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General treatment is given on the final state interaction between a pair of elementary 

excitations produced by the Raman scattering on liquid helium. The final state interaction 

exerts a drastic influence on the Raman spectrum where the produced excitations have small 

group velocities, i.e. the excitations lie near the extremum points of the phonon-rotan disper­

sion curve. It is shown that, in general, the Raman spectrum has no peaks at these points 

in spite of the infinite density of states, and correct form of the spectrum is given. The 

result is interpreted as a destructive interference between excitations with positive and with 

negative group velocities. Possible existence of a resonance, which depends on the sign of 

the interaction between the excitations around the extrema, is also investigated. 

§ 1. Introduction 

A pair of elementary excitations (phonon-rotons) Is created by the Raman 

scattering in liquid helium. Momenta of the two excitations are of equal magni­

tude with opposite directions, because the momentum transfer from the electro­

magnetic field to liquid helium is completely negligible. The density of states 

of the pair becomes infinite when the excitations lie at the extremum points of 

the phonon-roton dispersion curve. Three such points exist corresponding to 

the maximum, the minimum and the plateau of the dispersion curve. Halley1
) 

predicted that this high density of states should induce sharp peaks to the Raman 

spectrum of the scattered light. Experiment by Greytak and Yan2
) has shown 

that there are a large peak slightly above twice the minimum energy, a broad 

peak almost at twice the plateau energy and no predicted peak at twice the 

maximum energy. They interpreted the shift of the large peak from twice the 

minimum energy as due to the instrumental energy resolution. However, the 

complete absence of the peak corresponding 'to the maximum has not been so 

well explained even from the theory by Stephen,8
) whose calculation shows that 

the possible peak corresponding to the maximum is smaller than the one correspond­

ing to the minimum. They have also suggested the possible effect of the finite life­

time of an elementary excitation on the Raman spectrum. 

It is the purpose of the present paper to notice that, among many possible 

effects, the final state interaction between the produced elementary excitations 

causes a drastic change to the Raman spectrum inferred from the simple argument 

of the state density, and to derive the correct behavior of the spectrum around 

the points corresponding to the extrema of the dispersion curve. 
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1136 F. Iwamoto 

The importance of the final state interaction is easily recognized from the 

fact that the excitations created near the extremum points have very small group 

velocities. For such slow particles the Born approximation is completely invalid. 

In order to see the situation clearly, suppose a following simple example, i.e., 

the elastic scattering of a particle with dispersion relation {)) (k), which has a 

vanishing group velocity v = dw/ dk at the finite wave number k. The scattering 

cross section, (J = ( 4rc/k2
) (2l + 1) sin2

oh for a given partial wave l can never be 

infinite. It remains of the order of square of the de Broglie wave length. 

However, if we compute the cross section in the Born approximation by taking 

square of the matrix element M, multiplied by the final state density and divided 

by the initial group velocity, it diverges as !MI 2/v 2
• From this example we can 

see that the correct transition matrix element itself should be proportional to v, 

and the finite cross section will come out only if the interaction is treated up to 

the infinite order. 

Therefore, the complete analysis is required on the scattering states of the 

interacting pair of elementary excitations in order to discuss the correct behavior 

of the Raman spectrum. Such an analysis presents us an interesting scattering 

problem due to the non-monotonic behavior of the dispersion curve. Let us de­

scribe general features of the scattering states. Figure 1 shows the energy E (p) 

of a non-interacting pair of elementary 

E(p) excitations with momenta p and - p. It 

p 

Fig. 1. Energy E(p) of a pair of excitations 

with momenta p and - p. The threshold 

energies .d, A' are at P, P'. Twice the 

plateau energy is denoted by A11
• The 

solutions E(p;.) =E are at p;.=ph P2• Ps 
when A<E<A', and at P;.=Po when 

E<A or E>A'. 

is just twice the phonon-raton dispersion 

curve. The minimum is at the momentum 

P, E (P) =A, and the maximum at P', 

E ( P') = J'. Twice the plateau energy is 

denoted by J". When the interaction is 

present, the scattering takes place. Because 

the total momentum of the pair is zero, 

we can classify the scattering states ac­

cording to their angular momenta. Only 

even partial waves appear due to the Bose 

statistics. When the energy E of the state 

is in the region E<J or E>J', there. is 

only one channel. However, when J<E 

<J', there are three open channels; three 

waves sin (p;>..r+ D;>..) reach the wave zone, 

where p;>.. (A= 1, 2, 3) satisfy E (pA) =E. 

