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Abstract. In this paper we will exhibit a class of kernels generating r-nuclear ope-
rators. The class includes the Fox-Li and related operators. Estimates for the corresponding
asymptotic behaviour of the eigenvalues are also derived.

1. Introduction. In this work we address to the problem of the membership to the
ideal of r-nuclear operators for integral operators of the form

(1.1) Tf (x) =
∫ α

−α

G(x)F (xy)H(y)f(y)dy ,

where G and H are bounded functions and F is a smooth function admitting a suitable Taylor
expansion. A such kind of operator arises in the theory of laser, particularly in the form of the
Fox-Li operator which has attracted the interest of researchers in recent years (cf. [BBIN10],
[BGI12], [BGHI12]). In those works, the authors were focused in the investigation of the as-
ymptotic distribution of the singular values and eigenvalues. More recently, the r-nuclearity
and its connection with Grothendieck-Lidskii’s formula on compact Lie groups and applica-
tions to some differential operators have been studied in [DR13]. Applications of nuclear ope-
rators to the study of periodic pseudo-differential operators have been established in [DW13].
The nuclearity of operators on spaces of Bochner integrable functions (cf. [DE09]) and the
corresponding relation with the martingale vector-maximal function for the study of traces
have been considered in [Del]. Recent progress on the nuclearity and singular values can also
be found in [FMO09] and [MO12].

The Fox-Li operator was introduced in [FL61], A. G. Fox and T. Li considered the re-
peated reflection of an electromagnetic wave between two plane-parallel rectangular mirrors.
The current density at the surface of each reflector satisfies the eigenvalue integral equation

Tf (x) = λf (x) .

For a good account on the physics of such kind of operators we recommend the chapter XI,
section 60 in the book [NE05] by Trefethen and Embree. The Fox-Li operator is defined by

(Fωf )(x) :=
∫ 1

−1
eiω(x−y)2

f (y)dy, x ∈ (−1, 1) ,
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where ω is a positive real number. Since the kernel k(x, y) = eiω(x−y)2
is bounded this

operator is compact, the kernel is symmetric(k(x, y) = k(y, x)) but is not hard to see that the
corresponding operator is not normal on L2([−1, 1]). The operators (1.1) being compact they
admit at most a countable set of eigenvalues with the origin as the only possible cluster point.

In [NM64] D. J. Newman and S. P. Morgan study the existence of eigenvalues for inte-
gral operators (1.1) when F is an entire function of finite order with the aim of applying to the
Fox-Li operator. Further studies on the problem of existence of eigenvalues for this kind of
operators can be found in [NM64], [Coc65], [Hoc66], [SP61] and [CH74]. Numerical compu-
tations have recently appeared in [BBIN10] and [BIN11]. We do not consider the existence of
eigenvalues in this work, we aim to the problem of finding sufficient conditions for the mem-
bership to the ideal of r-nuclear operators for operators of the form (1.1) on Lp([−α, α]). As
a consequence some estimates for the distribution of eigenvalues are deducted.

The main concept we will employ in this work is that of p-nuclear operator on a Ba-
nach space. In this work we will refer to those operators as r-nuclear in order to distinguish
with respect to the index of Lp spaces. We recall that if T is a compact operator on a com-
plex Hilbert space H , the singular values of T are the eigenvalues of the compact positive
operator |T | = √

T ∗T and will be denoted by sn(T ). T is called a trace class operator if
the singular values are summable. If the singular values are square-summable T is called a
Hilbert-Schmidt operator. More generally, if 0 < r < ∞ and the sequence (sn(T ))n is r-
summable we say that T belongs to the Schatten-von Neumann ideal Sr (H) and it is well
known that each Sr(H) is an ideal in L(H).

