ON THE RADIUS OF β-CONVEXITY OF STARLIKE FUNCTIONS OF ORDER α

HASSOON S. AL-AMIRI ${ }^{1}$

Abstract. A function $f(z)=z+a_{2} z^{2}+\cdots$ is called β-convex if $f(z) f^{\prime}(z) / z \neq 0$ in $D:|z|<1$ and if

$$
\operatorname{Re}\left\{(1-\beta) z f^{\prime}(z) / f(z)+\beta\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)\right\}>0
$$

for some $\beta \geqq 0$ and all z in D. Recently M. O. Reade and P. T. Mocanu have announced a sharp result about the radius of β-convexity for starlike functions. The author generalizes this result to starlike functions of order α.

1. Introduction. Let $f(z)=z+a_{2} z^{2}+\cdots$ be analytic in the unit disc $D:|z|<1$. We say that $f(z)$ is starlike of order $\alpha, 0 \leqq \alpha<1$, if

$$
\begin{equation*}
\operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>\alpha \tag{1}
\end{equation*}
$$

for all z in D. We denote such a class of functions by S_{α}^{*}. We say that $f(z)$ is convex of order $\alpha, 0 \leqq \alpha<1$, if

$$
\begin{equation*}
\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>\alpha \tag{2}
\end{equation*}
$$

for all z in D. We denote such a class of functions by C_{α}. For $\alpha=0, S_{0}^{*}, C_{0}$ are simply called starlike and convex, respectively.

We consider now a class of functions which is formed by a linear combination of the conditions stated in (1) and (2).

Definition. Let $f(z)=z+a_{2} z^{2}+\cdots$ be analytic in D with $f(z) f^{\prime}(z) / z \neq$ 0 in D. Let

$$
L(\beta ; f)=(1-\beta) z f^{\prime}(z) / f(z)+\beta\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)
$$

If

$$
\begin{equation*}
\operatorname{Re}\{L(\beta ; f)\}>0 \tag{3}
\end{equation*}
$$

Received by the editors June 22, 1972 and, in revised form, August 7, 1972.
AMS (MOS) subject classifications (1970). Primary 30A32; Secondary 30A40.
Key words and phrases. Univalent functions, convex and starlike functions of order α, β-convex functions, radius of convexity, radius of β-convexity, extremal functions.
${ }^{1}$ The author presented a short talk based on the material of this note to the Regional Conference on Conformal and Quasiconformal Mappings at Kent State University, May 1972.
(c) American Mathematical Society 1973
for some $\beta, \beta \geqq 0, z \in D$, then $f(z)$ is called a β-convex function. We denote this class by $C(\beta)$.

Mocanu [2] was the first to introduce the class of β-convex functions under the restrictions $0 \leqq \beta \leqq 1$ and that $f(z)$ must be univalent in D. Recently, however, Mocanu and Reade [3] have shown that each function in $C(\beta)$ is univalent (starlike) for $\beta \geqq 0$. In particular each $f(z) \in C(\beta)$ is convex if $\beta \geqq 1$. It is natural now to raise the following question: What is the largest $r_{\alpha, \beta}, 0<r_{\alpha, \beta} \leqq 1$ such that each $f(z) \in S_{\alpha}^{*}$ is a function in $C(\beta)$ for $|z|<r_{\alpha, \beta}$? Again, Reade and Mocanu [4] have announced a sharp result for the general class S_{0}^{*}.

Theorem A (Reade and Mocanu). If $f(z) \in S_{0}^{*}$, then $f(z) \in C(\beta)$ for $|z|<r_{\beta}=\left(1+\beta+\left((1+\beta)^{2}-1\right)^{-1}\right)^{1 / 2}, \beta \geqq 0$. This result is sharp for $f(z)=$ $z /(1-z)^{2}$.