Therefore, J or J' may be considered as a 

threshold energy for opening or closing 

the inelastic channels. This complicacy is 

analysed by introducing the eigenchannels. 

We notice that the group velocity of the 
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On the Raman Scattering in Liquid Helium 1137 

excitation with momentum p 2, P' <P2< P, is negative. Scattering problem involv­

ing such a particle of negative group velocity has never been treated so seriously. 

We also remark that there will be a resonant state below the threshold .J when 

the interaction is attractive between the excitations around the minimum point 

P, because, just like a mechanism of the Cooper pair4> in superconductor, the 

pair around the minimum point P forms a bound state with energy below .J, and 

this bound state couples with the elastic channel. The same happens when the 

interaction is rep~lsive around the maximum point P' or around the plateau; 

there will be a resonance above the threshold J' or above J". 

In this paper we consider liquid helium at the absolute temperature zero in 

order to avoid the complications arising from other origins than the final state 

interaction. We do not rely on any specific model of liquid helium. However, 

we assume that the state which has one elementary excitation can be represented 

by an exact stationary eigenstate of the total Hamiltonian, which we call one­

particle state. Although the exact two-particle state contains components of non­

interacting three- or more-particle states, we approximate the exact two-particle 

state as a superposition only of the non-interacting two-particle states. The 

validity of the approximation is questionable at higher energies. Therefore, we 

do not enter into a detailed discussion on the spectrum around .J". We describe 

the treatment mainly about the threshold .J, because, from the formal point of 

view, the threshold J' can be treated in the same way by changing the sign 

of the energy. 

In the ·next section we give necessary formulas for the description of the 

scattering states of two particles. Special consideration is paid for the particles 

with negative group velocities. We formulate in § 3 the coupling with the 

electromagnetic field. We show that the Raman matrix element is characterized 

by two functions, form factors, which couple with the S- and D-wave scattering 

states respectively. Although it has been the main concern of the previous 

papers,I>•3> we do not go into detail for the calculation of the form factors, because 

it requires some specific model for the excitations. In order to get an explicit 

expression for the Raman spectrum, we consider in § 4 a simple example, in 

which the final state interaction is taken as separable. This example shows that 

the Raman spectrum has sharp minima rather than peaks at the points where 

the density of states is infinite. General treatment is given in § 5 on the behavior 

of the Raman spectrum near the threshold. We notice that, although the spectrum 

found in § 5 shows similar behavior to the well-known elastic scattering cross 

section near the inelastic threshold, the mechanism involved is completely different; 

in our case the state density is proportional to 1/ .J E- J, while in the scattering 

problem the inelastic state density is proportional to .J E- J. Possible resonance 

is generally analysed in § 6. I~ order to see. the physical origin of the unexpected 

behavior of the Raman spectrum, we investigate in § 7 the wave function between 

the interacting pair. We show that large cancellation occurs in the wave func-
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1138 F. Iwamoto 

tion due to a specific interference between waves of positive group velocity and 

of negative group velocity. Some aspects on the higher excitations in liquid helium 

are discussed in § 8. Proofs of some mathematical lemmas are given in the 

Appendix. 

§ 2. Description of two-particle scattering state 

In this section we consider the scattering states of a pair of elementary 

excitations in liquid helium with total momentum zero. 

Suppose liquid helium at the absolute temperature zero. It is in the ground 

state 1Ji0• An elementary excitation is known to obey the energy-momentum re­

lation ()) (p), the experimental phonon-roton dispersion relation. (We use a unit 

system in which h = 1.) We assume that the state which has one elementary 

excitation can be represented by a stationary eigenstate of the total Hamiltonian. 

