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ABSTRACT

Context. The evolution of stars and planets is mostly controlled by the properties of their atmosphere. This is particularly true in the
case of exoplanets close to their stars, for which one has to account both for an (often intense) irradiation flux, and from an intrinsic
flux responsible for the progressive loss of the inner planetary heat.
Aims. The goals of the present work are to help understanding the coupling between radiative transfer and advection in exoplanetary
atmospheres and to provide constraints on the temperatures of the deep atmospheres. This is crucial in assessing whether modifying
assumed opacity sources and/or heat transport may explain the inflated sizes of a significant number of giant exoplanets found so far.
Methods. I use a simple analytical approach inspired by Eddington’s approximation for stellar atmospheres to derive a relation
between temperature and optical depth valid for plane-parallel static grey atmospheres which are both transporting an intrinsic heat
flux and receiving an outer radiation flux. The model is parameterized as a function of mean visible and thermal opacities, respectively.
Results. The model is shown to reproduce relatively well temperature profiles obtained from more sophisticated radiative transfer
calculations of exoplanetary atmospheres. It naturally explains why a temperature inversion (stratosphere) appears when the opacity
in the optical becomes significant compared to that in the infrared. I further show that the mean equivalent flux (proportional to T 4)
is conserved in the presence of horizontal advection on constant optical depth levels. This implies with these hypotheses that the
deep atmospheric temperature used as outer boundary for the evolution models should be calculated from models pertaining to the
entire planetary atmosphere, not from ones that are relevant to the day side or to the substellar point. In these conditions, present-day
models yield deep temperatures that are ∼1000 K too cold to explain the present size of planet HD 209458b. An tenfold increase in
the infrared to visible opacity ratio would be required to slow the planetary cooling and contraction sufficiently to explain its size.
However, the mean equivalent flux is not conserved anymore in the presence of opacity variations, or in the case of non-radiative
vertical transport of energy: The presence of clouds on the night side or a downward transport of kinetic energy and its dissipation at
deep levels would help making the deep atmosphere hotter and may explain the inflated sizes of giant exoplanets.
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1. Introduction

Many decades before computers would bring the possibility to
model in detail the evolution of stars, an analytical solution to
the problem of radiative transfer applied to stellar atmospheres
revolutionized the study of their structure and evolution. This so-
lution due to the English physicist Sir Arthur Stanley Eddington
states that in a static plane-parallel grey stellar atmosphere in lo-
cal thermal equilibrium, there is a simple relation between the
temperature of the atmosphere and the optical depth of the radi-
ation that it emits (Eddington 1916).

Nowadays, detailed computer simulations are available both
to find solutions for the complex problem of radiative transfer
in stars and planets, and to study their evolutions. In particu-
lar, since the discovery of exoplanets, models to predict or ac-
count for their size have relied on more or less detailed radiative
transfer models or tables (Guillot et al. 1996; Bodenheimer et al.
2001; Burrows et al. 2003; Baraffe et al. 2003; Fortney et al.
2007, to cite just a few). Radiative transfer models in planetary
atmospheres have highlighted the possibility of a bifurcation of
solutions, depending on the presence or absence of efficient ab-
sorbers such as titanium oxyde and vanadium oxyde (Hubeny
et al. 2003), leading in some cases to temperature inversions
(Burrows et al. 2007b; Fortney et al. 2008). Observations of pri-
mary and secondary transits at different wavelengths have even

brought the possibility to test these models and led to the identifi-
cation of key molecular species (e.g. Tinetti et al. 2007; Barman
2008; Madhusudhan & Seager 2009; Swain et al. 2010).

However, the problem is complex and cannot be fully
grasped by radiative transfer models that remain largely one-
dimensional: this is because first the stellar irradiation field
on the planet is intrinsically inhomogeneous and second at-
mospheric dynamics plays a crucial role in the global energy
balance. In light of this, Showman & Guillot (2002) predicted
that close-in giant planets should be characterized by significant
day-night photospheric temperature variations, with the possili-
bity of an asymetry in the light curve due to heat transport by
zonal winds. Both were verified by observations in the infrared
(Harrington et al. 2006; Knutson et al. 2007a). Detailed calcula-
tions combining radiative transfer and atmospheric dynamics are
now being performed (e.g. Cho et al. 2008; Langton & Laughlin
2008; Showman et al. 2009; Menou & Rauscher 2009; Dobbs-
Dixon et al. 2010, to cite just a few), but are intrinsically limited
by available computing power.

In parallel, it has been realized that a significant fraction of
irradiated giant planets are too large compared to what standard
evolution models predict (e.g. Bodenheimer et al. 2001; Guillot
& Showman 2002; Burrows et al. 2007a; Guillot 2008; Baraffe
et al. 2008; Miller et al. 2009). The possibility to choose as
outer boundary conditions of evolution models between various
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Fig. 1. Planet receiving a flux σT 4
irr from its parent star and emitting an

intrinsic heat flux σT 4
int. The labeled quantities correspond to radiative

fluxes perpendicular to the atmospheric surface at the location consid-
ered. θ∗ correspond to the angle between the direction of incidence of
the collimated irradiation flux and the local vertical, and μ∗ = cos θ∗.
Fluxes that are mostly characterized by visible wavelengths are drawn
in blue. Fluxes in the infrared are drawn in red.

atmospheric models, from those calculated with a maximal ir-
radiation flux at the substellar point to those calculated with an
irradiation averaged over the entire planet (e.g. Burrows et al.
2003; Baraffe et al. 2003) has left some confusion as to whether
atmospheric properties may account for the discrepancy.

These are strong motivations towards the derivation of a sim-
ple analytical model to capture the important physics of the prob-
lem. This approach was already taken by Hansen (2008) who
focused his analysis on the observational consequences in terms
of emission from the planet. In what follows, I will be mostly in-
terested in understanding how the atmospheric properties impact
the thermal evolution of planets. I first derive the temperature-
optical depth relation valid for an atmosphere which is heated
both from below (intrinsic heat) and above (stellar irradiation)
and compare it to some detailed atmospheric calculations from
the literature. The study takes advantage of the fact that close-
in giant planets should generally possess an extended radiative
zone (Guillot et al. 1996), so that convection may be neglected,
as a first step at least. I then study the consequences of the varia-
tion of irradiation and advection on the mean temperature of the
deep atmosphere. The resulting analytical temperature profile is
used as boundary condition of evolution models, in an attempt
to explain the inflated size of planet HD 209458b. Limitations to
the models are detailed in Sect. 5.

2. An analytic radiative equilibrium model
for irradiated atmospheres

2.1. Setting

The geometry of the problem is shown in Fig. 1. The planet is re-
ceiving an irradiation flux σT 4

irr, σ being the Stefan-Boltzmann
constant and Tirr an effective temperature characterizing the ir-
radiation intensity. In the cases to be considered, the incoming
stellar irradiation can be considered as coming from a well-
defined direction, with an angle θ∗ to the perpendicular of the
atmosphere. (The angular diameter of the irradiating star as seen
from the atmosphere is α = arctan(2 ∗ R∗/D), R∗ being the stel-
lar radius and D the star-planet distance. For an extremely close
exoplanet D ∼ 5 R∗ so that α ∼ 22◦, but in most cases of in-
terest α < 10◦). To first order, the irradiation temperature is a

function of the stellar effective temperature T∗, its radius R∗ and
the star-planet distance D:

Tirr = T∗
(R∗

D

)1/2

· (1)

At the substellar point on the planet, the flux received by the at-
mosphere is σT 4

irr. On the day side of the planet, the flux perpen-
dicular to the atmosphere is μ∗σT 4

irr, where μ∗ ≡ cos θ∗. (Note
that Eq. (1) neglects the fact that the equator of the planet is
slightly closer to the star than its poles, as this affects the irra-
diation temperature by a factor ∼Rp/2D, Rp being the planetary
radius, i.e. generally by 1% or less). It is useful to consider the
irradiation flux averaged over the entire planetary surface, that I
note σT 4

eq, following Saumon et al. (1996), and define the equi-
librium temperature as:

Teq = T∗
( R∗
2D

)1/2

· (2)

The maximal irradiation on the planet is σT 4
irr at the substellar

point, the planet receives no flux on the night side, and the aver-
age irradiation is σT 4

eq, 1/4th of the substellar point value.
As indicated in Fig. 1, at a given location in the atmo-

sphere, a fraction Aμ∗σT 4
irr of the incoming flux is reflected,

whereas (1 − A)μ∗σT 4
irr is absorbed in the atmosphere and even-

tually reemitted back to space. A is the albedo, i.e. the fraction
of the flux that is directly reflected. In general, this is a com-
plex function of the properties of the atmosphere at the con-
sidered location, wavelength and direction. While the incoming
flux is relatively highly collimated, this is not the case of the
reflected, reemitted and intrinsic radiation fields. Furthermore,
both the intrinsic and reemitted fluxes are mostly characterized
by long wavelengths (in the infrared), with characteristic equiva-
lent blackbody temperatures that are generally less than 2500 K.
On the other hand, the irradiation and reflected fluxes are mostly
characterized by short (optical) wavelengths, with equivalent
blackbody temperatures equal to the effective temperature of the
parent star, ∼5700 K for a solar-type star. As we seek an approx-
imate solution to the radiative transfer problem, this will be im-
portant because it shows that the thermal and visible radiations
are mostly decoupled.

I now consider a given location in the atmosphere and a
ray of intensity Iνμ, ν being its frequency and θ its angle (or
μ = cos θ) with respect to the (local) vertical. Following Mihalas
(1978) (see also Hubeny et al. 2003), I define three moments of
the specific intensity as:

(Jν,Hν,Kν) ≡ 1
2

∫ 1

−1
Iνμ(1, μ, μ2)dμ · (3)

Jν is equivalent to the energy of the beam, 4πHν is the radia-
tion flux and 4π/cKν the radiation pressure. Given the parame-
ters of the problem, 4πHirr =

∫
4πHνdν = μ∗σT 4

irr on the day
side (μ∗ > 0).

The moments of the radiative transfer equation in a static,
plane-parallel atmosphere in local thermodynamic equilibrium
and assuming isotropic scattering can be written (Chandrasekhar
1960; Mihalas 1978):

dHν
dm
= κν(Jν − Bν) (4)

dKν
dm
= χνHν· (5)
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Furthermore assuming radiative equilibrium implies:∫ ∞

0
κν(Jν − Bν)dν = 0 (6)

where m is the column mass (dm = ρdz, ρ being the density and
z the altitude), κν is the true absorption coefficient,σν the scatter-
ing coefficient and χν = κν + σν the total extinction coefficient.
Bν is the Planck function. Using Eq. (4), the radiative equilib-
rium Eq. (6) can be rewritten as a conservation equation for the
total flux, i.e.:

H ≡
∫ ∞

0
Hνdν = cte. (7)

A closure relation is needed to solve the problem. Eddington
(1916) noticed that in the interior of stars, one could consider as
a first approximation Iμ = A+Bμ, implying J = A and K = A/3.
Using K/J = 1/3 in Eq. (5), and assuming a grey atmosphere
κν = χν = cte allowed solving the problem.

Here I will follow the same approach but splitting the prob-
lem into two parts: one for the incoming radiation, mostly in the
visible, one for the outgoing radiation, mostly emitted in the in-
frared. Strictly speaking, the approach is valid in the limit when
the incoming radiation and the outgoing radiation are always
well separated in their characteristic wavelengths. One may then
solve separately the radiation field of both radiation sources, de-
termine the source function, and hence the interior temperature
profile. In practice, this is only partially true for heavily irradi-
ated exoplanets: as the temperature at depth increases, the ther-
mal emission is pushed towards the visible. In some case, the
photosphere may be so warm that the contribution in the visible
is not negligible. In other cases, the irradiation flux may be char-
acterized by low effective temperatures (e.g. if the parent star is
an M-dwarf), so that the incoming and outgoing irradiation are
not so different. However, in most cases we can consider that
the region of the planetary atmosphere where the stellar irradia-
tion is absorbed is characterized by temperatures that are signifi-
cantly below the effective temperature of the star, so that the two
radiation fields are mostly decoupled. This implies that charac-
teristic mean opacities can be calculated for these two fields.

2.2. The incoming (visible) radiation

I first seek a solution of the radiative transfer problem for the
incoming radiation in the visible. This is a long-standing prob-
lem in planetary atmospheres, one for which the scattering of
the incoming light by atmospheric particules is crucial in deter-
mining the fraction of flux that is absorbed (e.g. Chandrasekhar
1960; Meador & Weaver 1980; Toon et al. 1989; Goody & Yung
1989). For giant exoplanets orbiting close to solar-type stars (i.e.
with orbital periods shorter than 10 days), the fraction of the irra-
diation that is reflected back is generally very low, of order 20%
or less, both from theoretical calculations (e.g. Sudarsky et al.
2003; Hood et al. 2008) and from observations (e.g. Rowe et al.
2008; Snellen et al. 2009; Alonso et al. 2009). For simplicity, I
hence choose to neglect scattering: χν ≈ κν.

I integrate the moments of the radiation field in the visible:

(Jv,Hv,Kv) ≡
∫

visible
(Jν,Hν,Kν)dν. (8)

Similarly, I define a mean opacity:

κv ≡ J−1
v

∫
visible

κνJνdν. (9)

It is interesting to note that since the visible radiation field is set
by the stellar irradiation, κv can be calculated a priori.

I now make an important simplification: I assume that the
thermal emission from the atmosphere at visible wavelengths al-
ways has a negligible contribution to the global energy budget
and that one can hence assume that Bν ∼ 0 for ν in the visible.
The Eqs. (4) and (5) can hence be simplified by integrating over
visible wavelengths:

dHv

dm
= κvJv (10)

dKv

dm
= κvHv (11)

This assumption is justified at low visible optical depth where
clearly the incoming irradiation flux is intense and the contribu-
tion from the atmosphere is comparatively small: Jν 	 Bν for
ν in the visible and τv 
 1. It can be questioned deeper down
in the atmosphere where most of the incoming flux has been ab-
sorbed. This region is generally characterized by a thermal com-
ponent of the radiation field that is much more intense than the
visible part, so that for large enough τv values, both Jth 	 Jv

and Jth 	
∫

visible
Bνdν. This justifies neglecting the visible part

of the source function in this region as well.
Following Eddington, I write μ∗ ≡ √Kv/Jv. Note that this

approach is valid in two extreme cases: for isotropic irradiation
(e.g. Hubeny et al. 2003), for which μ∗ = 1/

√
3, or in the case

of collimated visible irradiation (e.g. Meador & Weaver 1980),
in which case μ∗ = cos θ∗. Equations (10) and (11) then write:

d2(Jv,Hv)
dm2

=
κ2v

μ2∗
(Jv,Hv). (12)

Because the incoming radiation is rapidly absorbed, it is fine to
assume that both Jv and Hv vanish at great depths (m → ∞),
therefore

(Jv(m),Hv(m)) = (Jv(0),Hv(0))e−κvm/μ∗ . (13)

Again, it should be noted that Jv characterizes the intensity of
the incoming radiation field, and that the thermal contribution
from the atmosphere at visible wavelengths has been neglected.

Furthermore, Eq. (10) implies that:

Hv(0) = −μ∗Jv(0). (14)

In the case of an incoming radiation flux that is considered
as fully isotropic, there is an inconsistency as we should have
Hv(0) = −Jv(0)/2. This inconsistency is at the heart of the
Eddington approximation however. It is due to the fact that the
incoming irradiation flux cannot remain fully isotropic because
of the larger absorption of grazing rays. Only an approximate so-
lution can be found by neglecting the dependence on direction.
In the collimated beam case, the solution is exact in the limit of
no scattering.