The connection between the distribution of eigenvalues and the membership to an ideal
of operators can be explained from the following inequality relating the eigenvalues and the
singular values established by H. Weyl(cf. [Wey49]):

∞∑
n=1

|λn(K)|r ≤
∞∑

n=1

sn(K)r , r > 0 ,

where K is a compact operator on a complex Hilbert space and sn(K) denotes the singular
values of the operator K . The particular case r = 2 goes back to I. Schur (1909)(cf. [Sch09]).
We shall apply the notion of p-nuclear operators to deduce asymptotic behaviour of eigenval-
ues for our operators (1.1). For a recent account on the state of the art of p-nuclear operators
see [HP10].

2. r-nuclearity and the asymptotic behaviour of eigenvalues. In this section we
begin by recalling some basic facts about the concepts of nuclear, r-nuclearity and the trace
on Banach spaces. In particular we shall be interested in Lp(μ) spaces. We refer the reader to
[Pie80] and the Chapter 4.2 of [Pie87] for the general theory of traces on operator ideals and
the basic notation used in this section, see also [GGK00] for an account on the asymptotic
behaviour of eigenvalues. After those preliminaries we will state the results.

Let E be a Banach space which has the approximation property (cf. [Pie87]). It is well
known that the spaces Lp(Ω,M, μ) satisfy the approximation property for any measure μ
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and 1 ≤ p ≤ ∞ (cf. [Pie80, Lemma 19.3.5]). Thus, a Banach space E is said to have the
approximation property if for every compact subset K of E and every ε > 0 there exists a
finite rank bounded operator B on E such that

‖x − Bx‖E < ε for all x ∈ K .

Let 0 < r ≤ 1 and T be an operator from E into E, we will say that T is r-nuclear if it
admits a representation

T =
∞∑

n=1

ϕn ⊗ fn, (ϕn ∈ E, fn ∈ E′)

such that

(2.1)
∞∑

n=1

‖ϕn‖r
E‖fn‖r

E′ < ∞ .

The class of r-nuclear operators is endowed with the quasi-norm

nr(T ) = inf

{ ∞∑
n=1

‖ϕn‖r
E‖fn‖r

E′

} 1
r

,

where the inf is taken over the representations of T such that (2.1) holds. The important case
r = 1 corresponds to the Ruston-Grothendieck algebra of nuclear operators where one can
define the concept of trace, in this case n1 is a norm. Note also that every r-nuclear operator
is also nuclear. It is well known that in the setting of Hilbert spaces those operators constitute
the trace class operator ideal or the Schatten-von Neumann ideal S1. A more general fact is
that in the setting of Hilbert spaces the class of r-nuclear operators agrees with the Schatten-
von Neumann ideal of order r , a result due to R. Oloff (cf. [Olo72]). In [Pie84] A. Pietsch
proved that for r > 1 the concept of r-nuclear operator loses sense.

The set of nuclear operators from E into E forms the ideal of nuclear operators N(E)

endowed with the norm n1. In order to ensure the existence of a good definition of the trace on
the ideal of nuclear operators N(E) one is constraints to consider Banach spaces E enjoying
the approximation property. In such a case, if T : E → E is nuclear, the trace is defined by

tr(T ) =
∞∑

n=1

x ′
n(yn) ,

where T = ∑∞
n=1 x ′

n ⊗ yn is a representation of T , and it can be shown that this definition is
independent of the representation(cf. [Pie87]).

The case r = 2/3 is a special one, A. Grothendieck proved (cf. [Gro55]) that the trace of
a 2/3-nuclear operator agrees with the sum of all the eigenvalues with multiplicities counted.
This coincidence is known as Lidskii’s formula (cf. [Lid59]) which holds on Hilbert spaces.
The question about the sharpness of the index r = 2/3 in the concrete case of Lp spaces has
been recently considered in [RL13]. The membership to the class of r-nuclear operators can
be used to deduce properties on the asymptotic behaviour of the corresponding operators by
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virtue of the next theorem coming from the theory of operator ideals (cf. [Gro55] Chapter II,
p. 16, [Pie87] Theorem 3.8.6, [GGK00] Chapter 5, Theorem 4.2):

THEOREM 1. Let E be a Banach space which has the approximation property. Let T

be an r-nuclear operator from E into E for some 0 < r ≤ 1. Then

∞∑
n=1

|λn(T )|t ≤ nr(T )t ,
1

t
= 1

r
− 1

2
,

where λn(T ) denotes the eigenvalues of T multiplicities counted.

