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Abstract. Weighted automata (WFAs) provide a general framework for
the representation of functions mapping strings to real numbers. They
include as special instances deterministic finite automata (DFAs), hidden
Markov models (HMMs), and predictive states representations (PSRs).
In recent years, there has been a renewed interest in weighted automata
in machine learning due to the development of efficient and provably
correct spectral algorithms for learning weighted automata. Despite the
effectiveness reported for spectral techniques in real-world problems, al-
most all existing statistical guarantees for spectral learning of weighted
automata rely on a strong realizability assumption. In this paper, we
initiate a systematic study of the learning guarantees for broad classes
of weighted automata in an agnostic setting. Our results include bounds
on the Rademacher complexity of three general classes of weighted au-
tomata, each described in terms of different natural quantities. Interest-
ingly, these bounds underline the key role of different data-dependent
parameters in the convergence rates.

1 Introduction

Weighted finite automata (WFAs) provide a general and highly expressive frame-
work for representing functions mapping strings to real numbers. The properties
of WFAs or their mathematical counterparts, rational power series, have been
extensively studied in the past [17, 33, 12, 25, 30]. WFAs have also been used in a
variety of applications, including speech recognition [31], image compression [2],
natural language processing [23], model checking [3], and machine translation
[19]. See also [9] for a recent survey of algorithms for learning WFAs.

The recent developments in spectral learning [21, 4] have triggered a renewed
interest in the use of WFAs in machine learning, with several recent successes
in natural language processing [6, 7] and reinforcement learning [13, 20]. The
interest in spectral learning algorithms for WFAs is driven by the many appealing
theoretical properties of such algorithms, which include their polynomial-time
complexity, the absence of local minima, statistical consistency, and finite sample
bounds à la PAC [21]. However, the typical statistical guarantees given for the
hypotheses used in spectral learning only hold in the realizable case. That is,
these analyses assume that the labeled data received by the algorithm is sampled



from some unknown WFA. While this assumption is a reasonable starting point
for theoretical analyses, the results obtained in this setting fail to explain the
good performance of spectral algorithms in many practical applications where
the data is typically not generated by a WFA.

There exists of course a vast literature in statistical learning theory providing
tools to analyze generalization guarantees for different hypothesis classes in clas-
sification, regression, and other learning tasks. These guarantees typically hold in
an agnostic setting where the data is drawn i.i.d. from an arbitrary distribution.
For spectral learning of WFAs, an algorithm-dependent agnostic generalization
bound was proven in [8] using a stability argument. This seems to have been the
first analysis to provide statistical guarantees for learning WFAs in an agnostic
setting. However, while [8] proposed a broad family of algorithms for learning
WFAs parametrized by several choices of loss functions and regularizations, their
bounds hold only for one particular algorithm within this family.

In this paper, we start the systematic development of algorithm-independent
generalization bounds for learning with WFAs, which apply to all the algorithms
proposed in [8], as well as to others using WFAs as their hypothesis class. Our
approach consists of providing upper bounds on the Rademacher complexity of
general classes of WFAs. The use of Rademacher complexity to derive general-
ization bounds is standard [24] (see also [11] and [32]). It has been successfully
used to derive statistical guarantees for classification, regression, kernel learn-
ing, ranking, and many other machine learning tasks (e.g. see [32] and references
therein). A key benefit of Rademacher complexity analyses is that the resulting
generalization bounds are data-dependent.

Our main results consist of upper bounds on the Rademacher complexity of
three broad classes of WFAs. The main difference between these classes is the
quantities used for their definition: the norm of the transition weight matrix or
initial and final weight vectors of a WFA; the norm of the function computed by
a WFA; and, the norm of the Hankel matrix associated to the function computed
by a WFA. The formal definitions of these classes is given in Section 3. Let us
point out that our analysis of the Rademacher complexity of the class of WFAs
described in terms of Hankel matrices directly yields theoretical guarantees for
a variety of spectral learning algorithms. We will return to this point when
discussing the application of our results.

