ON THE RADIUS OF β -CONVEXITY OF STARLIKE FUNCTIONS OF ORDER α

HASSOON S. AL-AMIRI¹

ABSTRACT. A function $f(z)=z+a_2z^2+\cdots$ is called β -convex if $f(z)f'(z)/z\neq 0$ in D:|z|<1 and if

$$\operatorname{Re}\{(1-\beta)zf'(z)/f(z) + \beta(1+zf''(z)/f'(z))\} > 0$$

for some $\beta \ge 0$ and all z in D. Recently M. O. Reade and P. T. Mocanu have announced a sharp result about the radius of β -convexity for starlike functions. The author generalizes this result to starlike functions of order α .

1. Introduction. Let $f(z)=z+a_2z^2+\cdots$ be analytic in the unit disc D:|z|<1. We say that f(z) is starlike of order α , $0 \le \alpha < 1$, if

(1)
$$\operatorname{Re}\{zf'(z)|f(z)\} > \alpha$$

for all z in D. We denote such a class of functions by S_{α}^* . We say that f(z) is convex of order α , $0 \leq \alpha < 1$, if

(2)
$$\operatorname{Re}\{1 + zf''(z)|f'(z)\} > \alpha$$
,

for all z in D. We denote such a class of functions by C_{α} . For $\alpha = 0$, S_0^* , C_0 are simply called starlike and convex, respectively.

We consider now a class of functions which is formed by a linear combination of the conditions stated in (1) and (2).

DEFINITION. Let $f(z)=z+a_2z^2+\cdots$ be analytic in D with $f(z)f'(z)/z \neq 0$ in D. Let

$$L(\beta; f) = (1 - \beta)zf'(z)/f(z) + \beta(1 + zf''(z)/f'(z)).$$

If

Received by the editors June 22, 1972 and, in revised form, August 7, 1972. AMS (MOS) subject classifications (1970). Primary 30A32; Secondary 30A40.

Key words and phrases. Univalent functions, convex and starlike functions of order α , β -convex functions, radius of convexity, radius of β -convexity, extremal functions.

¹ The author presented a short talk based on the material of this note to the Regional Conference on Conformal and Quasiconformal Mappings at Kent State University, May 1972.

© American Mathematical Society 1973

for some β , $\beta \ge 0$, $z \in D$, then f(z) is called a β -convex function. We denote this class by $C(\beta)$.

Mocanu [2] was the first to introduce the class of β -convex functions under the restrictions $0 \leq \beta \leq 1$ and that f(z) must be univalent in D. Recently, however, Mocanu and Reade [3] have shown that each function in $C(\beta)$ is univalent (starlike) for $\beta \geq 0$. In particular each $f(z) \in C(\beta)$ is convex if $\beta \geq 1$. It is natural now to raise the following question: What is the largest $r_{\alpha,\beta}$, $0 < r_{\alpha,\beta} \leq 1$ such that each $f(z) \in S_{\alpha}^{*}$ is a function in $C(\beta)$ for $|z| < r_{\alpha,\beta}$? Again, Reade and Mocanu [4] have announced a sharp result for the general class S_{0}^{*} .

THEOREM A (READE AND MOCANU). If $f(z) \in S_0^*$, then $f(z) \in C(\beta)$ for $|z| < r_\beta = (1+\beta+((1+\beta)^2-1)^{-1})^{1/2}$, $\beta \ge 0$. This result is sharp for $f(z) = z/(1-z)^2$.

We call $r_{\alpha,\beta}$ the radius of β -convexity of the class S_{α}^* . Here $r_{0,\beta} = r_{\beta}$.

The object of this note is to extend Theorem A to the class S_{α}^{*} ; in short to find $r_{\alpha,\beta}$. In §2 a rough estimate of $r_{\alpha,\beta}$ is given, Theorem 1. In §3, the number $r_{\alpha,\beta}$ is completely determined, Theorem 2. The method used in §3 is that of V. A. Zmorovič [7]. We also adopt his notations and thus we refer the reader to [7] for a deeper and perhaps a better understanding of §3.