Theorem 1 was established by Grothendieck [Gro55], and extended by e.g. König
([Kön78, page 107]) to the scale of Lorentz sequences spaces; see also [Pie87, Theorem
3.8.6]. We will applied the Theorem 1 joint with some sufficient conditions for r-nuclearity
in order to obtain estimates on the distribution of eigenvalues. In the case of Lp(μ) spaces for
σ -finite measures a characterisation of nuclear operators is avalaible in terms of a kernel rep-
resentation, see [Del10a] and [Del10b]. The following theorem is an immediate consequence
of Theorem 2.2 in [Del10a] and will be applied in the particular case of the Lebesgue measure
on a finite interval in the real line.

THEOREM 2. Let (Ωi,Mi , μi) (i = 1, 2) be two measure spaces with finite measures
μ1 and μ2 respectively. Let 1 ≤ p1, p2 < ∞, 0 < r ≤ 1 and let q1 be such that 1

p1
+ 1

q1
= 1.

An operator T : Lp1(μ1) → Lp2(μ2) is r-nuclear if and only if there exist sequences (gn)n

in Lp2(μ2), and (hn)n in Lq1(μ1) such that
∑∞

n=1 ‖gn‖r
Lp2 ‖hn‖r

Lq1 < ∞, and for all f ∈
Lp1(μ1):

Tf (x) =
∫ ( ∞∑

n=1

gn(x)hn(y)

)
f (y)dμ1(y) , for a.e x .

We are now ready to exhibit our class of r-nuclear operators which will be generated
by suitable C∞ kernels. In this paper the term smooth will refer to C∞ functions. The main
technique is to take advantage of corresponding MacLaurin series for the kernels.

THEOREM 2.1. Let α > 0 be a real number, 0 < r ≤ 1 and 1 ≤ p < ∞. Let
F : (−β, β) → C be a function having a MacLaurin series satisfying |DnF(0)| ≤ Mn(n!)s ,
n = 0, 1, . . . , for some real M and 0 < s < 1. If G,H : (−α, α) → C are bounded functions
with α2 ≤ β, then the kernel (x, y) ∈ (−α, α) × (−α, α) → G(x)F (xy)H(y) ∈ C begets an
r-nuclear operator T on Lp([−α, α]) such that the Lidskii’s formula holds for T ,

nr
r (T ) ≤ (2αM‖G‖L∞‖H‖L∞)r

∞∑
n=0

α2rn

n!(1−s)r
and tr(T ) =

∫ α

−α

G(x)F (x2)H(x)dx .

PROOF. We can write

F(t) =
∞∑

j=0

DjF(0)

j ! tj , for all t ∈ (−β, β) .
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If (x, y) ∈ (−α, α) × (−α, α) we have

F(xy) =
∞∑

j=0

DjF(0)

j ! (xy)j =
∞∑

j=0

DjF(0)

j ! xjyj .

The condition α2 ≤ β implies that F(xy) is well defined for (x, y) ∈ (−α, α) × (−α, α). We
define

gj (x) = DjF(0)

(j !)s xj , hj (y) = yj

(j !)
 ,

where 
 = 1 − s. We shall calculate ‖gj‖Lp , ‖hj‖Lq ( 1
p

+ 1
q

= 1). We first consider 1 < p <

∞:

‖gj‖Lp = 2
1
p

|DjF(0)|
(j !)s

(α(pj+1))
1
p

(pj + 1)
1
p

.

In a similar way we get

‖hj‖Lq = 2
1
q

(α(qj+1))
1
q

(j !)
(qj + 1)
1
q

.

Hence

‖gj‖Lp‖hj‖Lq = 2
|DjF(0)|

(j !)s
(α(pj+1))

1
p

(pj + 1)
1
p

(α(qj+1))
1
q

(j !)
(qj + 1)
1
q

= 2
|DjF(0)|

(j !)s
α(2j+1)

(pj + 1)
1
p (qj + 1)

1
q (j !)


≤ 2αM
α2j

j !
 .

The last inequality has been obtained from the hypothesis on the estimation of the derivatives
DjF(0) and the fact that

(pj + 1)
1
p (qj + 1)

1
q ≥ p

1
p j

1
p q

1
p j

1
q ≥ j .

Now, since G and H are bounded we obtain
∞∑

n=0

‖Ggn‖r
Lp‖Hhn‖r

Lq ≤ (2αM‖G‖L∞)r‖H‖r
L∞

∞∑
n=0

α2rn

(n!)
r < ∞ .

From the characterisation of r-nuclear operators (Theorem 2), the kernel k(x, y) =
G(x)F (xy)H(y) begets an r-nuclear operator from Lp([−α, α]) into Lp([−α, α]) and the
estimation of the r-nuclear quasi-norm follows from the last inequality. If p = 1, similar
calculations to the case p > 1 lead to the following

‖gj‖r
L1‖hj‖r

L∞ ≤ (2αM)r
α2rj

(j !)
r .

The r-nuclearity follows from this inequality as well as the estimation of the r-nuclear quasi-
norm. The formula for the trace follows from integration on the diagonal and the Ruston-
Grothendieck’s definition. In fact, our kernel is well behaved along the diagonal and the
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integral in absolute value
∫ α

−α
|k(x, x)|dx is controlled by the nuclear norm (r = 1):

n1(T ) ≤ 2αM‖G‖L∞‖H‖L∞
∞∑

n=0

α2n

(n!)1−s
< ∞ .

The operator T is r-nuclear for r ≤ 2/3, hence the Lidskii’s formula holds. �

REMARK 2.2. Not every kernel is convenient to calculate the trace integrating along
the diagonal due to the degeneracy of the measure on it. When the kernel is representable
by an expansion of the kind appearing in Theorem 2.1 one is allowed to proceed in such a
way. For a general kernel the integration along the diagonal should be calculated involving an
averaging processes, see e.g. [Del10a], [Del10b].

EXAMPLE. The condition on the derivatives in Theorem 2.1 can be improved if 0 <

α < 1. One can replace the condition on the derivatives by |DnF(0)| ≤ M(n + 1)! taking
advantage of the convergence of the geometric series

∑∞
n=0 ατn for a suitable τ in the proof.

This extension allow us to consider for example the function F : [0, α] → R given by
F(t) = 1

1−t
for 0 < α < 1. In this case DnF(0) = n!, since F is given by the geometric

series
∑∞

n=0 tn. One can write k(x, y) = ∑∞
n=0 xnyn and follow a similar argument as above.

If 0 < α < 1 and α2 ≤ β, we can remove the condition on the derivatives at 0 since they
can be deduced from the convergence of the MacLaurin series. In fact, from the convergence
of

∞∑
n=0

DnF(0)

n! tn

for t = 1, we have limn
|DnF(0)|

n! = 0 and the boundedness of the sequence |DnF(0)|
n! follows.

The convergence of the geometric series
∑∞

n=0 ατn for a suitable τ leads to the following
corollary.

COROLLARY 2.3. Let 0 < α < 1 be a real number, 0 < r ≤ 1 and 1 ≤ p <

∞. Let F : (−β, β) → C be a function having a MacLaurin series with α2 ≤ β. If
G,H : (−α, α) → C are bounded functions, then the kernel (x, y) ∈ (−α, α) × (−α, α) →
G(x)F (xy)H(y) ∈ C begets an r-nuclear operator T on Lp([−α, α]) such that the Lidskii’s
formula holds for T ,

nr
r (T ) ≤ (2αM‖G‖L∞‖H‖L∞)r

∞∑
n=0

α2rn

nr
and tr(T ) =

∫ α

−α

G(x)F (x2)H(x)dx .