We call $r_{\alpha, \beta}$ the radius of β-convexity of the class S_{α}^{*}. Here $r_{0, \beta}=r_{\beta}$.
The object of this note is to extend Theorem A to the class S_{α}^{*}; in short to find $r_{\alpha, \beta}$. In $\S 2$ a rough estimate of $r_{\alpha, \beta}$ is given, Theorem 1. In $\S 3$, the number $r_{\alpha, \beta}$ is completely determined, Theorem 2. The method used in $\S 3$ is that of V. A. Zmorovič [7]. We also adopt his notations and thus we refer the reader to [7] for a deeper and perhaps a better understanding of $\S 3$.
2. Some estimate for $r_{\alpha, \beta}$. Let P be the class of analytic functions in D such that if $p(z) \in P, p(0)=1$, and $\operatorname{Re}\{p(z)\}>0$ for all $z \in D$. Let $q(z)=$ $z f^{\prime}(z) / f(z)$, where $f(z) \in S_{\alpha}^{*}$. Then there exists $p(z) \in P$ such that

$$
\begin{equation*}
q(z)=\alpha+(1-\alpha) p(z)=(p(z)+h) /(1+h) \tag{4}
\end{equation*}
$$

where $h=\alpha /(1-\alpha)$.
Using (3), (4) and the fact that

$$
1+z f^{\prime \prime}(z) / f^{\prime}(z)=q(z)+z q^{\prime}(z) / q(z)
$$

the radius of β-convexity of the class $S_{\alpha}^{*}, r_{\alpha, \beta}$ becomes the smallest positive root of $Q_{\alpha, \beta}(r)=0$, where

$$
\begin{equation*}
Q_{\alpha, \beta}(r)=\min _{p \in P} \min _{|z|=r<1} \operatorname{Re}\left\{(1-\alpha)(p(z)+h)+\beta z p^{\prime}(z) /(p(z)+h)\right\} \tag{5}
\end{equation*}
$$

Thus our problem is now reduced to finding the quantity

$$
\begin{equation*}
Q(r)=\min _{p \in P} \min _{|z|=r<1} \operatorname{Re}\left\{\Psi\left(p(z), z p^{\prime}(z)\right)\right\}, \tag{6}
\end{equation*}
$$

where $\Psi(w, W)$ is an analytic function of the variables w and W in the W-plane and in the half plane $\operatorname{Re}\{w\}>0$. It is known [5] that the minimum

1973] Radius of β-convexity of Starlike functions of order $\propto 103$
in (6) is realized for functions of the form

$$
\begin{equation*}
p(z)=\lambda_{1} \frac{1+z e^{-i \theta_{1}}}{1-z e^{-i \theta_{1}}}+\lambda_{2} \frac{1+z e^{-i \theta_{2}}}{1-z e^{-i \theta_{2}}}, \tag{7}
\end{equation*}
$$

where $\theta_{1}, \theta_{2} \in[0,2 \pi], \lambda_{1}, \lambda_{2} \geqq 0$, and $\lambda_{1}+\lambda_{2}=1$.
Before determining $Q(r)$, an elementary method yields a rough estimate for $r_{\alpha, \beta}$. We need the following lemmas.

Lemma 1. If $\phi(z)$ is analytic and $|\phi(z)| \leqq 1$ in D, then

$$
\left|\phi^{\prime}(z)\right| \leqq\left(1-|\phi(z)|^{2}\right) /\left(1-r^{2}\right)
$$

for $|z|=r<1$.
Lemma 1 may be found in Carathéodory [1, p. 18].
Lemma 2. If $q(z)=1+b_{1} z+\cdots, \operatorname{Re}\{q(z)\}>\alpha$, then

$$
\operatorname{Re}\{q(z)\} \geqq(1-(1-2 \alpha) r) /(1+r)
$$

valid for $|z|=r<1$.
This estimate readily follows from the fact that

$$
q(z)=(1-(1-2 \alpha) z \phi(z)) /(1+z \phi(z))
$$

where $\phi(z)$ is as in Lemma 1.
Lemma 3. If $q(z)$ is as in Lemma 2, then

$$
\begin{equation*}
\left|z q^{\prime}(z) / q(z)\right| \leqq 2(1-\alpha) r /(1-r)(1+(1-2 \alpha) r) \tag{8}
\end{equation*}
$$

for $|z|=r<1$.
Proof. From

$$
q(z)=(1-(1-2 \alpha) z \phi(z)) /(1+z \phi(z))
$$

it follows that

$$
z q^{\prime}(z) / q(z)=\frac{-2(1-\alpha)\left(z^{2} \phi^{\prime}(z)+z \phi(z)\right)}{(1+z \phi(z))(1-(1-2 \alpha) z \phi(z))}
$$

The above may be written in the form

$$
\begin{equation*}
z q^{\prime}(z) / q(z)=-2(1-\alpha) I_{1}(z) I_{2}(z) \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1}(z)=\left(z^{2} \phi^{\prime}(z)+z \phi(z)\right) /\left(1-z^{2} \phi^{2}(z)\right) \\
& I_{2}(z)=(1-z \phi(z)) /(1-(1-2 \alpha) z \phi(z))
\end{aligned}
$$

Using the triangular inequality, the monotonicity of the right-hand side of $\left|I_{1}(z)\right|$ with respect to $\left|\phi^{\prime}(z)\right|$ and on applying Lemma 1 , we get

$$
\left|I_{1}(z)\right| \leqq \frac{2}{1-r^{2}}\left(\frac{r^{2}\left(1-|\phi(z)|^{2}\right)+r|\phi(z)|\left(1-r^{2}\right)}{1-r^{2}|\phi(z)|^{2}}\right)
$$

Let $0 \leqq|\phi(z)|=t \leqq 1$. The above inequality becomes

$$
\left|I_{1}(z)\right| \leqq g(t, r)=\frac{2}{1-r^{2}}\left(\frac{r^{2}\left(1-t^{2}\right)+r t\left(1-r^{2}\right)}{1-r^{2} t^{2}}\right)
$$

For fixed r,

$$
\partial g / \partial t=2 r(1-r t)^{2} /\left(1-r^{2} t^{2}\right)^{2} \geqq 0
$$

Therefore,

$$
\left|I_{1}(z)\right| \leqq \max _{0 \leqq t \leqq 1} g(t, r)=g(1, r)=2 \dot{r} /\left(1-r^{2}\right)
$$

It is also clear that

$$
\left|I_{2}(z)\right| \leqq(1+r) /(1+(1-2 \alpha) r)
$$

Using these estimates in (9) one gets (8).
Theorem 1. Let $f(z)=z+a_{2} z^{2}+\cdots$ be a function in S_{α}^{*}. Then $f(z)$ is β-convex in $|z|<R_{\alpha, \beta}$, where $R_{\alpha, \beta}$ is the smallest positive root of

$$
\begin{align*}
(1-2 \alpha)^{2} r^{3} & -\left((1-2 \alpha)^{2}+2 \beta(1-\alpha)\right) r^{2} \\
& -(1+2 \beta(1-\alpha)) r+1=0 \tag{10}
\end{align*}
$$

Proof. Let $q(z)=z f^{\prime}(z) / f(z)$. From (4),

$$
\begin{aligned}
\operatorname{Re}\{(1-\alpha)(p+h) & \left.+\beta z p^{\prime}(z) /(p(z)+h)\right\} \\
= & \operatorname{Re}\left\{q(z)+\beta z q^{\prime}(z) / q(z)\right\} \leqq \operatorname{Re}\{q(z)\}-\beta\left|z q^{\prime}(z) / q(z)\right|
\end{aligned}
$$

where $h=\alpha /(1-\alpha), 0 \leqq \alpha<1$.
Applying Lemmas 2 and 3,

$$
\begin{aligned}
& \operatorname{Re}\left\{(1-\alpha)(p(z)+h)+\beta z p^{\prime}(z) /(p(z)+h)\right\} \\
& \begin{aligned}
& \leqq\left[(1-2 \alpha)^{2} r^{3}-\left((1-2 \alpha)^{2}+2 \beta(1-\alpha)\right) r^{2}-(1+2 \beta(1-\alpha)) r+1\right] \\
& \div\left(1-r^{2}\right)(1+(1-2 \alpha) r)
\end{aligned}
\end{aligned}
$$