We denote this one-particle state by Bp +1J!0 • We can require that the operators 

BP, Bp + should satisfy the boson commutation relations, [Bp, Bit]= Opp'' [Bp, 

Bp,] = [Bp +, Bp-1;] = 0. We expand the total Hamiltonian !f-C in powers of Bp, Bp +, 

$C=eo+ :E ()) (p)Bp + BP 
p 

(2·1) 

Such terms as B+, B+ B+, B+ B+ B+, B+ B+ B, B+ B+ B+ B+, B+ B+ B+ B, and their Her­

mitian conjugates do not appear because the ground state and the one-particle 

states are the exact eigenstates of the total Hamiltonian. Actually, the total 

Hamiltonian also contains terms which describe other degrees of freedom than 

phonon-rotons. We assume that such terms remain constant for the discussion 

of the scattering states of the two elementary excitations. Evidently, the inter­

action W 0 (p, p') satisfies the symmetry conditions, 

W0 (p,p') = W 0 (p',p), 

w Q (p, p') = w Q (p, - p') = w !J (-p, p') = w Q (-p, - p'). 

(2·2) 

(2·3) 

Let us consider the two-particle states of total momentum zero. The state 

Bp + B!p1f!o is not the eigenstate of the total Hamiltonian. We approximate the 

exact two-particle eigenstate 7J! ~ as a superposition of the non-interacting two­

particle states, 

(2·4) 

The amplitude f~ (p) IS symmetric, 

(2·5) 

and satisfies the normalization condition 
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On the Raman Scattering in Liquid Helium 1139 

(2·6) 

The variational principle, o(P'-,., ,g{'IJ!.,.)j(P'-,., 'If!-,.), determines the best amplitude. 

From (2·1) and (2·4) we have 

1 
{E-E(p)}/-,.(p)= V :E Wo(p,p')f-,.(p'), 

p' 
(2·7) 

where E is the excitation energy from the ground state to 'If!-,., and E (p) the 

non-interacting energy of the pair, E (p) = 2{)) (p). We take. the outgoing wave 

solutions /-,. <+) (p) = ( (2nY/V) ¢<+) (p, p-,.) in the limit of the normalization volume 

v ___,. oo, 

cp<+)(p,p-,.) =t{o(p-p-,.) +oCp+p-,.)} 

+ E (
1

) . fwo(p,p')¢<+l(p',p-,.)dp'/(2nY, (2·8) 
- E p + zr; 

where r; is a small positive constant and p-,. the incident momentum, E (p-,.) =E. 

Because we are describing the scattering states of identical particles, p-,. is re­

stricted on half the momentum space, (p-,.)z>O. 

Now we decompose the scattering states in partial waves, 

(2·9) 

and 

(2·10) 

Only even partial waves, l = 0, 2, 4, .. ·, appear due to the symmetry conditions 

(2 · 5) and (2 · 3). The equation of the partial wave u<L) (p, p-,.) Is 

u<Ll(p,p-,.) =o(p-p-,.) + E (1) . y<L)(p,p-,., E), 
- E p + zr; 

(2 ·11) 

where the scattering amplitude y<t> (p, p', E) satisfies the integral equation 

Sw <t> (p p") y<t> (p" p' E) 
y<t>(p,p',E)=W<t>(p,p')+ ~ ( ") .' ' dp". 

- E p + zr; 
(2·12) 

The interesting feature of negative group velocity manifests itself in the 

wave function, 

¢-,.<+>(r)= fexp(ip·r)¢<+l(p,p-,.)dp. (2 ·13) 

It is also decomposed into partial waves, 

r¢-,.<+)(r) =4n L; u.,.<t)(r)L; Ytm(i) Yz~(p>.)· 
l m 

(2 ·14) 

Then, u"' <Z) (r) IS connected with u<l) (p, P>.) by 

u-,. U) (r) = iz f prjt (pr) uCl) (p, P>.) d~, (2 ·15) 
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1140 F. Iwamoto 

where j~ (pr) is a spherical Bessel function, and it behaves at large r as ilprjl (pr) rv 

sin pr for even l. From Fig. 1 the equation E (p.,.,) = E has three solutions p.,., = 

pb p2, p3 when .J<E<J', while it has only one solution p.,., =Po when E<.J or 

E > .J'. As is shown in the Appendix A, the asymptotic form of u.,., <~> (r) at large 

r IS 

(2 ·16) 

for .J <E<.J', and 

( l) ( ) ,, • 7C '71 
U;.=o r "-'Sl11 Por- -.1. oo exp (ipor) (2 ·17) 