2.3. The outgoing (thermal) radiation

Let us now consider the thermal part of the radiation field. As
previously, we obtain average quantities by integration over ther-
mal wavelengths:

(B, Jth,Hth,Kth) ≡
∫

thermal
(Bν, Jν,Hν,Kν)dν. (15)

κth ≡ J−1
th

∫
thermal

κνJνdν. (16)
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As previously for the mean visible opacity, κth is a function of
temperature that can be calculated a priori for a known outgoing
radiation field.

The system of Eqs. (4) to (6) is integrated over thermal
wavelengths with the hypothesis that B−1

∫
thermal

κνBνdν ≈ κth:

dHth

dm
= κth(Jth − B) (17)

dKth

dm
= κthHth (18)

κth(Jth − B) + κvJv = 0. (19)

We can combine Eqs. (13), (17) and (19) to find by integration
in m:

Hth − Hth(0) = −μ∗Jv(0)
(
1 − e−κvm/μ∗

)
. (20)

Separately, integrating Eq. (18) over column mass and using
Eq. (20) yields:

Kth − Kth(0) =
∫ m

0
κth

[
Hth(0) − μ∗Jv(0)

(
1 − e−κvm/μ∗

)]
dm. (21)

Equations (7) and (14) imply that Hth(0) = H + μ∗Jv(0), which
allows integrating the above equation to find

Kth − Kth(0) = Hκthm + Jv(0)
κth
κv
μ2
∗
(
1 − e−κvm/μ∗

)
. (22)

Using the first Eddington coefficient for the thermal radiation
field, fKth ≡ Kth/Jth, we obtain the mean intensity:

Jth = Jth(0) + H
κthm
fKth
+ Jv(0)

κth
κv

μ2∗
fKth

(
1 − e−κvm/μ∗

)
(23)

2.4. Atmospheric temperature profile

I now turn to the derivation of the atmospheric temperature pro-
file. I first introduce a second Eddington coefficient to relate the
thermal radiative flux to the mean thermal intensity at the outer
boundary: fHth ≡ Hth(0)/Jth(0). I also define the optical depth

τ ≡ κthm (24)

and, following Hansen (2008)

γ ≡ κv/κth. (25)

Using these relations, Eqs. (14), (19) and (23), we can express
the source function at each level:

B = H

[
1

fHth
+
τ

fKth

]

−Hv(0)

[
1

fHth
+
μ∗
γ fKth

+

(
γ

μ∗
− μ∗
γ fKth

)
e−γτ/μ∗

]
. (26)

The fluxes H and Hv(0) correspond to the imposed heat fluxes
at the bottom and top of the atmosphere, respectively (note that
Hv(0) < 0, as it corresponds to an inward flux).

In the case of the collimated incoming irradiation, H =
σT 4

int/4π; Hv(0) = −μ∗σT 4
irr/4π. As previously for the visible

flux, fKth = 1/3 is valid both for a collimated and an isotropic
radiation field. The second Eddington coefficient is generally
chosen to be either fHth = 1/2 or fHth = 1/

√
3. The former

value is derived from the assumption of isotropy of the outgoing
radiation field, while the latter can be shown to result from an
isotropic scattering (Chandrasekhar 1960; Mihalas 1978). The

1/2 value however yields a temperature that is closer to the ex-
act solution at great depth. Using thus fKth = 1/3 and fHth = 1/2
yields:

T 4 =
3T 4

int

4

[
2
3
+ τ

]

+
3T 4

irr

4
μ∗

[
2
3
+
μ∗
γ
+

(
γ

3μ∗
− μ∗
γ

)
e−γτ/μ∗

]
. (27)

The solution is equivalent to that obtained by Hansen (2008),
except for a different boundary closure relation, and the fact that
Eq. (27) accounts for atmospheric heating due to visible radia-
tion (see Appendix). The τ = 0 limit for the temperature is

T (τ = 0) =

{
1
2

T 4
int +

1
2

T 4
irrμ∗

(
1 +

γ

2μ∗

)}1/4

· (28)

Thus, the temperature at the top of the atmosphere is lowest and
equal to that of a non-irradiated atmosphere emitting a total flux
σ(T 4

int + μ∗T
4
irr) only in the case when γ −→ 0. In all other cases,

the absorption of part of the visible irradiation flux at high levels
in the atmosphere pushes the temperature up there. In the limit
of high values of γ, the temperature-pressure gradient can even
become negative, which is observed in models in the case of
strong TiO/VO absorption (Hubeny et al. 2003; Fortney et al.
2008; Burrows et al. 2008). (Note that however in this case,
non-grey effects may dominate and should be considered).

When assuming isotropic irradiation, the incoming flux is
written Hv(0) = fσT 4

irr/4π, with f = 1 at the substellar point,
f = 1/2 for a day-side average and f = 1/4 for an aver-
aging over the whole planetary surface (Burrows et al. 2003).
Furthermore, we have seen in Sect. 2.2 that in this case μ∗ =
1/
√

3, therefore:

T 4 =
3T 4

int

4

[
2
3
+ τ

]

+
3T 4

irr

4
f

⎡⎢⎢⎢⎢⎣2
3
+

1

γ
√

3
+

⎛⎜⎜⎜⎜⎝ γ√
3
− 1

γ
√

3

⎞⎟⎟⎟⎟⎠ e−γτ
√

3

⎤⎥⎥⎥⎥⎦ . (29)

Of course, the standard Eddington relation is recovered in the
limit when Tirr 
 Tint. For κv = κth, one gets that T 4 =
3T 4

int/4(τ+2/3)+0.93 f Tirr, which is equivalent to the expression
provided by Hubeny et al. (2003) in that case.

Figure 2 provides a comparison of the temperature structures
obtained for different values of the incident inclination θ∗ and in
the isotropic approximation, assuming an incoming flux that is
averaged over the entire planetary surface ( f = 1/4). The nu-
merical values have been chosen as representative of planet HD
209458b. Without advection and assuming a very small intrinsic
heat flux, the temperature profile is found to vary dramatically
between the substellar point (θ∗ = 0◦) and the night side of the
planet. The temperature becomes mostly isothermal at levels for
which stellar irradiation has been entirely absorbed and before
the contribution of the intrinsic heat starts to become significant.
At higher levels, horizontal temperature variations on the day
side are smaller because grazing rays are absorbed efficiently.
For grazing incidences (or equivalently near the terminator),
Eq. (27) always predicts a temperature inversion. Alternatively,
lowering the ratio κth/κv favors the formation of a temperature
inversion even for vertical incidence.

The comparison between the isotropic approximation and a
0◦ approximation (i.e. assuming the atmosphere is at the substel-
lar point but receives the irradiation flux that is the average for
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Fig. 2. Temperature as a function of thermal optical depth obtained for
different inclinations of the incident light, from (black lines, left to right)
90◦ (terminator) to θ∗ = 0◦ (substellar point) [see text and Eq. (27)].
Also shown are the isotropic average [Eq. (29)], 0◦ average [Eq. (27)]
and global average [Eq. (49)] (see text). The quantities used for the
plot correspond approximately to the case of HD209458b, i.e. Teq =
1469 K, Tint = 100 K, κth = 10−2 cm2 g−1, κv = 4 × 10−3 cm2 g−1. The
corresponding chord optical depth is indicated on the right axis [see
Eq. (58) with H = 550 km, R = 94370 km and θ̃ = 1].

the entire planet) shows that the isotropic approximation yields
deep temperatures that are smaller and temperatures at small op-
tical depths that are larger. This is a direct consequence of the
fact that grazing rays are absorbed at low optical depths.

2.5. Comparison to models

Dedicated temperature profiles at different incidences have been
calculated for the atmosphere of HD209458b and are compared
to the results of this work in Fig. 3. The pressure was cal-
culated by assuming constant gravity g, yielding P = τg/κth.
Opacities in the visible and infrared were adjusted to obtain a
good match to the more detailed models of Fortney et al. (2008)
and Showman et al. (2008) at vertical incidence. As a result, this
yielded κth = 10−2 g cm−2 and κv = 4 × 10−3 g cm−2. The fig-
ure shows that the match remains good for other incidences, and
that differences between the analytic approximation and other
models are of the same order as differences between the mod-
els themselves. Note that the model by Barman et al. (2005) is
a good match to the other solutions except at grazing incidences
(μ = 0.1, 0.3) where the temperature is found to be much lower.
One likely possibility is that the plane-parallel approximation
used both in this work and by Fortney et al. is overestimating the
absorption at grazing incidences when compared to the more re-
alistic spherical-symmetry approximation used by Barman et al.

I now compare in Fig. 4 the solutions obtained from Eq. (27)
in the case of vertical incidence (μ∗ = 1) to a detailed calcu-
lation by Fortney et al. (2008) for planets at semi-major axes
between 0.025 and 0.055 AU from their star (assumed to be
a solar twin). The planets have a 1 MJ mass and a 1.2 RJ ra-
dius, a solar-composition atmosphere, and the irradiation flux is
calculated as a mean on the day-side hemisphere only. Again,
the values of the opacity coefficients were adjusted to obtain
a fair match, which was obtained for κth = 10−2 cm2 g−1 and
κv = 6 × 10−3

√
Tirr/2000 K cm2 g−1. These coefficients are in-

deed representative of values of the Planck or Rosseland means

in these atmospheres, as is the weak temperature dependance on
the opacity in the visible. They are compatible with the coef-
ficients obtained specifically for the case of HD 209458b. The
comparison also shows the limit of the model: at low pressures,
the visible opacity is probably overestimated (except in the cases
where TiO/VO are present), and at large pressures, the opacities
are definitely underestimated. This is because collision-induced
absorption and/or a rising electron abundance eventually pop in
so that the mean opacities are to first order proportional to pres-
sure (instead of being roughly independent of pressure).

The relation with the same opacity coefficients can then be
usefully compared to a solar-composition model for isolated
planets/brown dwarfs by Saumon et al. (1996). In this case, the
10 bar level is a useful value to tie the atmosphere (characterized
by the part that is still at a relatively low optical depth) and the in-
terior. This 10 bar level is also found to be within the isothermal
layer for highly irradiated planets, so that it serves as a conve-
nient outer boundary for the evolution models. Figure 5 provides
the value of T10 as a function of Tint or Tirr, in different cases,
for the same values of κIR and κV as previously. For the non-
irradiated cases (Tirr = 0), one obtains a relatively fair match to
the Saumon et al. (1996) results. The model however separates
from these numerical calculations both for temperature signifi-
cantly lower or significantly higher than the usual ∼1000 K rep-
resentative of giant planets at distances ∼0.1 AU and less to their
star. This is due to changes in the mean opacities for these char-
acteristic temperatures.

Figure 5 also shows that in the case of a significant ir-
radiation, the temperature is independent of gravity, and that
T10 ∝ Tirr. With Eq. (27) and μ∗ = 1, this is easily explained
by taking the limit Tint −→ 0 and τ −→ ∞. In that case:

Tdeep

Tirr
=

{
3
4

(
1
γ
+

2
3

)}1/4

. (30)

With the fiducial opacity coefficients for HD209458b γ = 0.4,
I find that the right hand side is equal to 1.24, close to the em-
pirical T10/Tirr = 1.25 used by Guillot (2008) on the basis of
models of irradiated planets calculated by Iro et al. (2005). This
proportionality relation was also shown to apply to strongly ir-
radiated atmospheres by Hubeny et al. (2003), who estimated
T10/Tirr ≈ 1.15.

3. The non-uniform irradiation flux and the mean
atmospheric temperature

3.1. Consequences of advection

I now turn to the problem of the non-uniform irradiation flux,
and its consequence for the deep atmospheric temperature that
controls the global planetary evolution (Guillot & Showman
2002; Arras & Bildsten 2006; Fortney et al. 2007). As we have
seen, the solution to the pure radiative transfer problem is a tem-
perature field that is intrinsically inhomogeneous. For giant plan-
ets in our Solar System, the combination of rapid rotation, long
radiative timescales and of an intrinsic flux that is of the same
order of magnitude as the incoming heat flux yields a relatively
homogeneous temperature field (e.g. Ingersoll & Porco 1978).
On the contrary, close-in giant exoplanets should be locked in
synchronous rotation (Guillot et al. 1996) and they are character-
ized by photospheric radiative timescales that are much shorter
and intrinsic heat fluxes that are up to 4 orders of magnitude
smaller than the irradiation fluxes (Guillot & Showman 2002).
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Barman et al. (2005)
Showman et al. (2008)
This work

Fig. 3. Atmospheric temperature-pressure pro-
file obtained for different irradiation angles
(μ = cos θ∗) and compared to calculations for
HD209458b available in the literature: Barman
et al. (2005) (in green -who assume Tint =
500 K on the night side to Tint = 230 K at the
substellar point), and Showman et al. (2008)
(in red). The black lines are calculated as in
Fig. 2, except that Tint = 500 K. The corre-
sponding τ = 2/3 optical depth corresponds to
the P = 65 mbar pressure level.

Fig. 4. Temperature profiles as a function of pressure obtained for differ-
ent irradiation levels (corresponding to orbital distances between 0.025
and 0.055 AU) at vertical incidence (μ∗ = 1), using Eq. (27) (plain, red
lines) and comparison to the results obtained by Fortney et al. (2008)
(dashed lines).

The question of the proper outer boundary condition to be used
for evolution models is crucial. Planetary evolution models have
been calculated either with boundary conditions inferred from
calculations applying to the whole atmosphere, to the day-side
hemisphere or even to the substellar point (see Burrows et al.
2003; Baraffe et al. 2003). On the other hand, little attention
has been paid to the consequences of the temperature inhomo-
geneities on the planetary cooling and of the validity of the dif-
ferent calculations.

In Guillot & Showman (2002), the problem of the plane-
tary evolution with a non-uniform outer boundary condition had
been approached by assuming that temperature differences may
persist even deep down in the planet. In that case, an effective

energy transport from the day side to the night side1 takes place
simply to homogeneize the specific entropies at deep levels. As
one would expect, the non-uniform outer boundary is found to
lead to a faster cooling and contraction.

However, the time-dependent radiative transfer models by
Iro et al. (2005) show that the radiative timescales increase very
rapidly with depth, so that any remaining non-synchronous ro-
tation or slow advection is susceptible to provide a very homo-
geneous temperature structure at depth. In this work, I will as-
sume that there is a level, deep enough in the atmosphere/interior
at which the temperature is independent of latitude/longitude.
(Note that this should be deeper, peharps considerably, than
the level at which the irradiation flux has been completely ab-
sorbed). I hereafter turn to the derivation of the temperature pro-
file in an atmosphere that advects heat horizontally.

3.2. Radiative transfer solution with advection

I now consider that for each atmospheric location (θ, φ) defined
from the substellar point, mixing tables place by horizontal ad-
vection and transports heat with a flux q∇T . The radiative equi-
librium equation becomes:∫ ∞

0
κ(Jν − Bν)dν = q∇T (31)

or,

κth(Jth − B) + κvJv = q∇T. (32)

The first moment of the radiative transfer Eq. (4) becomes by
integration∫ ∞

0

dHν
dm

dν = q∇T, (33)

and hence

H(m) = H(∞) −
∫ ∞

m
q∇Tdm. (34)

1 Note that I use “day side” and “night side” for simplicity, but there is
a strong variation in irradiation when moving from equator to pole that
should be considered as well.
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Fig. 5. Relation between intrinsic or irradiation effective temperature
and the temperature at the 10 bar level in planetary atmospheres. The
line-styles indicate gravity: plain (g = 103 cm s−2) and dashed (g =
104 cm s−2). I assumed κIR = 10−2 cm2 g−1 and κV = 6 × 10−3 cm2 g−1,
except for the thin blue line in the Tint = 200 K case and variable Tirr,
for which κV = 6 × 10−3(T/2000 K)1/2 cm2 g−1. The results of the an-
alytical model for Tirr = 0 are also compared to those calculated for a
solar-composition atmospheres of isolated planets (g = 103 cm s−2, dia-
monds) and brown dwarfs (g = 104 cm s−2, triangles) by Saumon et al.
(1996).

Note that since we envision that ∇T → 0 when m → ∞, this
implies H(∞) = σT 4

int/(4π).
Now, the equation for Hth becomes:

dHth

dm
= −κvJv + q∇T (35)

and by integration

Hth − Hth(0) = −μ∗Jv(0)
(
1 − e−κvm/μ∗

)
+

∫ m

0
q∇Tdm′. (36)

Hth(0) = H(0) − Hv(0) and therefore

Hth(0) = H(∞) −
∫ ∞

0
q∇Tdm′ + μ∗Jv(0). (37)

Inserting this relation into Eq. (36) yields

Hth = H(∞) + μ∗Jv(0)e−κvm/μ∗ −
∫ ∞

m
q∇Tdm′. (38)

We now integrate the equation for the second moment of the
radiation field:

Kth − Kth(0) = H(∞)κthm + Jv(0)
κth
κv
μ2
∗
(
1 − e−κvm/μ∗

)

−
∫ m

0
κth

∫ ∞

m′
q∇Tdm′′dm′ (39)

and by integrating by parts:

Kth = Kth(0) + H(∞)κthm + Jv(0)
κth
κv
μ2
∗
(
1 − e−κvm/μ∗

)

−κthm
∫ ∞

0
q∇Tdm′ − κth

∫ m

0
(m′ − m)q∇Tdm′. (40)

The relation for Jth can then be found simply from the first
Eddington coefficient fKth = Kth/Jth. Then, using Eq. (32) yields

B = Jth(0) + H(∞)
κthm
fKth
+ Jv(0)

κth
κv

μ2∗
fKth

(
1 − e−κvm/μ∗

)

−κthm
∫ ∞

0
q∇Tdm′ − κth

∫ m

0
(m′ − m)q∇Tdm′

+Jv(0)
κv
κth

e−κvm/μ∗ − q∇T (41)

We use the relations fHth ≡ Hth(0)/Jth(0), Hv(0) = −μ∗Jv(0),

Hth(0) = H(∞) − Hv(0) −
∫ ∞

0
q∇Tdm, (42)

and H(∞) = σT 4
int, Hv(0) = μ∗σT 4

irr to find an expression for the
temperature profile at each location (τ, μ, φ) in the atmosphere:

T 4 =
3T 4

int

4

[
1

3 fHth
+
τ

3 fKth

]

+
3T 4

irr

4
μ∗

[
1

3 fHth
+
μ∗

3γ fHth
+

(
γ

3μ∗
− μ∗

3γ fHth

)
e−γτ/μ∗

]

− π
σ

{(
1

fHth
+
τ

fKth

) ∫ ∞

0
q∇Tdm

+
τ

fKth

∫ m

0

(
m′

m
− 1

)
q∇Tdm′ − q∇T

}
· (43)

The relation is a complex one and its resolution goes beyond the
scope of the present article.

3.3. Mean atmospheric temperature

We are mostly interested in the deep atmospheric temperature.
As discussed, in the presence of an efficient-enough advection
process, the temperature at deep levels should become latitudi-
nally and longitudinally homogeneous. I therefore average over
latitudes and longitudes (defined from the substellar point) to
obtain a global mean temperature that depends only on depth τ:

T 4 ≡
∮

T 4dω =
1

4π

∫ 2π

0

∫ 1

−1
T 4dμdφ. (44)

For a conservative advection scheme (in particular if q does not
depend on μ, φ or T ),

∮
q∇Tdω = 0. (One could easily show that

this would also be true of heat diffusion, as long as the heat flux
is conserved horizontally). This leads to a great simplification of
Eq. (43) which becomes after integration over all latitudes and
longitudes (using μ∗ = μ):

T 4 =
T 4

int

4

[
1

fHth
+
τ

fKth

]
+

1
2

T 4
irr

4
Y

Y =
∫ 1

0
μ

[
1

fHth
+
μ

γ fKth
+

(
γ

μ
− μ

γ fKth

)
e−γτ/μ

]
dμ. (45)

Note that we integrated the intrinsic flux over the entire planet,
whereas the irradiation flux is of course integrated only over the
dayside hemisphere.

The integral term can be rewritten

Y =
1

2 fHth
+

1
3γ fKth

+ γ

∫ ∞

1

e−γτt

t2
dt − 1
γ fKth

∫ ∞

1

e−γτt

t4
dt, (46)

or, in terms of exponential integrals En(z) ≡ ∫ ∞
1

t−ne−ztdt,

Y =
1

2 fHth
+

1
3γ fKth

+ γE2(γτ) − 1
γ fKth

E4(γτ). (47)

The En functions have a recursive property (Abramowitz &
Stegun 1964):

En+1(z) =
1
n

[
e−z − zEn(z)

]
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which implies that with some algebra, Y can be written more
explicitly:

Y =
1

2 fHth
+

1
3γ fKth

[
1 +

(
γτ

2
− 1

)
e−γτ

]

+γ

(
1 − τ2

6 fKth

)
E2(γτ). (48)

With our choice of fKth = 1/3 and fHth = 1/2, the equation for
the mean temperature becomes

T 4 =
3T 4

int

4

{
2
3
+ τ

}
+

3T 4
eq

4

{
2
3

+
2

3γ

[
1 +

(
γτ

2
− 1

)
e−γτ

]
+

2γ
3

(
1 − τ

2

2

)
E2(γτ)

}
· (49)

For γτ 	 1, the properties of the E2 function imply that

T 4 −→ 3T 4
int

4

[
2
3
+ τ

]
+

3T 4
eq

4

[
2
3
+

2
3γ

]
.

This relation is very similar to what obtained in the isotropic
irradiation case but with a (2/3γ) instead of a (

√
3)/γ coefficient.

This is the same equation as obtained for the day side when
considering no advection, but replacing T 4

irr by T 4
eq. There is

hence a well defined mean temperature of the atmosphere at each
level τ that is independent of the advective process to transport
heat from the day side to the night side, as long as this advec-
tive process is conservative and takes place horizontally, over
surfaces of constant optical depth τ.

Deep in the atmosphere (τ	 1), the radiative time scale be-
comes very long, almost proportional to P2 (Iro et al. 2005). This
means that any slow advection and/or any slightly asynchronous
rotation would ensure an almost homogeneous mixing. Ideally,
the location where this homogeneous mixing occurs should be
used as an outer boundary condition for the interior and evolu-
tion models. Under these assumptions, only solutions in which
the deep atmospheric temperature has been estimated with an ir-
radiation flux averaged over the entire planet are energetically
consistent.

3.4. Comparison to models

Figure 7 compares temperature profiles obtained for
HD 209458b and relevant to the planet as a whole by var-
ious sources. First, as also shown in Fig. 2, it can be noticed that
the global average calculation described by Eq. (49) yields very
slightly higher temperatures at depth, but is otherwise extremely
close to the isotropic approximation of Eq. (29). The analytical
solution (using the same values of the opacity coefficients as
previously) is a good match to the more elaborate calculations
by Fortney et al. (2005) and Iro et al. (2005). These are however
about 200 to 300 K cooler than the temperature profile obtained
by Barman et al. (2005). The figure also shows the envelope of
solutions obtained in a dynamical circulation by Showman et al.
(2009) which is helpful to show the range of variability of the
temperature profile in one particular model including radiative
transfer and dynamical circulation.

The cross in Fig. 7 corresponds to the atmospheric boundary
condition used in calculations of the evolution of HD209458b
by Guillot (2008). These yield a fast contraction of the planet
and a radius that is at least 10% smaller than the measurements

(e.g. Knutson et al. 2007a). The dotted line indicates the temper-
ature profile obtained for a 10 times smaller visible opacity: be-
cause of a more efficient penetration of the incoming stellar flux,
the deep levels are hotter than in the standard case by ∼1000 K.
This is approximately the amount that is needed to account for
the observed radius without invoking extra heat sources (see next
section). As can be seen from the comparison of published radia-
tive transfer calculations, this is outside the presently measured
range of temperatures that is obtained by detailed models. The
possibility that the visible opacity may be lowered that much
is unlikely because even in the absence of efficient absorbers,
scattering will have a non-negligible contribution. An alterna-
tive possibility is however to increase the infrared opacity by
the addition of greenhouse gases at high altitudes while keeping
the visible opacity to its nominal value, thus yielding a small γ
value.

I now turn to calculations focused on characterizing the day-
side hemisphere of HD209458b, motivated by secondary eclipse
measurements. These calculations, in which the incoming stellar
flux was averaged over the day-side hemisphere only are com-
pared in Fig. 6. Particularly interesting are the calculations by
Burrows et al. (2007b) and Fortney et al. (2007) with TiO and
VO clouds that have a temperature inversion and were found to
be compatible with the colors measured with Spitzer during the
secondary eclipse of the planet. On the contrary, other temper-
ature profiles with no inversion (e.g. the Fortney et al. (2007)
model with no TiO and VO clouds) were found to be incompat-
ible. When applied to a day-side average, the analytic approxi-
mation is found to be a good match to the Fortney et al. (2007)
model with the same values of the opacities coefficients as pre-
viously. The Burrows et al. (2007b) model is colder by at least
300 K, and can be more or less approximated by the analytical
model with an order of magnitude increase of the visible opacity
-thus yielding a pronounced temperature inversion-.

It should be noticed that the temperature inversion that ap-
pears required by observations is yielding lower deep temper-
atures. This is naturally explained by the fact that part of the
incoming stellar flux is absorbed at greater levels and thus does
not penetrate deep into the planet. One possibility to be investi-
gated and that is out of the scope of the simple grey models pre-
sented here would be for the presence of significant non-grey ab-
sorbers: with opacities that are strongly wavelength-dependent,
the energy in the center of absorption lines is absorbed high in
the atmospheres, but the lower absorption in the wings allows for
the possibility of a deeper penetration of energy at those wave-
lengths. In any case, Fig. 6 highlights the fact that the present
observational constraints relate to relatively high atmospheric
levels, not to the deeper levels used to tie the atmosphere and
the interior models.

4. Atmospheric properties and the sizes
of exoplanets

I now reexamine the problem of the sizes of exoplanets in light
of this atmospheric boundary condition with two parameters,
κth and κv. As before, HD 209458b is our proxy. First I red-
erive the difference in radius between the model radius, the pho-
tospheric radius and the transit radius. The problem has been
discussed before (Hubbard et al. 2001; Burrows et al. 2003;
Guillot et al. 2006; Burrows et al. 2007a), but is calculated in
the context of our analytical atmospheric temperature profile. I
then compare the evolution of the transit radii for the different
boundary conditions to the measured one.
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Fig. 6. Atmospheric temperature-pressure pro-
files for HD 209458b averaged over the dayside
hemisphere. The plain black line corresponds
to a day-side average from Eq. (49), with
fiducial values for the opacities (see Fig. 1).
Profiles resulting from visible opacities that
are increased ten fold, decreased by 1/2 and
1/4 are also indicated by dashed, dash-dotted
and dotted lines, respectively. Calculations for
the dayside from Burrows et al. (2007b) are
shown in blue, with squares indicating the in-
ferred photospheric depth of Spitzer secondary
eclipse measurements in 3 IRAC bands be-
tween 4.5 and 8 microns. Similar calculations
from Fortney et al. (2008) are indicated in red:
three calculations are shown, with two models
of TiO clouds, and without TiO and VO ab-
sorption, respectively. The envelope envelope
of all possible temperature profiles found by
Showman et al. (2009) is indicated as a shaded
region. The parameters used for the calculation
are as in Fig. 7.
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Fig. 7. Globally averaged atmospheric
temperature-pressure profiles for HD 209458b.
The plain black line corresponds to the result of
a global average over all values of μ, including
the night side (Eq. (49)). The dashed line is
a result of the isotropic approximation for an
irradiation flux averaged over the entire plan-
etary surface (Eq. (29)). These are compared
to similar calculations by Fortney et al. (2005),
Iro et al. (2005), and Barman et al. (2005).
The shaded region indicates the envelope of
all possible temperature profiles found by
Showman et al. (2009). The cross corresponds
to the outer boundary condition used by Guillot
et al. (2006) and Guillot (2008) to calculate
the evolution of the planet. The dotted line
represents the globally averaged temperature-
pressure profile obtained for a visible opacity
reduced by a factor 10 compared to our fiducial
value, and is representative of the atmospheric
conditions that would allow explaining the
evolution of HD209458b with no extra source
of heat (see text). The parameters used for
the calculation are as in Fig. 2, except I used
Tint = 300 K.

4.1. Vertical optical depth and photospheric radius

Our approximation of a planar atmosphere is equivalent to as-
suming that the pressure scale height in the atmosphere H ≡
−dr/d ln P is infinitely small compared to the planetary radius,
i.e. H/r 
 1. In the case of HD209458b, assuming a perfect
gas, a mean molecular weight μ = 2.3 a mean temperature
T = 1500 K and gravity g = 980 cm s−2, H = RT/μg ≈ 550 km,
for a planetary radius R = 94370 km. Therefore H/r ≈ 6 × 10−3

which is very small compared to other sources of uncertainties
and justifies the planar approximation. I will therefore consider
that g is constant in the atmosphere.

In what follows, I will use the following notation: X(r) will
denote a quantity that is evaluated at level r but that is assumed
constant in the atmosphere. The independent length variable in
the atmosphere will be denoted z, z = 0 corresponding to a radius
level r as measured from the planet’s center (see Fig. 8).

By definition of τ

dτ = −ρκthdz. (50)

In the context of a plane-parallel, hydrostatic atmosphere, this
can be integrated to show that

τ =
κth

g(r)
P, (51)

or equivalently to relate optical depth and altitude:

dτ
τ
= −dz

H
· (52)

Note that H is a function of g(r) (assumed constant in the at-
mosphere), but also for T (z) which can vary significantly. The
above equation can be integrated to yield

z = −H(r)θ̃(r, z) ln[τ(r + z)/τ(r)] · (53)
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Fig. 8. Geometry of the problem for the calculation of the chord optical
depth.

where θ̃(r, z) is a non-isothermal correction that is equal to

θ̃(r, z) =
1

ln[τ(r + z)/τ(r)]
1

T (r)

∫ τ(r+z)

τ(r)
T (τ′)dτ′ · (54)

In the limit of an isothermal atmosphere, θ̃(r, z) = 1. In all cases,
Eq. (53) may be used to evaluate the height difference between
a calculated level and e.g. the photospheric level τ = 2/3.

4.2. Chord optical depth & transit radius

When measuring the size of an exoplanet from a primary transit,
the level that is probed is higher than the photospheric level. It
corresponds instead to the level at which optical rays that are
grazing, at the terminator, have an optical depth close to unity
(Hubbard et al. 2001). Neglecting refraction, we thus define a
chord optical depth for this grazing incident radiation:

τch(ν, r) =
∫ +∞

−∞
ρκνds. (55)

As shown by Fig. 8, (r + z)2 = r2 + s2, hence

τch(ν, r) = 2
∫ ∞

0
ρκν

z + r
(z2 + 2rz)1/2

dz. (56)

This equation may be simplified with our plane-parallel assump-
tion (z/r 
 1). We further use Eqs. (50) and (53) to yield

τch(ν, r) =
κν
κth

(
2r

H(r)

)1/2 ∫ τ(r)

0

dτ[
−θ̃(r, z) ln

(
τ(r+z)
τ(r)

)]1/2
· (57)

With a new change of variable Z = − ln[τ(r + z)/τ(r)], we get

τch(ν, r) = τ(r)
κν

κth

(
2πr
H(r)

)1/2 ∫ ∞

0

e−Z

[
πθ̃(r, Z)Z

]1/2
dZ. (58)

Using Eq. (53), we now rewrite Eq. (58) at level r + Δz:

τch(ν, r + Δz) = τ(r)e−Δz/H(r)θ̃(r,Δz) κν

κth

(
2πr
H(r)

T (r)
T (r + Δz)

)1/2

×
∫ ∞

0

e−Z

[
πθ̃(r + Δz, Z)Z

]1/2
dZ. (59)
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Fig. 9. Radius of HD 209458b as a function of age for different val-
ues of the thermal and visible opacities. The fiducial values are κ∗th =
10−2 cm2 g−1, κ∗v = 6×10−3 cm2 g−1 (bottom curves). Alternative models
are found by choosing κv = κ∗v/5, κth = κ∗th/5, κv = κ∗v/10, respectively.
The dotted curves correspond to photospheric radii (τ = 2/3). The plain
curves correspond to transit radii (τchord = 2/3). The measured age and
radius of the planet (Knutson et al. 2007b) are indicated with their er-
ror bar.

The height difference between the photospheric level for which
τ(r) = 2/3 and the transit radius for which τch(ν, r+Δz) = 2/3 is:

Δz = H(r)θ̃(r,Δz) ln

⎧⎪⎪⎨⎪⎪⎩
κν

κth

(
2πr
H(r)

T (r)
T (r + Δz)

)1/2

×
∫ ∞

0

e−Z

[
πθ̃(r + Δz, Z)Z

]1/2
dZ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ · (60)

In the limit of an isothermal atmosphere, θ̃(r, Z) = 1, the integral
is equal to 1 (the erf function evaluated at infinity) and the ex-
pression of the chord optical depth and height difference reduce
to the relations proposed by Burrows et al. (2007a). Thus in the
isothermal case,

Δz = H(r) ln

⎧⎪⎪⎨⎪⎪⎩
κν
κth

(
2πr
H(r)

)1/2
⎫⎪⎪⎬⎪⎪⎭ .

In the more general case of a variable atmospheric temperature
profile, Eq. (60) may be easily resolved by iterations.

4.3. Thermal evolution and sizes of transiting exoplanets

I now calculate how the transit radius of an exoplanet is af-
fected by the outer boundary conditions, and specifically, using
Eq. (49), by a choice of κth and κv. Figure 9 shows the result
of the calculation applied to HD 209458b, assuming a low he-
lium abundance Y = 0.24, standard evolution models (Guillot
& Morel 1995; Guillot 2008) and with values of the opacities
that vary so that γ = κν/κth ranges between 0.04 and 0.4. The
difference between the model radius (at 10 bars) and the tran-
sit radius in the visible is calculated using Eqs. (53) and (60).
With our fiducial values of the opacity coefficients, the mod-
eled size falls short of the observed value by more than 10%, as
obtained before (Bodenheimer et al. 2001; Guillot & Showman
2002; Burrows et al. 2003; Baraffe et al. 2003; Guillot 2008;
Miller et al. 2009). Accounting properly for the transit radius
and not the photospheric radius has a relatively small effect in
that case. Decreasing the value of γ (either by increasing κth or
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by decreasing κv) does help in reducing the mismatch, but an or-
der of magnitude decrease is required in order to reproduce the
observed value (even though this assumes a low helium abun-
dance and no central core).

Clearly, this order of magnitude change of the opacity ratio
compared to the fiducial value is well outside the range of pos-
sibilities spanned by present-day models: As shown in Fig. 7,
the corresponding solution (dotted curve) is 700 to 1000 K hot-
ter than elaborate radiative transfer models predict. This remains
true even when considering only the dayside average (Fig. 6). It
therefore appears that alternative solutions involving additional
sources of energy or non-radiative downward energy transport
are required to explain the inflated sizes of exoplanets.

5. Limitations and complications

5.1. General approximations

It should be stressed that, as the Eddington relation, the rela-
tions that were derived are only approximate because they as-
sume a given dependence of the radiation field with direction (its
quasi-isotropy). The discrepancy with the exact solutions should
however be small (see Chandrasekhar 1960; Mihalas 1978) com-
pared to the other sources of uncertainties of the problem.

More importantly, because a grey approximation is used, this
means that we cannot study the consequences of wavelength-
dependent absorption. As discussed previously, the presence of
strong absorption lines will lead to an efficient absorption of the
energy in the higher atmosphere while allowing a deeper pene-
tration in the wings of these lines. This cannot be captured within
the framework of the simple model presented here.

Using a plane-parallel approximation implies that solutions
at very low inclination angles are probably crude compared to
the true spherical geometry. This generally tends to yield an
overestimation of the magnitude of the temperature inversion for
low inclinations.

Finally, departures from local thermodynamic equilibrium
may be significant at relatively high altitudes and are ignored in
the present study. This should be relatively minor however when
concerned with the temperature profile at relatively deep levels.

5.2. Convection

In this work, I have considered only purely radiative solutions,
with however the possibility of horizontal advection (i.e. ad-
vection along surfaces of constant pressure and therefore con-
stant optical depth). The comparison with available models of
HD 209458b has shown that it is indeed a good approxima-
tion to present models of the atmosphere of this planet and in
general this should remain true for all heavily irradiated plan-
ets as these are bound to possess thick external radiative layers
(Guillot et al. 1996; Guillot & Showman 2002). However, as no-
ticed by Burkert et al. (2005) and Dobbs-Dixon & Lin (2008),
depending on the efficiency of horizontal advection, convection
should be present at lower optical depths on the night side of
these planets. In this case, the problem is modified: the presence
of a non-radiative vertical transport of heat invalidates the hy-
potheses made in Sect. 3.3. This implies that at optical depths
for which convection is present, the mean temperature profile
should depart from that predicted by Eq. (49). Because convec-
tion would occur preferentially in regions with the lowest pho-
tospheric temperatures, the effect would be a more efficient loss
of the internal heat, or equivalently, a lower mean interior tem-
perature. This would generally increase the radius problem.

5.3. Advection and variable opacities

Another complication is through the likely modifications of
opacities and cloud coverage with temperature and irradiation
level. As proposed by Showman & Guillot (2002), the significant
temperature variations in the atmosphere coupled to the horizon-
tal (and possibly vertical) transport should affect the chemistry of
the atmosphere. This is particularly true for condensing species,
which could form clouds in colder region, settle to greater depths
and be present in lower-than-expected abundances on the day
side. This in fact may explain the relative lack of Na observed
in HD209458b (Showman & Guillot 2002; Iro et al. 2005). The
consequence of a variable opacity field is that, even if advection
is purely horizontal (in terms of pressure), the averaging per-
formed in Sect. 3.3 becomes invalid, as in the case of convection.
This is because we cannot consider that advection proceeds on
constant τ levels. Again, the effect has been investigated (Burkert
et al. 2005; Dobbs-Dixon & Lin 2008; Dobbs-Dixon et al. 2010),
but in simulations in which the interior entropy was held con-
stant, so that the consequence in terms of heat loss or inter-
nal temperatures has not been quantified. Qualitatively however,
we can notice that opacities that increase with lower tempera-
ture/lower irradiation levels do tend to allow heat to penetrate
efficiently into the planet near the substellar point while sup-
pressing its loss in low-irradiation regions. This would favor a
slower cooling and would therefore tend to decrease the discrep-
ancy between models and observations. However, we can see
from Fig. 6 that even if we would consider that one half of the
surface of the atmosphere (the night side) is not participating in
the cooling, we are still a factor ∼4 short in terms of opacities
to explain the observations. This problem should be investigated
further but it is unlikely that it can explain the size discrepancy
by itself.

5.4. Non-conservative advection, kinetic energy transport

Finally, it should be noted that advection is not necessarily con-
servative, that waves and shocks may occur, and that energy
may be transported as kinetic energy instead of heat. This is a
complex problem (e.g. Goodman 2009) and I only mention here
that, only of order 1% of the incoming stellar energy needs to be
transfomed into kinetic energy and dissipated at deeper levels to
modify the evolution of close-in exoplanets (Guillot & Showman
2002; Guillot 2008). Again, this would potentially alter the mod-
eled atmospheric temperatures.

6. Conclusion

An analytic semi-grey model to approximate the structure of
plane-parallel irradiated planetary atmospheres was derived in
the framework of the Eddington approximation (see Eq. (27)).
The model is parametrized by κth the mean opacity at thermal
wavelengths, and κv the mean opacity at the wavelengths that
characterize the incoming stellar irradiation. As in the usual grey
approximation, these opacities are assumed constant, however
the thermal and visible opacities may differ. The relation was
shown to agree with more detailed calculations in the τ ∼ 1
region, both as a function of the incidence angle and as a func-
tion of the mean irradiation level. The model qualitatively ex-
plains temperature inversions as resulting from a higher opacity
in the optical than at thermal wavelength leading to a partial ab-
sorption of the irradiation flux at high levels in the atmosphere.
It explains the proportionality relation between the deep atmo-
spheric temperature (e.g. at a 10 bar pressure level) and the equi-
librium temperature seen in detailed atmospheric calculations
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(small departures from this proportionality are due to variations
of the infrared to visible opacities with temperature).

The model was extended to include variable irradiation and
a horizontal advection of heat. In the case of a purely horizon-
tal (on constant optical depth surfaces) conservative advection, it
was shown that the mean flux is conserved, so that a mean equa-
tion for T 4 may be derived (Eq. (49)). Assuming that advection
homogenizes deep levels because of the increase of the radiative
cooling timescale, this relation should yield the proper bound-
ary condition for internal structure and global evolution models.
The temperature that is obtained is shown to be extremely close
to the temperature obtained in a one-dimensional radiative trans-
fer model assuming isotropy of the incoming irradiation and a
mean flux σT 4

eq that corresponds to an average over the entire
planetary surface (Eq. (29)).

A comparison of the results of the analytical model and
of various available radiative transfer models for the transiting
planet HD 209458b shows that the deep temperatures (at pres-
sure below about 10 bars) that are obtained are generally about
∼1000 K too low to account for the observed size of the planet.
Matching the observed and modeled radii requires a tenfold in-
crease of the ratio of the infrared to the visible opacity in the
atmosphere. This appears to be unlikely but the possibility mer-
its to be investigated further given the ensemble of possibilities
that remain in terms of atmospheric compositions and opacity
sources. Alternatively, variations in the opacities (with higher
thermal opacities in cold regions, possibly due to condensation)
and kinetic energy transport are possible means to explain the
size discrepancy by slowing the cooling of the planet. Progresses
should be made by directly coupling radiative transfer calcula-
tions to global circulation models.
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the characteristics of planetary atmospheres, the CNRS program Origine des
Planètes et de la Vie and the Programme National de Planétologie for support.

Appendix: An alternative derivation

The temperature-optical depth relation described by Eq. (27)
was derived using two Eddington coefficients, fKth ≡ Kth/Jth =
1/3 and fHth ≡ Hth(0)/Jth(0) = 1/2 equivalent to the assump-
tion that the thermal flux remains isotropic, even at low optical
depth. Another derivation is possible by imposing that the emer-
gent flux should be equal to the sum of the intrinsic and irradi-
ated fluxes (Mihalas 1978; Hansen 2008). In this case, one still
assumes fKth = 1/3, but instead of using Jth(0) = Hth(0)/ fHth(0),
we directly solve for Jth(0) using Eq. (23) and a relation obtained
from integrating the equation of radiative transfer over thermal
wavelengths:

Ith(τ = 0, μ∗, μ) =
1
μ

∫ ∞

0
B(t)e−t/μdt, (61)

where Ith(τ = 0, μ∗, μ) is the intensity of thermal radiation emit-
ted in direction μ from a point in the atmosphere which is irradi-
ated by the star at an angle μ∗. From Eq. (6), we obtain that

Ith(0, μ∗, μ) =
∫ ∞

0

[
Jth + γJv

] e−t/μ

μ
dt. (62)

Using Eq. (23) and integrating, one gets

Ith(0, μ∗, μ) = Jth(0) +
H

fKth
μ + Jv(0)

μ2∗
fKthγ

+Jv(0)

(
γ − μ2∗

fKthγ

)
1

1 + γμ/μ∗
· (63)

We then impose that the flux emerging from the surface should
be equal to the incoming flux, 4H + 4μ∗Jv(0):

2
∫ ∞

0
μIth(0, μ∗, μ)dμ = 4H + 4μ∗Jv(0). (64)

This allows expressing Jth(0) as a function of H and μ∗Jv(0).
Using then Eqs. (6) and (23), one gets after some calculations:

T 4 =
3T 4

int

4

[
2
3
+ τ

]
+ T 4

irrμ∗
{

1 +
1
2

(
3
μ∗
γ
− γ
μ∗

)

×
[
μ∗
γ
− μ

2∗
γ2

ln

(
1 +
γ

μ∗

)
− 1

2
e−γτ/μ∗

]}
. (65)

This equation is almost identical to the one derived by Hansen
(2008). However, a difference arises: the factor (3μ∗/γ − γ/μ∗)
has replaced Hansen’s (3μ∗/γ). This is because the assumption
of local thermal equilibrium implies that B = Jth + γJv whereas
Hansen (2008) assumes B = Jth. Neglecting the γJv term in
the calculation of the source function implies that direct heat-
ing from the irradiation flux is not considered: the atmosphere is
heated only through the absorption of thermal radiation. In real-
ity, the heating that is caused by the absorption of visible photons
should be included, and it becomes a dominant source of heating
when γ/μ >

√
3.

Equation (65) is otherwise different in its form than Eq. (27),
but they have very similar properties. For example, at the sur-
face, for an infinite penetration of the visible flux (γ → 0), then
T 4(τ = 0)→ (T 4

int + μ∗T
4
irr)/2, ie the atmosphere still behaves as

if it was transporting a flux σT 4
eff = σT 4

int + σT 4
irr from below.

As described in Sect. 3.3, Eq. (65) may be averaged to re-
move the dependence on μ∗:

T 4 =
3T 4

int

4

[
2
3
+ τ

]
+

T 4
irr

2

∫ 1

0
μ

{
1 +

1
2

(
3
μ

γ
− γ
μ

)

×
[
μ

γ
− μ

2

γ2
ln

(
1 +
γ

μ

)
− 1

2
e−γτ/μ

]}
dμ. (66)

Solving this integral analytically requires more work than with
the simpler temperature profile. The following relations are
useful:∫ 1/γ

0
x2 ln

(
1 +

1
x

)
dx =

1
3γ3

ln(1 + γ) +
1
3

ln

(
1 +

1
γ

)

− 1
3γ

(
1 − 1

2γ

)
,

∫ 1/γ

0
x4 ln

(
1 +

1
x

)
dx =

1
5γ5

ln(1 + γ) +
1
5

ln

(
1 +

1
γ

)

− 1
5γ
+

1
10γ2

− 1
15γ3

+
1

20γ4
·

The mean temperature profile is then shown to obey the follow-
ing relation:

T 4 =
3T 4

int

4

(
2
3
+ τ

)
+ T 4

eq

[
11
30
+

4
15
γ +

1
5γ
+

3
5γ2

+

(
1

3γ
− 3

5γ3

)
ln(1 + γ) − 4γ2

15
ln

(
1 +

1
γ

)

+
γ

2
E2(γτ) − 3

2γ
E4(γτ)

]
. (67)
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Fig. 10. Temperature-optical depth profiles for different inclinations of
the incident light. The figure is as Fig. 2, but it compares the solutions
obtained from Eq. (27) (dashed black lines), Eq. (65) (plain red lines),
and the solutions of Hansen (2008) (dotted blue lines). The thick curves
in the middle correspond to global averages (see Eqs. (49) and (67)
respectively).

Although the expression is more complex than Eq. (49) which
was derived using the second Eddington coefficient, the two are
quantitatively very similar.

A comparison of the various approaches is provided in
Fig. 10. Clearly, although the change in outer boundary condi-
tion affects the form and complexity of the analytical solutions,
the quantitative differences are extremely small, especially when
compared to the large differences between published models for
exoplanets (see Sect. 3.4). However, there are noticeable differ-
ences with the solutions provided by Hansen (2008) for low μ
values. In particular, temperature inversions that should occur
either for low μ or high γ values are absent of Hansen’s solu-
tions, a direct consequence of neglecting the heating caused by
absorption of visible radiation.
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