From (5) and the above inequality each starlike function of order α in D is β-convex in $|z|<R_{\alpha, \beta}$, where $R_{\alpha, \beta}$ is given by (10). Note that $r_{\alpha, \beta} \geqq R_{\alpha, \beta}$ and if $\alpha=0, r_{0, \beta}=R_{0, \beta}=r_{\beta}$ as given in Theorem A. Theorem 1, however, is not sharp since the estimates of Lemmas 2, 3 are sharp for

$$
q_{\alpha}(z)=(1-(1-2 \alpha) z) /(1+z)
$$

but not at the same point. Indeed, $q_{\alpha}(z)$ realizes the estimate of Lemma 2
at $z=r$, while realizing the estimate of Lemma 3 at $z=-r$. This is precisely the source of difficulties in such extremal problems.
3. The main theorem for $r_{\alpha, \beta}$. In this section we obtain $r_{\alpha, \beta}$ through an application of a theorem and technique due to V. A. Zmorovič [7] which is stated next.

Theorem B (V. A. Zmorovič). Let $\Psi(w, W)=M(w)+N(w) W$, where $M(w)$ and $N(w)$ are defined and are finite in the half plane $\operatorname{Re}\{w\}>0$. Set

$$
\begin{aligned}
w & =\lambda_{1} \frac{1+z_{1}^{m}}{1-z_{1}^{m}}+\lambda_{2} \frac{1+z_{2}^{m}}{1-z_{2}^{m}} \\
W & =\lambda_{1} \frac{2 m z_{1}^{m}}{\left(1-z_{1}^{m}\right)^{2}}+\lambda_{2} \frac{2 m z_{2}^{m}}{\left(1-z_{2}^{m}\right)^{2}},
\end{aligned}
$$

where z_{1} and z_{2} are any points on $|z|=r<1, \lambda_{1} \geqq 0, \lambda_{2} \geqq 0, \lambda_{1}+\lambda_{2}=1$. Then $\Psi(w, W)$ can be put in the form

$$
\Psi(w, W)=M(w)+\frac{m}{2}\left(w^{2}-1\right) N(w)+\frac{m}{2}\left(\rho^{2}-\rho_{0}^{2}\right) N(w) e^{2 i \psi}
$$

where

$$
\begin{gathered}
\left(1+z_{k}^{m}\right) /\left(1-z_{k}^{m}\right)=a+\rho e^{i \psi_{k}} \quad(k=1,2) \\
w=a+\rho_{0} e^{i \psi_{0}}, \quad 0 \leqq \rho_{0} \leqq \rho \\
a=\frac{1+r^{2 m}}{1-r^{2 m}}, \quad \rho=\frac{2 r^{m}}{1-r^{2 m}}, \quad e^{i \psi}=i e^{i\left(\psi_{1}+\psi_{2}\right) / 2}
\end{gathered}
$$

Also

$$
\begin{align*}
& \min \operatorname{Re}\{\Psi(w, W)\} \equiv \Psi_{\rho}(w) \\
& \quad=\operatorname{Re}\left\{M(w)+\frac{m}{2}\left(w^{2}-1\right) N(w)\right\}-\frac{m}{2}|N(w)|\left(\rho^{2}-\rho_{0}^{2}\right) \tag{11}
\end{align*}
$$

This minimum is reached when

$$
\begin{equation*}
\exp [i(2 \psi+\arg N(w))]=-1 \tag{12}
\end{equation*}
$$

In our particular problem (5), $m=1$,

$$
M(w)=(1-\alpha)(w+h), \quad N(w)=\beta /(w+h)
$$

Thus from (6), (11) and the above relations,

$$
\begin{align*}
\min \operatorname{Re}\{\Psi(w, W)\} & \equiv \Psi_{\rho}(w) \\
& =\operatorname{Re}\left\{(1-\alpha)(w+h)+\frac{\beta}{2} \frac{w^{2}-1}{w+h}\right\}-\frac{\beta}{2} \frac{\rho^{2}-\rho_{0}^{2}}{|w+h|} \tag{13}
\end{align*}
$$

The following remarks will be used later.
Remark 1. For a fixed $w=a+\rho_{0} e^{i \psi_{0}}, \rho_{0}<\rho$, and a suitably defined ψ_{1} and ψ_{2}, a choice of λ_{1} and λ_{2} may be made, namely,

$$
\lambda_{1} / \lambda_{2}=\left|\rho e^{i \psi_{2}}-\rho_{0} e^{i \psi_{0}} / /\left|\rho e^{i \psi_{1}}-\rho_{0} e^{i \psi_{0}}\right|\right.
$$

such that $\Psi=\left(\Psi_{1}+\Psi_{2}+\pi\right) / 2$ becomes the angle of inclination of the secant through $a+\rho_{e}^{i \psi_{0}}$ and intersects the circle $|w-a|=\rho$ at $a+\rho e^{i \psi_{k}}, k=1,2$. The choice of $\lambda_{1} / \lambda_{2}$ is to maintain the correct relations between $\rho_{0} e^{i \psi_{0}}, \rho e^{i \psi_{1}}$ and $\rho e^{i \psi_{2}}$ as required in the theorem. Thus ψ may assume any value in $[0, \pi]$. Also as a consequence of formula (12), the minimum in (13) is reached when the point $w,|w-a|<\rho$ is fixed and the secant through it, as described above, is perpendicular to $e^{i \phi / 2}$, where $w+h=\operatorname{Re}^{i \phi}$.

If we set $w=a+\xi+i \eta, \rho_{0}^{2}=\xi^{2}+\eta^{2} \leqq \rho^{2}$, then (13) becomes

$$
\begin{align*}
& \Psi_{\rho}(w) \equiv \Psi_{\rho}(\xi, \eta)=\left(1+\frac{\beta}{2}-\alpha\right)(a+\xi+h)-\beta h \\
& \quad+\frac{\beta}{2}\left(h^{2}-1\right)(a+\xi+h) R^{-2}-\frac{\beta}{2}\left(\rho^{2}-\xi^{2}-\eta^{2}\right) R^{-1}, \tag{14}
\end{align*}
$$

where $R^{2}=(a+\xi+h)^{2}+\eta^{2}$.
One can show that $\partial \Psi_{\rho} / \partial \eta=(\beta / 2) \eta R^{-4} S(\xi, \eta)$, where

$$
\begin{aligned}
S(\xi ; \eta)= & {\left[\xi^{2}+4(a+h) \xi+\rho^{2}+\eta^{2}+2\left(a+h^{2}\right)\right] R } \\
& -\left[\left(h^{2}-1\right)(\xi+a+h)\right] \\
\geqq & {\left[\xi^{2}+4(a+h) \xi+\rho^{2}+2(a+h)^{2}-2\left(h^{2}-1\right)\right](\xi+a+h) } \\
> & 0,
\end{aligned}
$$

which shows that the minimum of $\Psi_{\rho}(\xi, \eta)$ on every chord ξ-constant is reached when $\eta=0$. Therefore, the minimum of $\Psi_{\rho}(\xi, \eta)$ in the circle $\xi^{2}+\eta^{2} \leqq \rho^{2}$ is reached on the diameter $\eta=0$. Now set $\eta=0$ and $R=a+\xi+h$ in (1.4), we arrive at the following:

$$
\begin{aligned}
\Psi_{\rho}(\xi, 0) \equiv & l(R)=\left(1+\frac{\beta}{2}-\alpha\right)(a+\xi+h)-\beta h \\
& +\frac{\beta}{2}\left(h^{2}-1\right)(a+\xi+h) R^{-2}-\frac{\beta}{2}\left(\rho^{2}-\xi^{2}\right) R^{-1} .
\end{aligned}
$$

From $\xi=R-(a+h), \rho^{2}=a^{2}-1$,

$$
\begin{equation*}
l(R)=(1+\beta-\alpha) R+\beta\left(h^{2}+a h\right) R^{-1}-\beta(a+2 h) \tag{15}
\end{equation*}
$$