Related Work. To the best of our knowledge, this paper is the first to pro-
vide general tools for deriving learning guarantees for broad classes of WFAs.
However, there exists some related work providing complexity bounds for some
sub-classes of WFAs in agnostic settings. The VC-dimension of deterministic fi-
nite automata (DFAs) with n states over an alphabet of size k was shown by [22]
to be in O(kn log n). For probabilistic finite automata (PFAs), it was shown by

[1] that, in an agnostic setting, a sample of size Õ(kn2/ε2) is sufficient to learn
a PFA with n states and k symbols whose log-loss error is at most ε away from
the optimal one in the class. Learning bounds on the Rademacher complexity
of DFAs and PFAs follow as straightforward corollaries of the general results we
present in this paper.



Another recent line of work, which aims to provide guarantees for spectral
learning of WFAs in the non-realizable setting, is the so-called low-rank spec-
tral learning approach [27]. This has led to interesting upper bounds on the
approximation error between minimal WFAs of different sizes [26]. See [10] for a
polynomial-time algorithm for computing these approximations. This approach,
however, is more limited than ours for two reasons. First, because it is algorithm-
dependent. And second, because it assumes that the data is actually drawn from
some (probabilistic) WFA, albeit one that is larger than any of the WFAs in the
hypothesis class considered by the algorithm.

The following sections of this paper are organized as follows. Section 2 intro-
duces the notation and technical concepts used throughout. Section 3 describes
the three classes of WFAs for which we provide Rademacher complexity bounds,
and gives a brief overview of our results. Our learning bounds are formally stated
and proven in Sections 4, 5, and 6.

2 Preliminaries and Notation

2.1 Weighted Automata, Rational Functions, and Hankel Matrices

Let Σ be a finite alphabet of size k. Let ǫ denote the empty string and Σ∗ the
set of all finite strings over the alphabet Σ. The length of u ∈ Σ∗ is denoted by
|u|. Given an integer L ≥ 0, we denote by Σ≤L the set of all strings with length
at most L: Σ≤L = {x ∈ Σ∗ : |x| ≤ L}.

A WFA over the alphabetΣ with n ≥ 1 states is a tuple A = 〈α,β, {Aa}a∈Σ〉
where α,β ∈ R

n are the initial and final weights, and Aa ∈ R
n×n the transition

matrix whose entries give the weights of the transitions labeled with a. Every
WFA A defines a function fA : Σ∗ → R defined for all x = a1 · · · at ∈ Σ∗ by

fA(x) = fA(a1 · · · at) = α⊤Aa1
· · ·Aat

β = α⊤Axβ , (1)

where Ax = Aa1
· · ·Aat

. A function f : Σ∗ → R is said to be rational if there
exists a WFA A such that f = fA. The rank of f is denoted by rank(f) and
defined as the minimal number of states of a WFA A such that f = fA. Note that
minimal WFAs are not unique. In fact, it is not hard to see that, for any minimal
WFA A = 〈α,β, {Aa}〉 with f = fA and any invertible matrix Q ∈ R

n×n,
AQ = 〈Q⊤α,Q−1β, {Q−1AaQ}〉 is also a minimal WFA computing f . We
will sometimes write A(x) instead of fA(x) to emphasize the fact that we are
considering a specific parametrization of fA. Note that for the purpose of this
paper we only consider weighted automata over the familiar field of real numbers
with standard addition and multiplication (see [17, 33, 12, 25, 30] for more general
definitions of WFAs over arbitrary semirings). Functions mapping strings to real
numbers can also be viewed as non-commutative formal power series, which often
helps deriving rigorous proofs in formal language theory [33, 12, 25]. We will not
favor that point of view here, however, since we will not make use of the algebraic
properties offered by that perspective.



An alternative method to represent rational functions independently of any
WFA parametrization is via their Hankel matrices. The Hankel matrix Hf ∈
R

Σ∗×Σ∗

of a function f : Σ∗ → R is the infinite matrix with rows and columns
indexed by all strings with Hf (u, v) = f(uv) for all u, v ∈ Σ∗. By the theorem
of Fliess [18] (see also [14] and [12]), Hf has finite rank n if and only if f is
rational and there exists a WFA A with n states computing f , that is, rank(f) =
rank(Hf ).

