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ON THE RADIUS OF B-CONVEXITY OF
STARLIKE FUNCTIONS OF ORDER «

HASSOON S. AL-AMIRI!

ABSTRACT. A function f(z)=z+a,z2+- - - is called f-convex
if f(2)f'(2)/z0 in D: |z| <1 and if
Re{(1 — B)zf'@f () + BA + 21" @If ')} > 0

for some =0 and all z in D. Recently M. O. Reade and P. T.
Mocanu have announced a sharp result about the radius of -con-
vexity for starlike functions. The author generalizes this result to
starlike functions of order «.

1. Introduction. Let f(z)=2z+a,z* +- -+ be analytic in the unit disc
D:|z|<1. We say that f(2) is starlike of order «, 0=a<1, if

M Re{zf'(2)[f(2)} > o

for all z in D. We denote such a class of functions by S;. We say that f(z)
is convex of order «, 0=Sa<1, if

() Re{l + 2" (2)[f"(2)} > «,

for all zin D. We denote such a class of functions by C,. For =0, Sy, C,
are simply called starlike and convex, respectively.

We consider now a class of functions which is formed by a linear com-
bination of the conditions stated in (1) and (2).

DEFINITION.  Let f(z)=z+ayz%+ - - be analytic in D with f(z)f'(z)[z#
Oin D. Let

LB /) =1 =Bz @If (@) + B + 2" 2)f"(2))-
If

(€) Re{L(8;/)} >0
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102 H. S. AL-AMIRI [June

Jfor some B, $Z0, z € D, then f(z) is called a -convex function. We denote
this class by C(B).

Mocanu [2] was the first to introduce the class of f-convex functions
under the restrictions 0<F=1 and that f(z) must be univalent in D.
Recently, however, Mocanu and Reade [3] have shown that each function
in C(p) is univalent (starlike) for 0. In particular each f(z) € C(B) is
convex if #=1. It is natural now to raise the following question: What is
the largest r, 5, 0<r, ,=1 such that each f(z) € S; is a function in C(B)
for |z|<r, ;7 Again, Reade and Mocanu [4] have announced a sharp
result for the general class S

THEOREM A (READE AND MOCANU). Iff(z) € S5, then f(z) € C(B) for
Izl <rg=(14+B+((1+B)2—=1)"HV2, B=0. This result is sharp for f(z)=
z[(1—2)2

We call r, , the radius of f-convexity of the class S;. Here ro ,=r,.

The object of this note is to extend Theorem A to the class S;'; in short
to find r, 4. In §2 a rough estimate of r, ; is given, Theorem 1. In §3, the
number r, ;is completely determined, Theorem 2. The method used in §3 is
that of V. A. Zmorovi¢ [7]. We also adopt his notations and thus we refer
the reader to [7] for a deeper and perhaps a better understanding of §3.

2. Some estimate for r, ;. Let P be the class of analytic functions in D
such that if p(z) € P, p(0)=1, and Re{p(z)}>O0 for all ze D. Let q(z)=
zf'(2)|f (z), where f(z) € S;. Then there exists p(z) € P such that
4 q(2) = « + (1 — a)p(2) = (p(2) + W)/(1 + h),
where h=o/(1 —a).

Using (3), (4) and the fact that

1+ 2" (D)[f"(2) = 9(2) + z4'(2)/q(2),
the radius of B-convexity of the class S}, r, , becomes the smallest positive

root of Q, 4(r)=0, where

(5) Qe.p(r) = min min Re{(1 — «)(p(z) + h) + Bzp'(2)/(p(2) + h)}.

peP |z|=r<1

Thus our problem is now reduced to finding the quantity

6 Q(r) = min min Re{¥(p(2), zp'(2))},

peP |z|=r<1

where ¥'(w, W) is an analytic function of the variables w and W in the
W-plane and in the half plane Re{w}>0. It is known [5] that the minimum
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in (6) is realized for functions of the form

1+ ze™™ 14 ze i
M P(Z)='111—_—+1 —,

— 2
— zg 1— ze

where 0,, 0, € [0, 27], A;, 2,20, and A;+1,=1.
Before determining Q(r), an elementary method yields a rough estimate
for r, ;. We need the following lemmas.

LemMa 1. If ¢(z) is analytic and |¢(2)| =1 in D, then

¢ = (1 = 1$@P)/(1 —r?)
for |z|=r<1.

Lemma 1 may be found in Carathéodory [1, p. 18].
LemMmA 2. Ifq(2)=1+byz+ - - -, Re{g(2)} >, then
Refg(2)} = (1 — (1 — 20)r)/(1 + 1)

valid for |z|=r<]1.

This estimate readily follows from the fact that

4(2) = (1 = (1 — 20)2(2)/(1 + 2$(2)),

where ¢(z) is as in Lemma 1.

LemMMA 3. Ifq(z) is as in Lemma 2, then
®) lz¢' /g = 21 — o)r/(1 — r)(1 + (1 — 20)r),
Jor |z|=r<1.