Thus $Q(r)=\min l(R), R \in[a+h-\rho, a+h+\rho], Q(r)$ is given by (6). Simple
calculations show that the absolute minimum of $l(R)$ is realized at

$$
\begin{equation*}
R_{0}=\left(\frac{\beta\left(h^{2}+a h\right)}{1+\beta-\alpha}\right)^{1 / 2} \tag{16}
\end{equation*}
$$

Since

$$
R_{0}^{2}=\frac{\beta\left(h^{2}+a h\right)}{1+\beta-\alpha}<h^{2}+a h<(a+h+\rho)^{2}
$$

$R_{0}<a+h+\rho$. However, R_{0} may not be greater than $a+h-\rho$. Therefore, if $R_{0} \notin[a+h-\rho, a+h+\rho]$, then the minimum of $l(R)$ is obtained at

$$
\begin{equation*}
R_{1}=a+h-\rho \tag{17}
\end{equation*}
$$

The radius $r_{\alpha, \beta}$ is therefore determined either from

$$
\begin{equation*}
Q(r)=\min l(R)=l\left(R_{0}\right)=0 \tag{18}
\end{equation*}
$$

with R_{0} given by (16), or from

$$
\begin{equation*}
Q(r)=\min l(R)=l\left(R_{1}\right)=0 \tag{19}
\end{equation*}
$$

with R_{1} given by (17).
These two equations coincide for some α_{0} which will be determined later.
Equations (18) and (19) may be written in the form, respectively,

$$
\begin{gather*}
\beta a^{2}-4 \alpha a-4 \alpha h=0 \tag{20}\\
(1-3 \alpha+\alpha h) r^{2}-2(1+\beta-\alpha-\alpha h) r+1+\alpha+\alpha h=0 .
\end{gather*}
$$

It follows from (20) that

$$
\begin{equation*}
r_{1}=r_{\alpha, \beta}=\left(\frac{2 \alpha-\beta+2\left(\alpha^{2}+\alpha h \beta\right)^{1 / 2}}{2 \alpha+\beta+2\left(\alpha^{2}+\alpha h \beta\right)^{1 / 2}}\right)^{1 / 2} \tag{22}
\end{equation*}
$$

Also from (21) follows that

$$
\begin{align*}
r_{2}=r_{\alpha, \beta}=[(1-2 \alpha & +\beta(1-\alpha) \\
& \left.+\left((1-2 \alpha+\beta(1-\alpha))^{2}-(1-2 \alpha)^{2}\right)^{1 / 2}\right]^{-1} \tag{23}
\end{align*}
$$

However, formula (23) cannot be used to determine $r_{\alpha, \beta}$ if

$$
\begin{equation*}
\alpha \geqq\left(-\beta+\left(\beta^{2}+8 \beta\right)^{1 / 2}\right) / 4 \tag{24}
\end{equation*}
$$

since r_{2} would become greater than 1 .
Also formula (22) cannot be used to determine $r_{\alpha, \beta}$ if

$$
\begin{equation*}
\alpha \leqq \beta /(4+\beta) \tag{25}
\end{equation*}
$$

since r_{1} would become a nonreal number.

To find α_{0} that makes the transition from (23) to (22), we set

$$
\begin{equation*}
r_{1}=r_{2} \tag{26}
\end{equation*}
$$

and solve for $\alpha=\alpha_{0}$ where α_{0} is the smallest positive root of (26) which lies in

$$
\left(\frac{\beta}{4+\beta}, \frac{-\beta+\left(\beta^{2}+8 \beta\right)^{1 / 2}}{4}\right) .
$$

Thus we have our main theorem.
Theorem 2. Let α_{0} be the smallest positive root of (26) which lies in the interval

$$
\left(\frac{\beta}{4+\beta}, \frac{-\beta+\left(\beta^{2}+8 \beta\right)^{1 / 2}}{4}\right)
$$

Then the radius of β-convexity for the class S_{α}^{*} is determined from (22) when $\alpha_{0} \leqq \alpha<1$ and from (23) when $0 \leqq \alpha \leqq \alpha_{0}$.