2. Some estimate for $r_{\alpha,\beta}$. Let P be the class of analytic functions in D such that if $p(z) \in P$, p(0)=1, and $\operatorname{Re}\{p(z)\}>0$ for all $z \in D$. Let q(z)=zf'(z)/f(z), where $f(z) \in S_{\alpha}^{*}$. Then there exists $p(z) \in P$ such that

(4)
$$q(z) = \alpha + (1 - \alpha)p(z) = (p(z) + h)/(1 + h),$$

where $h = \alpha/(1-\alpha)$.

Using (3), (4) and the fact that

$$1 + zf''(z)/f'(z) = q(z) + zq'(z)/q(z),$$

the radius of β -convexity of the class S^*_{α} , $r_{\alpha,\beta}$ becomes the smallest positive root of $Q_{\alpha,\beta}(r)=0$, where

(5)
$$Q_{\alpha,\beta}(r) = \min_{p \in P} \min_{|z|=r < 1} \operatorname{Re}\{(1-\alpha)(p(z)+h) + \beta z p'(z)/(p(z)+h)\}.$$

Thus our problem is now reduced to finding the quantity

(6)
$$Q(r) = \min_{p \in P} \min_{|z| = r < 1} \operatorname{Re}\{\Psi(p(z), zp'(z))\},\$$

where $\Psi(w, W)$ is an analytic function of the variables w and W in the W-plane and in the half plane Re $\{w\}>0$. It is known [5] that the minimum

in (6) is realized for functions of the form

(7)
$$p(z) = \lambda_1 \frac{1 + z e^{-i\theta_1}}{1 - z e^{-i\theta_1}} + \lambda_2 \frac{1 + z e^{-i\theta_2}}{1 - z e^{-i\theta_2}}$$

where $\theta_1, \theta_2 \in [0, 2\pi], \lambda_1, \lambda_2 \ge 0$, and $\lambda_1 + \lambda_2 = 1$.

Before determining Q(r), an elementary method yields a rough estimate for $r_{\alpha,\beta}$. We need the following lemmas.

LEMMA 1. If $\phi(z)$ is analytic and $|\phi(z)| \leq 1$ in D, then

$$|\phi'(z)| \leq (1 - |\phi(z)|^2)/(1 - r^2)$$

for |z| = r < 1.

Lemma 1 may be found in Carathéodory [1, p. 18].

LEMMA 2. If
$$q(z) = 1 + b_1 z + \cdots$$
, $\operatorname{Re}\{q(z)\} > \alpha$, then
 $\operatorname{Re}\{q(z)\} \ge (1 - (1 - 2\alpha)r)/(1 + r)$

valid for |z| = r < 1.

This estimate readily follows from the fact that

$$q(z) = (1 - (1 - 2\alpha)z\phi(z))/(1 + z\phi(z)),$$

where $\phi(z)$ is as in Lemma 1.

LEMMA 3. If q(z) is as in Lemma 2, then

(8)
$$|zq'(z)/q(z)| \leq 2(1-\alpha)r/(1-r)(1+(1-2\alpha)r),$$

for |z| = r < 1.

PROOF. From

$$q(z) = (1 - (1 - 2\alpha)z\phi(z))/(1 + z\phi(z)),$$

it follows that

$$zq'(z)/q(z) = \frac{-2(1-\alpha)(z^2\phi'(z)+z\phi(z))}{(1+z\phi(z))(1-(1-2\alpha)z\phi(z))}.$$

The above may be written in the form

(9)
$$zq'(z)/q(z) = -2(1 - \alpha)I_1(z)I_2(z),$$

where

$$I_1(z) = (z^2 \phi'(z) + z \phi(z))/(1 - z^2 \phi^2(z)),$$

$$I_2(z) = (1 - z \phi(z))/(1 - (1 - 2\alpha)z \phi(z)).$$

Using the triangular inequality, the monotonicity of the right-hand side of $|I_1(z)|$ with respect to $|\phi'(z)|$ and on applying Lemma 1, we get

$$|I_1(z)| \leq \frac{2}{1-r^2} \left(\frac{r^2(1-|\phi(z)|^2)+r |\phi(z)| (1-r^2)}{1-r^2 |\phi(z)|^2} \right).$$