2.2 Rademacher Complexity

Our objetive is to derive learning guarantees for broad families of weighted au-
tomata or rational functions used as hypothesis sets in learning algorithms. To
do so, we will derive upper bounds on the Rademacher complexity of different
classes F of rational functions f : Σ∗ → R. Thus, we first briefly introduce the
definition of the Rademacher complexity of an arbitrary class of functions F . Let

D be a probability distribution over Σ∗. Suppose S = (x1, . . . , xm)
iid∼ Dm is a

sample of m i.i.d. strings drawn from D. The empirical Rademacher complexity

of F on S is defined as follows:

R̂S(F) = E

[
sup
f∈F

1

m

m∑

i=1

σif(xi)

]
,

where the expectation is taken over the m independent Rademacher random
variables σi ∼ Unif({+1,−1}). The Rademacher complexity of F is defined as

the expectation of R̂S(F) over the draw of a sample S of size m:

Rm(F) = E
S∼Dm

[
R̂S(F)

]
.

Rademacher complexity bounds can be directly used to derive data-dependent
generalization bounds for a variety of learning tasks [24, 11, 32]. Since the deriva-
tion of these learning bounds from Rademacher complexity bounds is now stan-
dard and depends on the learning task, we will not provide them here explicitly.
Instead, we will discuss multiple applications of our techniques in an extended
version of this paper, which will also contain explicit generalization bounds for
several set-ups relevant to practical applications.

3 Classes of Rational Functions

In this section, we introduce three different classes of rational functions described
in terms of distinct quantities. These quantities, such as the number of states of
a WFA representation, the norm of the rational function, or that of its Hankel
matrix, control the complexity of the classes of rational functions in distinct ways
and each class admits distinct benefits in the analysis of learning with WFAs.



3.1 The Class An,p,r

We start by considering the case where each rational function is given by a fixed
WFA representation. Our learning bounds would then naturally depend on the
number of states and the weights of the WFA representations.

Fix an integer n > 0 and let An denote the set of all WFAs with n states.
Note that any A ∈ An is identified by the d = n(kn+2) parameters required to
specify its initial, final, and transition weights. Thus, we can identify An with
the vector space R

d by suitably defining addition and scalar multiplication. In
particular, given A,A′ ∈ An and c ∈ R, we define:

A+A′ = 〈α,β, {Aa}〉+ 〈α′,β′, {A′
a}〉 = 〈α+α′,β + β′, {Aa +A′

a}〉
cA = c〈α,β, {Aa}〉 = 〈cα, cβ, {cAa}〉 .

We can view An as a normed vector space by endowing it with any norm from
the following family. Let p, q ∈ [1,+∞] be Hölder conjugates, i.e. p−1+ q−1 = 1.
It is easy to check that the following defines a norm on An:

‖A‖p,q = max
{
‖α‖p, ‖β‖q,max

a
‖Aa‖q

}
,

where ‖A‖q denotes the matrix norm induced by the corresponding vector norm,
that is ‖A‖q = sup‖v‖q=1 ‖Av‖q. Given p ∈ [1,+∞] and q = 1/(1 − 1/p), we
denote byAn,p,r the set of all WFAs A with n states and ‖A‖p,q ≤ r. Thus,An,p,r

is the ball of radius r at the origin in the normed vector space (An, ‖ · ‖p,q).

3.2 The Class Rp,r

Next, we consider an alternative quantity measuring the complexity of rational
functions that is independent of any WFA representation: their norm.

Given p ∈ [1,∞] and f : Σ∗ → R we use ‖f‖p to denote the p-norm of f
given by

‖f‖p =

[ ∑

x∈Σ∗

|f(x)|p
] 1

p

,

which in the case p = ∞ amounts to ‖f‖∞ = supx∈Σ∗ |f(x)|.
Let Rp denote the class of rational functions with finite p-norm: f ∈ Rp if

and only if f is rational and ‖f‖p < +∞. Given some r > 0 we also define Rp,r,
the class of functions with p-norm bounded by r:

Rp,r = {f : Σ∗ → R | f rational and ‖f‖p ≤ r} .

Note that this definition is independent of the WFA used to represent f .