Now we determine the extremal functions $f_{0}(z)$ for Theorem 2. Using Remark 1 and the fact that the minimum in case (22) is reached at a point on the diameter $\eta=0$ (not an endpoint) one gets $\psi_{1} \equiv-\psi_{2}(\bmod 2 \pi)$, and $\lambda_{1} / \lambda_{2}=1$. The extremal function given by (7) is therefore of the form

$$
p(z)=\frac{1}{2} \frac{1+z e^{-i \theta}}{1-z e^{-i \theta}}+\frac{1}{2} \frac{1+z e^{i \theta}}{1-z e^{i \theta}},
$$

where θ is given by

$$
\begin{equation*}
R_{0}=\operatorname{Re}\{h+w\}=h+\left(1-r_{1}^{2}\right)\left(1-2 r_{1} \cos \theta+r_{1}^{2}\right)^{-1} \tag{27}
\end{equation*}
$$

r_{1} is given by (22) and R_{0} is given by (16). Hence the extremal function

$$
\begin{equation*}
f_{0}(z)=z(1-2 z \cos \theta+z)^{-1+\alpha} \tag{28}
\end{equation*}
$$

In case of (22), the minimum is realized at an end point of the diameter $\eta=0$, thus $\psi_{1} \equiv \psi_{2}(\bmod 2 \pi)$. The function $p(z)$ of (7) has the form

$$
p(z)=\left(1+z e^{-i \theta}\right) /\left(1-z e^{-i \theta}\right)
$$

or simply $p(z)=(1+z) /(1-z)$. Hence the extremal function

$$
\begin{equation*}
f_{0}(z)=z(1-z)^{-2(1-\alpha)} \tag{29}
\end{equation*}
$$

REMARK 2. (i) The case $\beta=1$ reduces $r_{\alpha, \beta}$ to be the radius of convexity of the class S_{α}^{*} which has been previously known for $\alpha=0, \alpha=\frac{1}{2}$. V. A. Zmorovič has provided the complete solution for such a case.
(ii) A. Schild [6] attempted to solve this problem $(\beta=1)$ and actually succeeded if a certain condition is to be true. In fact he obtained $r_{\alpha, 1}$ as
given by (22) and (23). Schild also calculated $\alpha_{0}=0.335 \cdots$ and found the extremal functions (28) and (29) (for the case $\beta=1$).

Acknowledgement. The author acknowledges with thanks the valuable suggestions of Professor M. O. Reade of the University of Michigan.

References

1. C. Carathéodory, Funktionentheorie. Band 2, Birkhäuser, Basel, 1950; English transl., Theory of functions of a complex variable. Vol. 2, Chelsea, New York, 1954. MR 12, 248; MR 16, 346.
2. P. T. Mocanu, Une propriété de convexité généralisée dans la représentation conforme, Mathematica (Cluj) 11 (1969), 127-133. MR 42 \#7881.
3. P. T. Mocanu and M. O. Reade, The order of starlikeness of certain univalent functions, Notices Amer. Math. Soc. 18 (1971), 815. Abstract \#71T-B182.
4. M. O. Reade and P. T. Mocanu, The radius of α-convexity of starlike functions, Notices Amer. Math. Soc. 19 (1972), A-110. Abstract \#691-30-1.
5. M. S. Robertson, Variational methods for functions with positive real part, Trans. Amer. Math. Soc. 102 (1962), 82-93. MR 24 \#A3288.
6. A. Schild, On starlike functions of order α, Amer. J. Math. 87 (1965), 65-70. MR 30 \#4929.
7. V. A. Zmorovič, On bounds of convexity for starlike functions of order α in the circle $|z|<1$ and the circular region $0<|z|<1$, Mat. Sb. 68 (110) (1965), 518-526; English transl., Amer. Math. Soc. Transl. (2) 80 (1969), 203-213. MR 33 \#5875.

Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403