Vo 

for E<.J or E> .J'. In these equations v.,., is the magnitude of the group velocity, 

v.,.,=JdEjdpJP=PJ..' rJ-,.,isthe sign of the group velocity, (dEjdp)P=PA.=rJ-,.,v.,.,, and T"".,., 

is the T-matrix element on the energy shell, T"'),.=T(p""(E),p.,.,(E),E). We 

notice that the outgoing spherical wave is represented by eipr or - e-ipr accord­

ing as its group velocity is positive or negative. 

We consider the eigenchannels for .J<E<.J'. Introducing ¢-,., <-> (r) and 

¢-,., <+> (r), the incoming and outgoing spherical waves normalized by unit flux, by 

(2 ·18) 

we write the asymptotic form (2 ·16) as (dropping l when no confusion arises) 

-2iu.,.,(r) "-'¢-,.,<->(r)- :E sp..,.,¢p.<+>(r), (2 ·19) 
It 

where S"".,., Is the element of the unitary S-matrix, 

S -~ 2 . T"".,., 
p."J..-Up."J..- 7Ct I • 

vv""v-,., 
(2·20) 

It IS diagonalized by an orthogonal matrix (f.,., a) as 

(a=1,2,3) (2 ·21) 

Also we have a relation from (2 · 20) 

:E v T"".,., f"'af.,.,a = _ _!__ exp (i(Ja) sin a a. 
p.,;. v""v-,., 7C 

(2 ·22) 

From (2 ·19) and (2 · 21) the eigenchannel wave function Ua (r) has the asymptotic 

form 

(2 ·23) 

Notice the sign factor at the eigenphase (Ja· 

Sometimes it is convenient to use the reaction matrix K. We define K (p, 
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On the Raman Scattering in Liquid Helium 1141 

p', E) by the integral equation 

K(p,p', E)= W(p,p') +P J W(p,~~~~~:;p', E) dp". (2 ·24) 

The symbol P denotes the principal value integral. From (2 ·12) Tis connected 

with K by the Beitler equation (see Appendix B), 

(2 ·25) 

for J<E<J'. Denoting Kp;>..=K(p"(E),p">..(E),E), we have from (2·22) and 

(2 ·25) 

"' K p'>.. .c .c _ _ 1 t ~ 
LJ 1 J pa J '>..a - - an u a • 

11,;. v v "'vA 7r 
(2. 26) 

From (2 ·11) and (2 · 25) the eigenchannel wave function m momentum space 

U(p, a) can be expressed by 

U(p, a)==t u(p,p">..) ~">.a 
l.=l V V">.. 

(2 ·27) 

Corresponding equations for one-channel case, E<J or E> il', are easily 
written down. In particular, we have 

and 

T 00 = - Vo exp (itlo) sin tlo , 
7C 

Koo = - Vo tan tlo 
7C 

(2 ·28) 

U(p, a= O) ==u (p, Po) ~ 1 
= exp (itlo) cos tlo {a (p- Po) + P K (p, Po, E)}. 

· Jvo Jv 0 E- E (p) 

(2. 29) 

We remark that T (p, p', E) defined by (2 ·12) is an analytic function with 
respect to the complex variable E. The analytic continuation of T 11 = T (P1 (E), 
p 1 (E), E>J) beyond the threshold below J coincides with Too=T(p0 (E),Po(E), 
E<J). The same is true for the S-matrix; S 11 (E> J) analytically continues to 
S 00 (E<J). On the contrary the reaction matrix K (p, p', E) defined with the 
principal value integral is in general not an analytic function of E. In our case, 
however, Appendices C and D show that K(p,p', E) is a regular function of 
E- J above the threshold, but its analytic continuation below J is not the re­
action matrix below J. Equation (2 · 24) defines different analytic functions above 

ttnd bel<;>w J. Their copnection i~ <;li~cu~~ed in § 6, 
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1142 F. Iwamoto 

§ 3. Coupling with the electromagnetic field 

We consider a process; liquid helium at the ground state is excited by in­

cident light with frequency v, wave number k, polarization e, and the incident 

light is scattered to the light with v', k', e'. 