We now formulate a theorem in terms of classical sufficient condition for the convergence
of Taylor series. This kind of hypothesis allows us to improve the estimate of the quasi-norm
with respect to Theorem 2.1.

THEOREM 2.4. Let α > 0 be a real number, 0 < r ≤ 1 and 1 ≤ p < ∞. Let
F : (−β, β) → C be a smooth function such that α2 ≤ β, |DnF(x)| ≤ MAn for every
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n ∈ N and x ∈ I . If G,H : (−α, α) → C are bounded functions, then the kernel (x, y) ∈
(−α, α)× (−α, α) → G(x)F (xy)H(y) ∈ C begets an r-nuclear operator T on Lp([−α, α])
such that the Lidskii’s formula holds for T ,

nr
r (T ) ≤ (2αM‖G‖L∞‖H‖L∞)r

∞∑
n=0

(Aα2)rn

(n(n!))r , tr(T ) =
∫ α

−α

G(x)F (x2)H(x)dx ,

and ∞∑
n=1

|λn(T )|t < ∞ , t ∈ (0, 2] .

PROOF. The condition on the derivatives ensures the convergence of the Taylor series

of F to F(x) in I . We define gj (x) = Dj F(0)
j ! xj , hj (y) = yj , in the Taylor expansion in the

proof of Theorem 2.1. Let r be such that 0 < r ≤ 1, we obtain

‖gj‖r
Lp‖hj‖r

Lq =
(

2
|DjF(0)|

j !
α(2j+1)

(pj + 1)
1
p (qj + 1)

1
q

)r

≤ (2αM)r
(

Ajα2j

j (j !)
)r

.

Hence ∞∑
n=0

‖Ggj‖r
Lp‖Hhj‖r

Lq ≤ (2αM‖G‖L∞‖H‖L∞)r
∞∑

n=0

(Aα2)rn

(n(n!))r < ∞ .

Note that from Theorem 1 the series
∞∑

n=1

|λn(T )|t

converges for 1
t

= 1
r

− 1
2 . Hence for all t in the range (0, 2]. Since, the operator is in

particular r-nuclear for r ≤ 2/3 the Lidskii’s formula follows from Grothendieck’s theorem
(cf. [Gro55]) for 2/3-nuclear operators. The trace formula follows as in Theorem 2.1. �

REMARK 2.5. (i) We have seen that under the hypothesis of Theorem 2.4 we dispose
of the following comparison for the eigenvalues of the operator T on Lp:

∞∑
n=1

|λn(T )| 2r
2−r ≤ (2αM‖G‖L∞‖H‖L∞)

2r
2−r

( ∞∑
n=0

(Aα2)rn

(n(n!))r
) 2

2−r

.

(ii) When p = 2 the ideal of r-nuclear operator coincides with the Schatten-von Neu-
mann ideal Sr . Hence, under the assumptions of Theorem 2.4 the corresponding operator T

belongs to Sr(L
2([−α, α])) for all 0 < r ≤ 1.

The function F(t) = e−2iωt appearing in the kernel of the Fox-Li operator has bounded
derivatives. The theorem above with A = 1 implies the following corollary.

COROLLARY 2.6. Let α > 0 be a real number, 0 < r ≤ 1 and 1 ≤ p < ∞. Let
F : (−β, β) → C be a smooth function such that α2 ≤ β, |DnF(x)| ≤ M for every
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n ∈ N and x ∈ I . If G,H : (−α, α) → C are bounded functions, then the kernel (x, y) ∈
(−α, α)× (−α, α) → G(x)F (xy)H(y) ∈ C begets an r-nuclear operator T on Lp([−α, α])
such that the Lidskii’s formula holds for T ,

nr
r (T ) ≤ (2αM‖G‖L∞‖H‖L∞)r

∞∑
n=0

α2rn

(n(n!))r , tr(T ) =
∫ α

−α

G(x)F (x2)H(x)dx ,

and
∞∑

n=1

|λn(T )|t < ∞ , t ∈ (0, 2] .