Let $0 \leq |\phi(z)| = t \leq 1$. The above inequality becomes

$$|I_1(z)| \leq g(t, r) = \frac{2}{1 - r^2} \left(\frac{r^2(1 - t^2) + rt(1 - r^2)}{1 - r^2 t^2} \right).$$

For fixed r,

$$\frac{\partial g}{\partial t} = \frac{2r(1-rt)^2}{(1-r^2t^2)^2} \ge 0.$$

Therefore,

$$|I_1(z)| \leq \max_{0 \leq t \leq 1} g(t, r) = g(1, r) = 2r/(1 - r^2).$$

It is also clear that

$$|I_2(z)| \leq (1+r)/(1+(1-2\alpha)r).$$

Using these estimates in (9) one gets (8).

THEOREM 1. Let $f(z)=z+a_2z^2+\cdots$ be a function in S_{α}^* . Then f(z) is β -convex in $|z| < R_{\alpha,\beta}$, where $R_{\alpha,\beta}$ is the smallest positive root of

(10)
$$(1 - 2\alpha)^2 r^3 - ((1 - 2\alpha)^2 + 2\beta(1 - \alpha))r^2 - (1 + 2\beta(1 - \alpha))r + 1 = 0.$$

PROOF. Let q(z) = zf'(z)/f(z). From (4),

$$\operatorname{Re}\{(1-\alpha)(p+h) + \beta z p'(z)/(p(z)+h)\}$$

=
$$\operatorname{Re}\{q(z) + \beta z q'(z)/q(z)\} \leq \operatorname{Re}\{q(z)\} - \beta |zq'(z)/q(z)|,$$

where $h = \alpha/(1-\alpha)$, $0 \le \alpha < 1$. Applying Lemmas 2 and 3,

$$\begin{aligned} &\operatorname{Re}\{(1-\alpha)(p(z)+h)+\beta zp'(z)/(p(z)+h)\}\\ &\leq [(1-2\alpha)^2r^3-((1-2\alpha)^2+2\beta(1-\alpha))r^2-(1+2\beta(1-\alpha))r+1]\\ &\quad \div (1-r^2)(1+(1-2\alpha)r). \end{aligned}$$

From (5) and the above inequality each starlike function of order α in *D* is β -convex in $|z| < R_{\alpha,\beta}$, where $R_{\alpha,\beta}$ is given by (10). Note that $r_{\alpha,\beta} \ge R_{\alpha,\beta}$ and if $\alpha = 0$, $r_{0,\beta} = R_{0,\beta} = r_{\beta}$ as given in Theorem A. Theorem 1, however, is not sharp since the estimates of Lemmas 2, 3 are sharp for

$$q_{\alpha}(z) = (1 - (1 - 2\alpha)z)/(1 + z)$$

but not at the same point. Indeed, $q_{\alpha}(z)$ realizes the estimate of Lemma 2

104

at z=r, while realizing the estimate of Lemma 3 at z=-r. This is precisely the source of difficulties in such extremal problems.

3. The main theorem for $r_{\alpha,\beta}$. In this section we obtain $r_{\alpha,\beta}$ through an application of a theorem and technique due to V. A. Zmorovič [7] which is stated next.

THEOREM B (V. A. ZMOROVIČ). Let $\Psi(w, W) = M(w) + N(w)W$, where M(w) and N(w) are defined and are finite in the half plane $R\{w\}>0$. Set

$$w = \lambda_1 \frac{1 + z_1^m}{1 - z_1^m} + \lambda_2 \frac{1 + z_2^m}{1 - z_2^m},$$

$$W = \lambda_1 \frac{2mz_1^m}{(1 - z_1^m)^2} + \lambda_2 \frac{2mz_2^m}{(1 - z_2^m)^2}$$

where z_1 and z_2 are any points on |z|=r<1, $\lambda_1 \ge 0$, $\lambda_2 \ge 0$, $\lambda_1 + \lambda_2 = 1$. Then $\Psi(w, W)$ can be put in the form