The Raman matrix element which leads to the non-interacting two-particle 

state Bp + B~p'P"o is known to be 

(3·1) 

where 

fJ= 1 {J·e' 1 J·e+J·e 1 J·e'l 
2e2 v J vv' eo+ v - .!JC eo - v' - .!JC J ' 

(3·2) 

J being the total current operator of all the charged particles in the liquid, 

J=~ieipi/mi. Because M<0>(e,e',p) is a scalar, it is expressed by two form 

factors To (p), T 2 (p) as 

pM<O) (e, e', p) = (
2

nY (_!!_) 2 {!/" e' To(P) + I 5 (3p ·ep ·e' -e ·e') r2 (p)}. 
V me v 4n ,V 167! 

(3·3) 

When the final state interaction is present, the correct matrix element5> is 

(3·4) 

where 'P""7.. <-> is the incoming wave solution. Noting <P"x <->I= J::. pfx <->* (p) 

<B;+B~p'P"ol and fx<->*(p) =J"7..<+>(p), we have from (2·9) and (3·3) 

Me , ) (2nY ( e )
2

{e·e' 7111" ( ) +j_5_(3--. --- ' ')M. ( )} Px e, e ,px =-- -~ 
1
-.lV.Lo Px -- px·epx·e -e·e 2 P"7.. , 

V me v 4n 16n 

(3·5) 

where l-wave matrix elements are 

(3 ·6) 

The transition probability is calculated by the general rule, 

(3·7) 

The energy transfer v- v' is the excitation energy E, E = v- v'. Inserting (3 · 5) 

into (3 · 7) and performing px-summation over the half momentum space, we have 

dCW= (~ernk' 2 dk'd.Q£,{Ce·e'l9'< 0 >(E) +! (3+ (e·e')
2
).9'<

2>(E)}, (3·8) 

where the !-wave spectral function gm (E) is 

gu> (E)= 1: _!__ IM~ (Px) 1
2

• 

f.,V?>, 
(3·9) 
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On the Raman Scattering in Liquid Helium 

We introduce the eigenchannel matrix elements La<~> by 

La(~)= s TL(P) u<L) (p, a)dp' 

which are written from (2 · 27) and (2 · 29) as 

Lau> = exp (ifJa) cos a a 2: nu> (p~, E) ~~a , 

l vv~ 

where nu> (p, E) is given by 

n<L> CP, E) = rL CP) + P J rL CP'1 ~~> c~;) p, E) dp'. 

We can express g<L> (E) by La <L>, 

g<L> (E)= .l:ILa<L>i2· 
a 

1143 

(3 ·10) 

(3 ·11) 

(3 ·12) 

(3 ·13) 

In Eq. (3 · 9) and in the following we understand the A- or a-summation to be 

performed for A or a=1, 2, 3 when LI<E<LI', and for A or a=,O when E<LI or 

E>LI'. 

We do not go into the calculation of form factorS TL (p), nor into the pair 

interaction W(L) (p, p'), because it requires SOme specific model for phonon-rotons. 

Notice the Hamiltonian !/{ in Eq. (3 · 2); it should describe the motions of all 

the charged particles which compose the liquid. Of course, the low energy 

expansion (2 ·1) cannot be used. In this paper we assume that r <L> (p) and 

w<l> (p, p') are regular functions of p or p'. 

From the next section we drop l because no formal differences exist between 

the treatments of S- and D-waves. 

§ 4. Separable interaction 

Before gomg into the general treatment of the Raman spectrum, we discuss 

in this section an explicitly soluble example, in which the pair interaction is 

taken as separable, 

W(p, p') =gV(p) V(p'). (4·1) 

In the case of the separable interaction, