 6 Et3N 65
25 Benzene 6 n-PrNH2 70
25 Benzene 6 CsCO3 Trace
80 Benzene 6 CsCO3 Trace

The IR spectrum of the isolated compound confirmed the presence of =N-N< and
>C=N- moieties as well as the NO2 group [56]. Unexpectedly, no bands connected with
the expected existence of C-Cl bonds were detected. Next, based on HRMS analysis,
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the compound was assigned the molecular formula of C15H10N3O2Br. The molecular
weight of its molecular ion ([M + H]+ = 344.0029) was about 119.5 lower than those of
the expected [3 + 2] cycloadducts. Lastly, in the 1H-NMR spectrum, the pair of expected
doublets connected with the protons in the NO2-C(H)-C(H)-CCl3 moiety was not detected.
Due to the facts mentioned above, the isolated compound was not the expected pyrazoline
(4a or 5a) but a product (6a or 7a) of the chloroform extrusion of the primary cycloadduct
(4a or 5a) (Scheme 2).
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Unfortunately, the regioisomerism of the obtained pyrazole system was disputable
because all the attempts to obtain a crystal form for RTG structural analysis were not
successful. On the other hand, some valuable information regarding adduct regiochemistry
can be derived from the NMR experiments. In particular, independently of the signal
of the proton in the heterocyclic ring in the 1H NMR spectrum, we precisely identified
signals from two different substituted benzene rings on the 1H and 13C NMR spectra (see
Supplementary Materials). Using the HMBC experiment (see Supplementary Materials),
we detected a clear correlation between the signal derived from the carbon atom of the
benzene ring at the third position of the pyrazole molecular system and the signal derived
from the proton connected directly to the pyrazole molecular system. On the other hand,
similar correlations between the same proton and carbon atoms from the 4-bromophenyl
moiety were not observed. This confirmed that the nitro group must be located at the C5
position of heterocyclic ring and, as a consequence, clearly showed that the isolated product
exhibited the constitution of 1-(4-bromophenyl)-3-phenyl-5-nitropyrazole 7a. Therefore, as
the primary [3 + 2] cycloaddition product, the adduct 5a should be exclusively considered.

In the next step, we decided to shed some light on the 1 + 2a cycloaddition process
course using the DFT exploration of theoretically possible reaction channels (Scheme 2).
It was found that both possible reaction channels were very similar in their nature. In
particular, the first stage was the formation of a molecular complex (MC) (Figure 2). This
was accompanied by the decrease of the enthalpy of the reaction system by a few kcal/mol.
Due to the entropic factor, the Gibbs free energies of the formation of MCs were positive.
This excluded the possibility of the existence of MCs as stable intermediates. Within MCs,
no new chemical bonds were formed. Similar-type intermediates have been identified
recently regarding many bimolecular processes, such as 32CAs [32,57–59], Diels–Alder re-
actions [54,60,61] and others [62–64]. Independent of the considered cycloaddition channel,
the second reaction stage was a formation of the transition-state structure (TS) (Figure 2).
The energetic barriers connected to the existence of TSs were relatively low (Table 3).
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Table 3. Kinetic and thermodynamic parameters of 32CA reaction of TNP (1) with NI (2a) according
to WB97XD/6-311G(d,p)(PCM) calculations (∆H and ∆G are given in kcal·mol−1; ∆S is given in
cal·mol−1 K−1).

Path Transition ∆H ∆G ∆S

A
1 + 2a→MC4a −6.61 3.32 −42.41
1 + 2a→ TS4a −0.74 11.52 −50.26

1 + 2a→ 4a −64.91 −50.90 −56.14

B
1 + 2a→MC5a −8.80 0.69 −40.97
1 + 2a→ TS5a −2.25 10.50 −51.90

1 + 2a→ 5a −67.06 −53.01 −56.26

It was found interesting that the formation of pyrazoline 5a was evidently favored
from a kinetic point of view. This observation correlated well with the regiochemistry
observed experimentally. Within TSs, the key interatomic distances were substantially
reduced (Table 4). The synchronicity of the new bond formations was similar regarding
both of the analyzed TSs. Next, the global electron density transfer (GEDT) [65] values
suggested that optimized TSs should be treated as polar structures. However, this polarity
was not sufficient in enforcing the stepwise, zwitterionic mechanism [66]. In a similar
manner, we also theoretically explored 32CAs involving other nitrilimines (2b,c) (see
Supplementary Materials). Our research suggested similar reaction regioselectivities and
molecular mechanisms as well as the similar nature of their critical structures. Therefore,
the suggested protocol for the preparation of nitro-substituted pyrazole analogs can be
treated as a general protocol in some range.

Table 4. The key parameters of the critical structure parameters of 32CA reaction of TNP (1) with NI
(2a) according to WB97XD/6-311G(d,p)(PCM) calculations.

C3-C4 r [Å] lC3-C4 C5-N1 r [Å] lC5-N1 ∆l GEDT [e]

MC4a 3.260 3.033 0.03
TS4a 2.242 0.521 2.355 0.378 0.14 0.17

4a 1.516 1.452

MC5a 3.333 3.033 0.03
TS5a 2.275 0.509 2.383 0.309 0.20 0.20

5a 1.526 1.409

3. Materials and Methods
3.1. Materials

Commercially available (Sigma–Aldrich, Szelągowska 30, 61-626 Poznań, Poland)
reagents and solvents were used. All solvents were tested with high pressure liquid chro-
matography before use. (E)-3,3,3-trichloro-1-nitroprop-1-ene (1) and N-(4-bromophenyl)-C-
phenylnitrylimine (2a) were prepared in reactions described in literature [67–69].

3.2. General Procedure for Cycloaddition Reactions

A mixture of 10 mmol of N-(4-bromophenyl)-N’-benzylidenehydrazine bromide (1a);
20 mmol of (E)-3,3,3-trichloro-1-nitroprop-1-ene (3); and 10 mmol of triethylamine in 5 mL
of dry benzene was stirred in the dark at room temperature for 6 h. After that, the post-
reaction mixture was washed with water, and solvent was evaporated in vacuo. The
obtained semisolid mass was washed with cold petroleum ether, purified using column
chromatography (stationary phase: SiO2, mobile phase: C-hex:AcOEt 9:1) and crystallized
from ethanol. A white amorphous solid was obtained.

1-(4-bromophenyl)-3-phenyl-5-nitropyrazole (7a) was obtained as C15H10N3O2Br. Its
yield was 93%, and its m.p. was 189–194 ◦C (EtOH). IR (KBr) results were as follows: υ
was 1617 (>C=C<), 1545 and 1351 (NO2), 1402 (=N-N<) and 1280 (-N=C<) cm−1. UV-Vis
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(MeOH) results were as follows: λwas 262 nm. 1H NMR (500 MHz, CDCl3) results were
as follows: δ was 8.76 (s, 1H, CH=C–NO2), 7.80–7.77 (m, 2H, CHAr), 7.70–7.66 (m, 4H,
CHAr) and 7.52–7.49 (m, 3H, CHAr). 13C NMR (125 MHz, CDCl3) results were as follows:
δ was 148.53; 144.59; 137.46; 132.95; 129.78; 129.45; 128.26; 128.11; 122.24; 121.04; and 100.30.
HR-MS (ESI, 200 ◦C) results calculated for C15H10N3O2Br [M + H]+ = 344.0019 with a found
value of 344.0029.

3.3. Analytical Techniques

For reaction progress testing, liquid chromatography (HPLC) was performed using a
KNAUER apparatus equipped with a UV-Vis detector with application of the standard pro-
cedure [70–72]. LiChrospher RP-18 10 µm column (4× 250 mm) was applied and methanol–
water MeOH:H2O (70:30 v/v) was used as eluent at a flow rate of 1.5 cm3 min−1. Melting
points were determined with the Boetius PHMK 05 apparatus and were not corrected. IR
spectra (KBr pellets) were registered on a Thermo Nicolet 6700 FT-IR apparatus. 1H NMR
(500 MHz) and 13C NMR (125 MHz) spectra were recorded with a Bruker AVANCE NMR
spectrometer using CDCl3 as a solvent. TMS was used as an internal standard. UV-Vis
spectra were determined for the 200–500 nm range through usage of spectrometer UV-5100
Biosens. HR-MS spectra were performed on a Shimadzu LCMS-IT-TOF instrument with ES
ionization (heat bock and CDL temperatures of 200 ◦C, nebulizing gas flow of 1.5 mL/min)
connected to a Shimadzu Prominence two LC-20AD pump chromatograph equipped with
Phenomenex Kinetex 2.6 µm C18 100A column (acetonitrile–water mixtures, ACN:H2O,
65:35 v/v, were used as the eluent).

3.4. Computational Details

All computations were performed using the Gaussian 09 package [73] in the Prometheus
computer cluster of the CYFRONET regional computer center in Cracow. DFT calcula-
tions were performed using the WB97XD/6-311G(d,p) [74,75] level of theory. A similar
computational level has already been successfully used for the exploration of mechanistic
aspects of other cycloaddition processes [45–47,76]. Calculations of all critical structures
were performed at temperature T = 298 K and pressure p = 1 atm. All localized stationary
points were characterized using vibrational analysis. It was found that starting molecules
as well as products had positive Hessian matrices. On the other hand, all transition states
showed only one negative eigenvalue in their Hessian matrices.

For all optimized transition states, intrinsic reaction coordinate (IRC) [77] computa-
tions were performed to verify that the located TSs were connected to the corresponding
minimum stationary points associated with reactants and products. The solvent effects
were simulated using a standard-procedure self-consistent reaction field (SCRF) [78,79]
based on the polarizable continuum model (PCM) [80].

The global electron density transfer (GEDT) [68] values were designated based on
the formula GEDT = |ΣqA|, where qA is the net Mulliken charge and where the sum
is performed over all the atoms of (E)-3,3,3-trichloro-1-nitroprop-1-ene (3). In turn, the
σ-bond development (l) indices were designated based on the formula [51,54]:

lX−Y = 1−
r TS

X−Y − r P
X−Y

r P
X−Y

where rTS
X−Y is the distance between the reaction centers X and Y in the transition structure

and where rP
X−Y is the same distance in the corresponding product.

Global electronic properties of reactants, according to Domingo recommendations,
were performed at B3LYP/6-31G(d) level of theory in the gas phase [42–44]. Electrophilic
Parr functions Pk

+ and nucleophilic Parr functions Pk
− were obtained from the changes in

atomic spin density (ASD) of the reagents [52,55].
GaussView program [81] was used to visualize molecular geometries of all the systems

as well as to show 3D representations of the radical anion and the radical cation.
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4. Conclusions

The reaction between (E)-3,3,3-trichloro-1-nitroprop-1-ene and N-(4-bromophenyl)-C-
arylnitrylimines was examined using experimental and theoretical methods. The theoretical
results showed that both of the considered 32CA channels are possible from a kinetic
point of view of which the formation of 1-(4-bromophenyl)-3-aryl-4-tricholomethyl-5-
nitro-∆2-pyrazoline is more probable. This conclusion was compatible with the presented
MEDT study, where interactions between the Cβ atom of electrophilic (E)-3,3,3-trichloro-1-
nitroprop-1-ene and the carbon atom of the –N=N=C- fragment of nucleophilic nitrilimine
determine a more probable reaction path.

In turn, the experimental results of the 32CA reaction between (E)-3,3,3-trichloro-1-
nitroprop-1-ene and N-(4-bromophenyl)-C-phenylnitrylimine showed that the presented
reaction occurred with full regioselectivity. The obtained products were extremely unstable
and spontaneously converted through CHCl3-elimination to pyrazole systems. As a result,
1-(4-bromophenyl)-3-phenyl-5-nitropyrazole was obtained.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238409/s1, pp. S2–S6. Computational data, pp.
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Mechanism of the Synthesis of Nitrofunctionalised ∆2-Pyrazolines via [3+2] Cycloaddition Reactions between α-EWG-Activated
Nitroethenes and Nitrylimine TAC Systems. Organics 2022, 3, 59–76. [CrossRef]

52. Aurell, M.J.; Domingo, L.R.; Pérez, P.; Contreras, R. A theoretical study on the regioselectivity of 1,3-dipolar cycloadditions using
DFT-based reactivity indexes. Tetrahedron 2004, 60, 11503–11509. [CrossRef]
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62. Demchuk, O.M.; Jasiński, R.; Pietrusiewicz, K.M. New Insights into the Mechanism of Reduction of Tertiary Phosphine Oxides by
Means of Phenylsilane. Heteroat. Chem. 2015, 26, 441–448. [CrossRef]
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64. Kącka-Zych, A.; Jasiński, R. Mechanistic Aspects of the Synthesis of Seven-membered Internal Nitronates via Stepwise [4 + 3]
Cycloaddition Involving Conjugated Nitroalkenes: Molecular Electron Density Theory Computational Study. J. Comput. Chem.
2022, 43, 1221–1228. [CrossRef] [PubMed]

65. Domingo, L.R. A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv.
2014, 4, 32415–32428. [CrossRef]
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