$$\Psi(w, W) = M(w) + \frac{m}{2}(w^2 - 1)N(w) + \frac{m}{2}(\rho^2 - \rho_0^2)N(w)e^{2i\psi}$$

where

$$(1 + z_k^m)/(1 - z_k^m) = a + \rho e^{i\psi_k} \qquad (k = 1, 2),$$

$$w = a + \rho_0 e^{i\psi_0}, \qquad 0 \le \rho_0 \le \rho,$$

$$a = \frac{1 + r^{2m}}{1 - r^{2m}}, \quad \rho = \frac{2r^m}{1 - r^{2m}}, \quad e^{i\psi} = ie^{i(\psi_1 + \psi_2)/2}.$$

Also

min $\operatorname{Re}\{\Psi(w, W)\} \equiv \Psi_{\rho}(w)$

(11)
$$= \operatorname{Re}\left\{M(w) + \frac{m}{2}(w^2 - 1)N(w)\right\} - \frac{m}{2}|N(w)|(\rho^2 - \rho_0^2).$$

This minimum is reached when

(12)
$$\exp[i(2\psi + \arg N(w))] = -1.$$

In our particular problem (5), m=1,

$$M(w) = (1 - \alpha)(w + h), \qquad N(w) = \beta/(w + h).$$

Thus from (6), (11) and the above relations,

(13)

$$\min \operatorname{Re}\{\Psi(w, W)\} \equiv \Psi_{\rho}(w)$$

$$= \operatorname{Re}\left\{(1-\alpha)(w+h) + \frac{\beta}{2}\frac{w^{2}-1}{w+h}\right\} - \frac{\beta}{2}\frac{\rho^{2}-\rho_{0}^{2}}{|w+h|}$$

The following remarks will be used later.

REMARK 1. For a fixed $w=a+\rho_0e^{i\psi_0}$, $\rho_0 < \rho$, and a suitably defined ψ_1 and ψ_2 , a choice of λ_1 and λ_2 may be made, namely,

$$\lambda_1/\lambda_2 = |
ho e^{i\psi_2} -
ho_0 e^{i\psi_0}|/|
ho e^{i\psi_1} -
ho_0 e^{i\psi_0}|$$

such that $\Psi = (\Psi_1 + \Psi_2 + \pi)/2$ becomes the angle of inclination of the secant through $a + \rho_e^{i\psi_0}$ and intersects the circle $|w-a| = \rho$ at $a + \rho e^{i\psi_k}$, k=1, 2. The choice of λ_1/λ_2 is to maintain the correct relations between $\rho_0 e^{i\psi_0}$, $\rho e^{i\psi_1}$ and $\rho e^{i\psi_2}$ as required in the theorem. Thus ψ may assume any value in $[0, \pi]$. Also as a consequence of formula (12), the minimum in (13) is reached when the point w, $|w-a| < \rho$ is fixed and the secant through it, as described above, is perpendicular to $e^{i\phi/2}$, where $w+h=Re^{i\phi}$.

If we set $w=a+\xi+i\eta$, $\rho_0^2=\xi^2+\eta^2\leq\rho^2$, then (13) becomes

(14)

$$\Psi_{\rho}(w) \equiv \Psi_{\rho}(\xi, \eta) = \left(1 + \frac{\beta}{2} - \alpha\right)(a + \xi + h) - \beta h$$

$$+ \frac{\beta}{2}(h^{2} - 1)(a + \xi + h)R^{-2} - \frac{\beta}{2}(\rho^{2} - \xi^{2} - \eta^{2})R^{-1},$$

where $R^2 = (a + \xi + h)^2 + \eta^2$.