3.3 The Class Hp,r

Here, we introduce a third class of rational functions described via their Hankel
matrices, a quantity that is also independent of their WFA representations. To
do so, we represent a function f using its Hankel matrixHf , interpret this matrix
as a linear operator Hf : R

Σ∗ → R
Σ∗

on the free vector space RΣ∗

, and consider
the Schatten p-norm of Hf as a measure of the complexity of f .

We now proceed to make this more precise. We identify a function g : Σ∗ → R

with an infinite vector g ∈ R
Σ∗

. It follows from the definition of a Hankel matrix
that we can interpret Hf as an operator given by

(Hfg)(x) =
∑

y∈Σ∗

f(xy)g(y) .

Note the similarity of the operation g 7→ Hfg with a convolution between f and
g. The following result of [10] shows that ‖f‖1 < ∞ is a sufficient condition for
this operation to be defined.

Lemma 1. Let p ∈ [1,+∞]. Assume that f : Σ∗ → R satisfies the condition

‖f‖1 < ∞. Then, ‖g‖p < ∞ implies ‖Hfg‖p < ∞.

This shows that for f ∈ R1 the operator Hf : Rp → Rp is bounded for every
p ∈ [1,+∞]. By the Theorem of Fliess, the matrix Hf has finite rank when
f is rational. Thus, this implies (by considering the case p = 2) that the bi-
infinite matrix Hf admits a singular value decomposition whenever f ∈ R1. In
that case, it makes sense to define the Schatten–Hankel p-norm of f ∈ R1 as
‖f‖H,p = ‖(s1, . . . , sn)‖p, where si = si(Hf ) is the ith singular value of Hf and
rank(Hf ) = n. That is, the Schatten–Hankel p-norm of f is exactly the Schatten
p-norm of Hf .

Using this notation, we can define several classes of rational functions. For a
given p ∈ [1,+∞], we denote by Hp the class of rational functions with ‖f‖H,p <
∞ and, for any r > 0, by Hp,r the class of rational functions with ‖f‖H,p ≤ r.

3.4 Overview of Results

In addition to proving general bounds on the Rademacher complexity of the three
classes just described, we will also highlight their application in some important
special cases.

Here, we briefly discuss these special cases, stress different properties of the
classes of WFAs to which these results apply, and mention several well-known
sub-families within each class. We also briefly touch upon the problem of deciding
the membership of a given WFA in any of the particular classes defined above.

– An,p,r in the case r = 1 (Corollary 1): note that for r = 1 and p = 1, An,p,r

includes all DFAs and PFAs since for these classes of automata α is either an
indicator vector or a probability distribution over states, hence ‖α‖1 = 1; β
has all its entries in [0, 1] since it consists of accept/reject labels or stopping



probabilities, hence ‖β‖∞ ≤ 1; and, for any a ∈ Σ and any i ∈ [1, n], the in-
equality

∑
j |Aa(i, j)| ≤ 1 holds since the transitions can reach at most one

state per symbol, or represent a probability distribution over next states,
hence ‖Aa‖∞ ≤ 1.

– Rp,r in the cases p = 1 and p = 2 (Corollaries 3 and 2): we note here that
PFAs with stopping probabilities are contained in R1, while there are PFAs
without stopping probabilities in R2\R1. In general, given a WFA, member-
ship in R1,r is semi-decidable [5], while membership in R2,r can be decided
in polynomial time [15].

– Hp,r in the cases p = 1 and p = 2 (Corollaries 5 and 4): as mentioned above,
membership in R1 is sufficient to show membership in Hp for all 1 ≤ p ≤ ∞.
Assuming membership in H∞, it is possible to decide membership in Hp,r

in polynomial time [10].

4 Rademacher Complexity of An,p,r

In this section, we present an upper bound on the Rademacher complexity of
the class of WFAs An,p,r. To bound Rm(An,p,r), we will use an argument based
on covering numbers. We first introduce some notation, then state our general
bound and related corollaries, and finally prove the main result of this section.