An improvement of the corollary above for the estimation of the r-nuclear quasi-norm
can be obtained when F(xy) = e−2iωxy in (1.1).

COROLLARY 2.7. Let ω > 0 be a real number, 0 < r ≤ 1 and 1 ≤ p < ∞. If
G,H : (−1, 1) → C are bounded functions, then the kernel (x, y) ∈ (−1, 1) × (−1, 1) →
G(x)e−2iωxyH(y) ∈ C begets an r-nuclear operator Tω on Lp([−1, 1]) such that the Lid-
skii’s formula holds for Tω,

nr
r (Tω) ≤ (4C‖G‖L∞‖H‖L∞)r

∞∑
n=0

(
(2ω)2n

(2n)!
)r

,

where C is the corresponding constant for the quasi-triangle inequality of the quasi-norm nr .

PROOF. We start from the explicite Taylor series for the real part and imaginary part of
F(xy) = e−2iωxy :

sin(2ωxy) =
∞∑

n=1

(−1)n−1 (2ωxy)2n−1

(2n − 1)! ,

cos(2ωxy) =
∞∑

n=0

(−1)n
(2ωxy)2n

(2n)! .

For the term sin(2ωxy) and considering the particular case α = 1 in the proof of Theorem

2.4, we define gn(x) = (−1)n−1

(2n−1)! (2ωx)2n−1 and hn(y) = y2n−1. We shall only consider p > 1,
the corresponding estimations for p = 1 are similar:

‖gn‖r
Lp‖hn‖r

Lq =
(

2
(2ω)2n−1

(2n − 1)!(p(2n − 1) + 1)
1
p (q(2n − 1) + 1)

1
q

)r

≤ 2r

(
(2ω)2n−1

(p(2n − 1) + 1)
1
p (q(2n − 1) + 1)

1
q (2n − 1)!

)r

.

Since p, q > 1 and 1
p

+ 1
q

= 1 the term into the parenthesis in the denominator satisfies

(p(2n − 1) + 1)
1
p (q(2n − 1) + 1)

1
q (2n − 1)! ≥ (2n)! .

Hence
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∞∑
n=1

‖Ggn‖r
Lp‖Hhn‖r

Lq ≤ (2‖G‖L∞‖H‖L∞)r
∞∑

n=1

(
(2ω)2n−1

(2n)!
)r

< ∞ .

A similar estimate holds for the part of the kernel corresponding to cos(2ωxy), one has

∞∑
n=1

‖Ggn‖r
Lp‖Hhn‖r

Lq ≤ (2‖G‖L∞‖H‖L∞)r
∞∑

n=0

(
(2ω)2n

(2n)!(2np + 1)
1
p (2nq + 1)

1
q

)r

≤ (2‖G‖L∞‖H‖L∞)r
∞∑

n=0

(
(2ω)2n

(2n)!
)r

.

We now observe that Tω = T
(1)
ω +iT

(2)
ω , where T

(1)
ω , T

(2)
ω are integral operators with respective

kernels cos(2ωxy) and sin(2ωxy). From the corresponding inequalities for r-nuclear quasi-
norms of T

(1)
ω and T

(2)
ω we obtain

nr
r (Tω) ≤ (4C‖G‖L∞‖H‖L∞)r

∞∑
n=0

(
(2ω)2n

(2n)!
)r

< ∞ .

The constant C is the corresponding quasi-triangle inequality for the quasi-norm nr . The
r-nuclearity and the estimation of the quasi-norm follow from the last inequality. �
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