One can show that $\partial \Psi_{\rho} / \partial \eta = (\beta/2) \eta R^{-4} S(\xi, \eta)$, where

$$S(\xi; \eta) = [\xi^2 + 4(a+h)\xi + \rho^2 + \eta^2 + 2(a+h^2)]R$$

- [(h² - 1)(\xi + a + h)]
\ge [\xi^2 + 4(a+h)\xi + \rho^2 + 2(a+h)^2 - 2(h^2 - 1)](\xi + a + h)
> 0,

which shows that the minimum of $\Psi_{\rho}(\xi, \eta)$ on every chord ξ -constant is reached when $\eta=0$. Therefore, the minimum of $\Psi_{\rho}(\xi, \eta)$ in the circle $\xi^2 + \eta^2 \leq \rho^2$ is reached on the diameter $\eta=0$. Now set $\eta=0$ and $R=a+\xi+h$ in (1.4), we arrive at the following:

$$\Psi_{\rho}(\xi,0) \equiv l(R) = \left(1 + \frac{\beta}{2} - \alpha\right)(a + \xi + h) - \beta h$$
$$+ \frac{\beta}{2}(h^2 - 1)(a + \xi + h)R^{-2} - \frac{\beta}{2}(\rho^2 - \xi^2)R^{-1}.$$

From $\xi = R - (a+h), \rho^2 = a^2 - 1,$

(15)
$$l(R) = (1 + \beta - \alpha)R + \beta(h^2 + ah)R^{-1} - \beta(a + 2h).$$

Thus $Q(r) = \min l(R), R \in [a+h-\rho, a+h+\rho], Q(r)$ is given by (6). Simple

1973] RADIUS OF β -convexity of starlike functions of order α 107

calculations show that the absolute minimum of l(R) is realized at

(16)
$$R_0 = \left(\frac{\beta(h^2 + ah)}{1 + \beta - \alpha}\right)^{1/2}$$

Since

$$R_0^2 = \frac{\beta(h^2 + ah)}{1 + \beta - \alpha} < h^2 + ah < (a + h + \rho)^2,$$

 $R_0 < a+h+\rho$. However, R_0 may not be greater than $a+h-\rho$. Therefore, if $R_0 \notin [a+h-\rho, a+h+\rho]$, then the minimum of l(R) is obtained at

$$(17) R_1 = a + h - \rho.$$

The radius $r_{\alpha,\beta}$ is therefore determined either from

(18)
$$Q(r) = \min l(R) = l(R_0) = 0,$$

with R_0 given by (16), or from

(19)
$$Q(r) = \min l(R) = l(R_1) = 0,$$

with R_1 given by (17).

These two equations coincide for some α_0 which will be determined later. Equations (18) and (19) may be written in the form, respectively,

$$\beta a^2 - 4\alpha a - 4\alpha h = 0,$$

(21)
$$(1 - 3\alpha + \alpha h)r^2 - 2(1 + \beta - \alpha - \alpha h)r + 1 + \alpha + \alpha h = 0.$$

It follows from (20) that

(22)
$$r_1 = r_{\alpha,\beta} = \left(\frac{2\alpha - \beta + 2(\alpha^2 + \alpha h\beta)^{1/2}}{2\alpha + \beta + 2(\alpha^2 + \alpha h\beta)^{1/2}}\right)^{1/2}$$

Also from (21) follows that

(23)
$$r_2 = r_{\alpha,\beta} = [(1 - 2\alpha + \beta(1 - \alpha) + ((1 - 2\alpha + \beta(1 - \alpha))^2 - (1 - 2\alpha)^2)^{1/2}]^{-1}.$$

However, formula (23) cannot be used to determine $r_{\alpha,\beta}$ if

(24)
$$\alpha \geq (-\beta + (\beta^2 + 8\beta)^{1/2})/4,$$

since r_2 would become greater than 1.

Also formula (22) cannot be used to determine $r_{\alpha,\beta}$ if

(25)
$$\alpha \leq \beta/(4+\beta),$$

since r_1 would become a nonreal number.

To find α_0 that makes the transition from (23) to (22), we set

(26)
$$r_1 = r_2,$$

and solve for $\alpha = \alpha_0$ where α_0 is the smallest positive root of (26) which lies in

$$\left(\frac{\beta}{4+\beta},\frac{-\beta+(\beta^2+8\beta)^{1/2}}{4}\right).$$

Thus we have our main theorem.