Let S = (x1, . . . , xm) ∈ (Σ∗)
m

be a sample of m strings with maximum
length LS = maxi |xi|. The expectation of this quantity over a sample of m
strings drawn i.i.d. from some fixed distribution D will be denoted by Lm =
ES∼Dm [LS ]. It is interesting at this point to note that Lm appears in our bound
and introduces a dependency on the distribution D which will exhibit different
growth rates depending on the behavior of the tails of D. For example, it is well
known that if the random variable |x| for x ∼ D is sub-Gaussian,4 then Lm =
O(

√
logm). Similarly, if the tail of D is sub-exponential, then Lm = O(logm)

and if the tail is a power-law with exponent s + 1, s > 0, then Lm = O(m1/s).
Note that in the latter case the distribution of |x| has finite variance if and only
if s > 1.

Theorem 1. The following inequality holds for every sample S ∈ (Σ∗)m:

R̂S(An,p,r) ≤ inf
η>0


η + rLS+2

√√√√2n(kn+ 2) log
(
2r + rLS+2(LS+2)

η

)

m


 .

By considering the case r = 1 and choosing η = (LS + 2)/m we obtain the
following corollary.

4 Recall that a non-negative random variable X is sub-Gaussian if P[X > k] ≤

exp(−Ω(k2)), sub-exponential if P[X > k] ≤ exp(−Ω(k)), and follows a power-law
with exponent (s+ 1) if P[X > k] ≤ O(1/ks+1).



Corollary 1. For any m ≥ 1 and n ≥ 1 the following inequality holds:

Rm(An,p,1) ≤
√

2n(kn+ 2) log(m+ 2)

m
+

Lm + 2

m
.

4.1 Proof of Theorem 1

We begin the proof by recalling several well-known facts and definitions related
to covering numbers (see e.g. [16]). Let V ⊂ R

m be a set of vectors and S =
(x1, . . . , xm) ∈ (Σ∗)m a sample of size m. Given a WFA A, we define A(S) ∈ R

m

by A(S) = (A(x1), . . . , A(xm)) ∈ R
m. We say that V is an (ℓ1, η)-cover for S

with respect to An,p,r if for every A ∈ An,p,r there exists some v ∈ V such that

1

m
‖v −A(S)‖1 =

1

m

m∑

i=1

|vi −A(xi)| ≤ η .

The ℓ1-covering number of S at level η with respect to An,p,r is defined as follows:

N1(η,An,p,r, S) = min {|V | : V ⊂ R
m is an (ℓ1, η)-cover for S w.r.t. An,p,r } .

A typical analysis based on covering numbers would now proceed to obtain a
bound on the growth of N1(η,An,p,r, S) in terms of the number of strings m in S.
Our analysis requires a slightly finer approach where the size of S is characterized
by m and LS . Thus, we also define for every integer L ≥ 0 the following covering
number

N1(η,An,p,r,m, L) = max
S∈(Σ≤L)m

N1(η,An,p,r, S) .

The first step in the proof of Theorem 1 is to bound N1(η,An,p,r,m, L). In
order to derive such a bound, we will make use of the following technical results.

Lemma 2 (Corollary 4.3 in [35]). A ball of radius R > 0 in a real d-
dimensional Banach space can be covered by Rd(2 + 1/ρ)d balls of radius ρ > 0.

Lemma 3. Let A,B ∈ An,p,r. Then the following hold for any x ∈ Σ∗:

1. |A(x)| ≤ r|x|+2 ,

2. |A(x)−B(x)| ≤ r|x|+1(|x|+ 2)‖A−B‖p,q .

Proof. The first bound follows from applying Hölder’s inequality and the sub-
multiplicativity of the norms in the definition of ‖A‖p,q to (1). The second bound
was proven in [8]. ⊓⊔

Combining these lemmas yields the following bound on the covering number
N1(η,An,p,r,m, L).

Lemma 4.

N1(η,An,p,r,m, L) ≤ rn(kn+2)

(
2 +

rL+1(L+ 2)

η

)n(kn+2)

.