ProOF. From

q(2) = (1 — (1 — 20)2¢(2))/(1 + z¢(2)),
it follows that
, _ =21 — @) + 24(2)
OO = T3 2000 — (1 — 20290
The above may be written in the form
® 24 (2)lq(2) = —2(1 — )L, (2)15(2),

where

I(2) = (2%'(2) + z8(2)/(1 — 2°¢*(2)),
I2) = (1 — z¢(2)/(1 — (1 — 20)z(2))-
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Using the triangular inequality, the monotonicity of the right-hand side
of |I,(z)| with respect to |¢'(z)| and on applying Lemma 1, we get
r’ — 4@ + ri¢@I (1 — rz))
1 —rté(2)® '
Let 0=<|¢(z)|=t=1. The above inequality becomes
2 (r2(1 — )+ r(l — r2))

1 — ri®

2
@1 S

L) = g(t, r) = N
For fixed r,

_r2

0g/ot = 2r(1 — rt)?/(1 — r¥®? = 0.
Therefore,

()| < max g(t,r) = g(1, 1) = 2r[(1 — 1.
0st=1
It is also clear that
L@ = (1 + /1 + (1 —=20r).
Using these estimates in (9) one gets (8).

THEOREM 1. Let f(z)=z+a,z?+- - - be a function in S;. Then f(z)
is B-convex in |z| <R, g, where R, , is the smallest positive root of

(1 — 2a)%r® — (1 — 2)% + 28(1 — a))r?
—(1+28(0—a))r+1=0.
Proor. Let g(z)=zf"(2)/f (). From (4),
Re{(1 — a)(p + k) + Bzp'(2)/(p(2) + 1)}
= Re{g(2) + Bz4'(2)/q(2)} = Re{q(2)} — B 24’ (2)/q(2)l,
where h=a/(1—a), 0=Za<1.
Applying Lemmas 2 and 3,
Re{(1 — a)(p(2) + h) + Bzp'(2)/(p(2) + h)}
= [0 =20 = ((1 — 200* + 28(1 — a))r® — (1 + 28(1 — o))r + 1]
= (1 =r31+ (1 - 20)r).
From (5) and the above inequality each starlike function of order « in D
is f-convex in |z] <R, 5, where R, ; is given by (10). Note thatr, ;= R, ,

and if =0, ry =R, g=r, as given in Theorem A. Theorem 1, however,
is not sharp since the estimates of Lemmas 2, 3 are sharp for

9:(2) = (1 = (1 = 22)/(1 + 2)

but not at the same point. Indeed, ¢,(z) realizes the estimate of Lemma 2

(10)
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19731 RADIUS OF B-CONVEXITY OF STARLIKE FUNCTIONS OF ORDER o« 105

at z=r, while realizing the estimate of Lemma 3 at z=—r. This is precisely
the source of difficulties in such extremal problems.

+3. The main theorem for r, ;. In this section we obtain 7, ; through an
application of a theorem and technique due to V. A. Zmorovi¢ [7] which
is stated next.

THEOREM B (V. A. ZMOROVIC). Let V' (w, W)=Mw)+NWw)W, where
M(w) and N(w) are defined and are finite in the half plane Re{w}>0. Set

1+ 2z 1 g
W= 21 + 1"' + 12 + an i

1 — z§ 1 — 2z
W=, 2mzy" 2mz2

(1—z)2+ 1 -z’

where z, and z, are any points on |z|=r<1, ,=0, 1,20, A,,+A,=1. Then
W(w, W) can be put in the form

F(w, W) = M(w) + —(W — DN(w) + — (p — PoIN(w)e**

where
(L4200 =2 =a+pe%  (k=1,2),
w=a+ pe*, 0=p,=p,
14 rim 2r™ iv s ilpitye)/2
a= , = , e¥=lie .
1 _ 2m P 1 — r2m
Also

min Re{¥(w, W)} =¥ (w)

(1 = Re{M(w) + 7 (w* = DNOW| = 2 NGO 6 = 6.

This minimum is reached when
(12) exp[i(2y + arg N(w))l = —1.
In our particular problem (5), m=1,
Mw)y=Q0Q—o)w+h), Nw) =Pp/(w+h).
Thus from (6), (11) and the above relations,
min Re{¥(w, W)} = ¥, (w)
13)

= Re{(l — @)W + h) +’3 ;;} -%fw'_'l_‘;‘i.
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The following remarks will be used later.
REMARK 1. For a fixed w=a+p,e**°, py<p, and a suitably defined v,
and ,, a choice of A, and 1, may be made, namely,

Mfhg = |pe™* — poe™|[|pet — poe™|

such that V=¥, +Y';+m)/2 becomes the angle of inclination of the secant
through a+ pi¥o and intersects the circle \w—a|=p at a+pe***, k=1, 2. The
choice of A, is to maintain the correct relations between pye™°, pe'** and
pe'¥? as required in the theorem. Thus vy may assume any value in [0, 7].
Also as a consequence of formula (12), the minimum in (13) is reached when
the point w, |w—a| <p is fixed and the secant through it, as described above,
is perpendicular to e*/2, where w+h=Re".
If we set w=a+£&+in, po=E2+n2= p?, then (13) becomes

Y,w) =Y (&) = (1 + -'g- - ot)(a + &+ h)— Bh
(14)
LB 8
2 2
where R*=(a+&+h)>+n2.
One can show that 0¥,/0n=(8/2)nR~*S(&, 7), where

(B — @+ &+ hR®—=(p* — & — )R,

S(& ) = [+ 4a+ hE+ p*+ 7* + 2(a + KF)IR
= [(B* = )& + a+ h)]
2 [+ 4(a + WE + p* + 2@ + B2 =20 — DIE +a + h)
>0,
which shows that the minimum of ¥, (£, n) on every chord &-constant is
reached when 7=0. Therefore, the minimum of ¥, (&, #) in the circle

£24 n2<p?isreached on the diameter n=0. Now set y=0and R=a+&+h
in (1.4), we arrive at the following:

w60 =10 = (14 ~)@+ e+ m—ph

B B

p— 2_ _2__
+2(h 1)a + &+ MR 5

(0* — &R
From {=R—(a+h), p*=a?—1,

(15) I(R)= 1+ 8 — )R+ p(h? + ah)R™* — f(a + 2h).
Thus Q(r)=min /(R), R € [a+h—p, a+h+p], Q(r) is given by (6). Simple
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calculations show that the absolute minimum of /(R) is realized at

Bh® + ah))” 2

(16) R°=(1+ﬂ—a

Since
2 B(h* + ah)
Ry=——""""
14+8—«
R,<a+h+p. However, R, may not be greater than a+h—p. There-
fore, if R, ¢ [a+h—p, a+h+ p], then the minimum of /(R) is obtained at

<h+ah<(a+h+p)

17 Ri=a+h—op.

The radius r, j is therefore determined either from
(18) Q(r) = min I(R) = I(R,) = 0,
with R, given by (16), or from

19) Q(r) = min (R) = I(R,) = 0,

with R, given by (17).
These two equations coincide for some «, which will be determined later.
Equations (18) and (19) may be written in the form, respectively,

(20) pa* — 4aa — 4oh = 0,
2) (A=3a+a)yr2—=214+pf—a—a)r+1+ o+ ah=0.
It follows from (20) that

(22) rn= raz.ﬁ =

(20( _ '3 + 2(“2 + ahﬂ)l/Z)l/z
20 + B + 2(a® + oth,é?)l/2
Also from (21) follows that

ro=rep=1[1—20+p(l — )

+ (1= 20+ B(L = @) — (1 — 2P/
However, formula (23) cannot be used to determine r, j if
249 « Z (=B + (8% + 86))/4,

since r, would become greater than 1.
Also formula (22) cannot be used to determine r, ; if

(25) « = f/(4 + B),

since r; would become a nonreal number.

(23)
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To find «, that makes the transition from (23) to (22), we set
(26) ry =re,

and solve for a=u, where «, is the smallest positive root of (26) which
lies in

( B B+ + 8/3)"2)
444’ 4 ’
Thus we have our main theorem.

THEOREM 2. Let o, be the smallest positive root of (26) which lies in the
interval

( p_ B+ + sﬁ)”z)
448 4 )

Then the radius of B-convexity for the class S} is determined from (22) when
ag=a<1 and from (23) when 0= a = «,.

Now we determine the extremal functions fy(z) for Theorem 2. Using
Remark 1 and the fact that the minimum in case (22) is reached at a point
on the diameter =0 (not an endpoint) one gets p,= —1v, (mod 27), and
2,/A,=1. The extremal function given by (7) is therefore of the form

1142ze™® 114 ze*
p(2) =7 —i0 T 5 i0°
21— ze 21 — ze
where 6 is given by

27) Ry=Re{h+w}=h+ (1 —r)({1 —2r,cos 0 + ri)™,
ry is given by (22) and R, is given by (16). Hence the extremal function
(28) fo(z2) = z(1 — 2z cos 6 + z)7'*=

In case of (22), the minimum is realized at an end point of the diameter
=0, thus y, =y, (mod 2=). The function p(z) of (7) has the form

p(z) = (1 + ze™)/(1 — ze7™),
or simply p(z)=(1+2)/(1—z). Hence the extremal function

(29) fo(2) = 2(1 — 2)707.

REMARK 2. (i) The case f=1 reducesr, zto be the radius of convexity of
the class Sy which has been previously known for a =0, a=3%. V. A. Zmorovi¢
has provided the complete solution for such a case.

(ii) A. Schild [6) attempted to solve this problem (f=1) and actually
succeeded if a certain condition is to be true. In fact he obtained r,, as
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19731 RADIUS OF B-CONVEXITY OF STARLIKE FUNCTIONS OF ORDER o« 109

given by (22) and (23). Schild also calculated 0y=0.335 - - - and found the
extremal functions (28) and (29) (for the case f=1).
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