THEOREM 2. Let α_0 be the smallest positive root of (26) which lies in the interval

$$\left(\frac{\beta}{4+\beta},\frac{-\beta+(\beta^2+8\beta)^{1/2}}{4}\right)$$

Then the radius of β -convexity for the class S^*_{α} is determined from (22) when $\alpha_0 \leq \alpha < 1$ and from (23) when $0 \leq \alpha \leq \alpha_0$.

Now we determine the extremal functions $f_0(z)$ for Theorem 2. Using Remark 1 and the fact that the minimum in case (22) is reached at a point on the diameter $\eta = 0$ (not an endpoint) one gets $\psi_1 \equiv -\psi_2 \pmod{2\pi}$, and $\lambda_1/\lambda_2 = 1$. The extremal function given by (7) is therefore of the form

$$p(z) = \frac{1}{2} \frac{1 + ze^{-i\theta}}{1 - ze^{-i\theta}} + \frac{1}{2} \frac{1 + ze^{i\theta}}{1 - ze^{i\theta}},$$

where θ is given by

(27)
$$R_0 = \operatorname{Re}\{h + w\} = h + (1 - r_1^2)(1 - 2r_1 \cos \theta + r_1^2)^{-1},$$

 r_1 is given by (22) and R_0 is given by (16). Hence the extremal function

(28)
$$f_0(z) = z(1 - 2z\cos\theta + z)^{-1+\alpha}.$$

In case of (22), the minimum is realized at an end point of the diameter $\eta=0$, thus $\psi_1 \equiv \psi_2 \pmod{2\pi}$. The function p(z) of (7) has the form

$$p(z) = (1 + ze^{-i\theta})/(1 - ze^{-i\theta})$$

or simply p(z) = (1+z)/(1-z). Hence the extremal function

(29)
$$f_0(z) = z(1-z)^{-2(1-\alpha)}.$$

REMARK 2. (i) The case $\beta = 1$ reduces $r_{\alpha,\beta}$ to be the radius of convexity of the class S^*_{α} which has been previously known for $\alpha = 0$, $\alpha = \frac{1}{2}$. V. A. Zmorovič has provided the complete solution for such a case.

(ii) A. Schild [6] attempted to solve this problem $(\beta=1)$ and actually succeeded if a certain condition is to be true. In fact he obtained $r_{\alpha,1}$ as

108

given by (22) and (23). Schild also calculated $\alpha_0 = 0.335 \cdots$ and found the extremal functions (28) and (29) (for the case $\beta = 1$).

ACKNOWLEDGEMENT. The author acknowledges with thanks the valuable suggestions of Professor M. O. Reade of the University of Michigan.

References

1. C. Carathéodory, *Funktionentheorie*. Band 2, Birkhäuser, Basel, 1950; English transl., *Theory of functions of a complex variable*. Vol. 2, Chelsea, New York, 1954. MR 12, 248; MR 16, 346.

2. P. T. Mocanu, Une propriété de convexité généralisée dans la représentation conforme, Mathematica (Cluj) 11 (1969), 127-133. MR 42 #7881.

3. P. T. Mocanu and M. O. Reade, *The order of starlikeness of certain univalent functions*, Notices Amer. Math. Soc. 18 (1971), 815. Abstract #71T-B182.

4. M. O. Reade and P. T. Mocanu, *The radius of* α -convexity of starlike functions, Notices Amer. Math. Soc. 19 (1972), A-110. Abstract #691-30-1.

5. M. S. Robertson, Variational methods for functions with positive real part, Trans. Amer. Math. Soc. 102 (1962), 82–93. MR 24 #A3288.

6. A. Schild, On starlike functions of order α , Amer. J. Math. 87 (1965), 65–70. MR 30 #4929.

7. V. A. Zmorovič, On bounds of convexity for starlike functions of order α in the circle |z| < 1 and the circular region 0 < |z| < 1, Mat. Sb. 68 (110) (1965), 518-526; English transl., Amer. Math. Soc. Transl. (2) 80 (1969), 203-213. MR 33 #5875.

DEPARTMENT OF MATHEMATICS, BOWLING GREEN STATE UNIVERSITY, BOWLING GREEN, OHIO 43403