Proof. Let d = n(kn+2). By Lemma 2 and Lemma 3, for any ρ > 0, there exists
a finite set Cρ ⊂ An,p,r with |Cρ| ≤ rd(2 + 1/ρ)d such that: for every A ∈ An,p,r

there exists B ∈ Cρ satisfying |A(x)−B(x)| ≤ r|x|+1(|x|+2)ρ for every x ∈ Σ∗.
Thus, taking ρ = η/(rL+1(L + 2)) we see that for every S ∈ (Σ≤L)m the set
V = {B(S) : B ∈ Cρ} ⊂ R

m is an η-cover for S with respect to An,p,r. ⊓⊔
The last step of the proof relies on the following well-known result due to

Massart.

Lemma 5 (Massart [28]). Given a finite set of vectors V = {v1, . . . ,vN} ⊂
R

m, the following holds

1

m
E

[
max
v∈V

〈σ,v〉
]
≤

(
max
v∈V

‖v‖2
) √

2 log(N)

m
,

where the expectation is over the vector σ = (σ1, . . . , σm) whose entries are

independent Rademacher random variables σi ∼ Unif({+1,−1}).
Fix η > 0 and let VS,η be an (ℓ1, η)-cover for S with respect to An,p,r. By

Massart’s lemma, we can write

R̂S(An,p,r) ≤ η +

(
max

v∈VS,η

‖v‖2
) √

2 log |VS,η|
m

. (2)

Since |A(xi)| ≤ rLS+2 by Lemma 3, we can restrict the search for (ℓ1, η)-covers
for S to sets VS,η ⊂ R

m where all v ∈ VS,η must satisfy ‖v‖∞ ≤ rLS+2. By con-
struction, such a covering satisfies maxv∈VS,η

‖v‖2 ≤ rLS+2
√
m. Finally, plug-

ging in the bound for |VS,η| given by Lemma 4 into (2) and taking the infimum
over all η > 0 yields the desired result. ⊓⊔

5 Rademacher Complexity of Rp,r

In this section, we study the complexity of rational functions from a different
perspective. Instead of analyzing their complexity in terms of the parameters
of WFAs computing them, we consider an intrinsic associated quantity: their
norm. We present upper bounds on the Rademacher complexity of the classes of
rational functions Rp,r for any p ∈ [1,+∞] and r > 0.

It will be convenient for our analysis to identify a rational function f ∈
Rp,r with an infinite-dimensional vector f ∈ R

Σ∗

with ‖f‖p ≤ r. That is, f is
an infinite vector indexed by strings in Σ∗ whose xth entry is fx = f(x). An
important observation is that using this notation, for any given x ∈ Σ∗, we can
write f(x) as the inner product 〈f , ex〉, where ex ∈ R

Σ∗

is the indicator vector
corresponding to string x.

Theorem 2. Let p−1+q−1 = 1. Let S = (x1, . . . , xm) be a sample of m strings.

Then, the following holds for any r > 0:

R̂S(Rp,r) =
r

m
E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
q

]
,



where the expectation is over the m independent Rademacher random variables

σi ∼ Unif({+1,−1}).

Proof. In view of the notation just introduced described, we can write

R̂S(Rp,r) = E

[
sup

f∈Rp,r

1

m

m∑

i=1

〈f , σiexi
〉
]
=

1

m
E

[
sup

f∈Rp,r

〈
f ,

m∑

i=1

σiexi

〉]

=
r

m
E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
q

]
,

where the last inequality holds by definition of the dual norm. ⊓⊔

The next corollaries give non-trivial bounds on the Rademacher complexity in
the case p = 1 and the case p = 2.

Corollary 2. For any m ≥ 1 and any r > 0, the following inequalities hold:

r√
2m

≤ Rm(R2,r) ≤
r√
m
.

Proof. The upper bound follows directly from Theorem 2 and Jensen’s inequal-
ity:

E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
2

]
≤

√√√√E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
2

2

]
=

√
m .

The lower bound is obtained using Khintchine–Kahane’s inequality (see ap-
pendix of [32]):

E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
2

]2

≥ 1

2
E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
2

2

]
=

m

2
,

which completes the proof. ⊓⊔

The following definitions will be needed to present our next corollary. Given a
sample S = (x1, . . . , xm) and a string x ∈ Σ∗ we denote by sx = |{i : xi = x}|
the number of times x appears in S. Let MS = maxs∈Σ∗ sx. Given a probability
distribution D over Σ∗ we also define Mm = ES∼Dm [MS ]. Note that Mm is the
expected maximum number of collisions (repeated strings) in a sample of size m
drawn from D, and that we have the straightforward bounds 1 ≤ MS ≤ m.

Corollary 3. For any m ≥ 1 and any r > 0, the following upper bound holds:

Rm(R1,r) ≤
r
√
2Mm log(2m)

m
.



Proof. Let S = (x1, . . . , xm) be a sample with m strings. For any x ∈ Σ⋆ define
the vector vx ∈ R

m given by vx(i) = Ixi=x. Let V be the set of vectors vx

which are not identically zero, and note we have |V | ≤ m. Also note that by
construction we have maxvx∈V ‖vx‖2 =

√
MS . Now, by Theorem 2 we have

R̂S(R1,r) =
r

m
E

[∥∥∥∥
m∑

i=1

σiexi

∥∥∥∥
∞

]
=

r

m
E

[
max

vx∈V ∪(−V )
〈σ,vx〉

]
.

Therefore, using Massart’s Lemma we get

R̂S(R1,r) ≤
r
√
2MS log(2m)

m
.

The result now follows from taking the expectation over S and using Jensen’s
inequality to see that E[

√
MS ] ≤

√
Mm. ⊓⊔

Note in this case we cannot rely on the Khintchine–Kahane inequality to
obtain lower bounds on Rm(R1,r) because there is no version of this inequality
for the case q = ∞.

6 Rademacher Complexity of Hp,r

In this section, we present our last set of upper bounds on the Rademacher
complexity of WFAs. Here, we characterize the complexity of WFAs in terms of
the spectral properties of their Hankel matrix.

The Hankel matrix of a function f : Σ∗ → R is the bi-infinite matrix Hf ∈
R

Σ∗×Σ∗

whose entries are defined by Hf (u, v) = f(uv). Note that any string
x ∈ Σ∗ admits |x|+ 1 decompositions x = uv into a prefix u ∈ Σ∗ and a suffix
v ∈ Σ∗. Thus, Hf contains a high degree of redundancy: for any x ∈ Σ∗, f(x)
is the value of at least |x| + 1 entries of Hf and we can write f(x) = e⊤uHfev
for any decomposition x = uv.

Let si(M) denote the ith singular value of a matrix M. For 1 ≤ p ≤ ∞, let

‖M‖S,p denote the p-Schatten norm ofM defined by ‖M‖S,p =
[∑

i≥1 si(M)p
] 1

p .

Theorem 3. Let p, q ≥ 1 with p−1 + q−1 = 1 and let S = (x1, . . . , xm) be a

sample of m strings in Σ∗. For any decomposition xi = uivi of the strings in S
and any r > 0, the following inequality holds:

R̂S(Hp,r) ≤
r

m
E

[∥∥∥∥
m∑

i=1

σieui
e⊤vi

∥∥∥∥
S,q

]
.

Proof. For any 1 ≤ i ≤ m, let xi = uivi be an arbitrary decomposition and let
R denote R =

∑m
i=1 σieui

e⊤vi . Then, in view of the identity f(xi) = e⊤ui
Hfevi ,



we can write

R̂S(Hp,r) = E

[
sup

f∈Hp,r

1

m

m∑

i=1

σie
⊤
ui
Hfevi

]

=
1

m
E

[
sup

f∈Hp,r

m∑

i=1

Tr
(
σievie

⊤
ui
Hf

)
]
=

1

m
E

[
sup

f∈Hp,r

〈R,Hf 〉
]

.

Then, by von Neumann’s trace inequality [29] and Hölder’s inequality, the fol-
lowing holds:

E

[
sup

f∈Hp,r

〈R,Hf 〉
]
≤ E


 sup
f∈Hp,r

∑

j≥1

sj(R) · sj(Hf )




≤ E

[
sup

f∈Hp,r

‖R‖S,q‖Hf‖S,p
]
= rE

[
‖R‖S,q

]
,

which completes the proof. ⊓⊔

Note that, in this last result, the equality condition for von Neumann’s inequal-
ity cannot be used to obtain a lower bound on R̂S(Hp,r) since it requires the
simultaneous diagonalizability of the two matrices involved, which is difficult to
control in the case of Hankel matrices.

As in the previous sections, we now proceed to derive specialized versions
of the bound of Theorem 3 for the cases p = 1 and p = 2. First, note that
the corresponding q-Schatten norms have given names: ‖R‖S,2 = ‖R‖F is the
Frobenius norm, and ‖R‖S,∞ = ‖R‖op is the operator norm.

Corollary 4. For any m ≥ 1 and any r > 0, the Rademacher complexity of

H2,r can be bounded as follows:

Rm(H2,r) ≤
r√
m
.

Proof. In view of Theorem 3 and using Jensen’s inequality, we can write

Rm(H2,r) ≤
r

m
E
[
‖R‖F

]
≤ r

m

√
E
[
‖R‖2F

]

=
r

m

√√√√E

[ m∑

i,j=1

σiσj〈eui
e⊤vi , euj

e⊤vj 〉
]

=
r

m

√√√√E

[ m∑

i=1

〈eui
e⊤vi , eui

e⊤vi
〉
]
=

r√
m

,

which concludes the proof. ⊓⊔



We now introduce a combinatorial number depending on S and the de-
composition selected for each string xi. Let US = maxu∈Σ∗ |{i : ui = u}| and
VS = maxv∈Σ∗ |{i : vi = v}|. Then, we define WS = minmax{US , VS}, where
then minimum is taken over all possible decompositions of the strings in S. If S
is sampled from a distribution D, we also define Wm = ES∼Dm [WS ]. It is easy
to show that we have the bounds 1 ≤ WS ≤ m. Indeed, for the case WS = m
consider a sample with m copies of the empty string, and for the case WS = 1
consider a sample with m different strings of length m. The following result can
be stated using this definition.

Corollary 5. There exists a universal constant C > 0 such that for any m ≥ 1
and any r > 0, the following inequality holds:

Rm(H1,r) ≤
Cr

(
log(m+ 1) +

√
Wm log(m+ 1)

)

m
.

Proof. First, note that by Corollary 7.3.2 of [34] applied to the random matrix
R, the following inequality holds:

E[‖R‖op] ≤ C
(
log(m+ 1) +

√
µ log(m+ 1)

)
,

where µ = max{‖∑i eui
e⊤ui

‖op, ‖
∑

i evie
⊤
vi
‖op} and C > 0 is a constant. Next,

observe that D =
∑

i eui
e⊤ui

∈ R
Σ∗×Σ∗

is a diagonal matrix with D(u, u) =∑
i Iu=ui

. Thus, ‖D‖op = maxu D(u, u) = maxu∈Σ∗ |{i : ui = u}| = US . Simi-
larly, we have ‖∑i evi

e⊤vi‖op = VS . Thus, since the decomposition of the strings
in S is arbitrary, we can choose it such that µ = WS . In addition, Jensen’s in-
equality implies ES [

√
WS ] ≤

√
Wm. Applying Theorem 3 now yields the desired

bound. ⊓⊔

7 Conclusion

We introduced three general classes of WFAs described via different natural
quantities and for each, proved upper bounds on their Rademacher complexity.
An interesting property of these bounds is the appearance of different combinato-
rial parameters tying the sample to the convergence rate, whose nature depends
on the way chosen to measure the complexity of the hypotheses: the length of
the longest string LS for An,p,r; the maximum number of collisions MS for Rp,r;
and, the minimum number of prefix or suffix collisions over all possible splits
WS for Hp,r.

Another important feature of our bounds for the classes Hp,r is that they
depend on spectral properties of Hankel matrices, which are commonly used in
spectral learning algorithms for WFAs [21, 8]. We hope to exploit this connection
in the future to provide more refined analyses of these learning algorithms. Our
results can also be used to improve some aspects of existing spectral learning
algorithms. For example, it might be possible to use the analysis in Theorem 3



for deriving strategies to help choose which prefixes and suffixes to consider in
algorithms working with finite sub-blocks of an infinite Hankel matrix. This is a
problem of practical relevance when working with large amounts of data which
require balancing trade-offs between computation and accuracy [6].
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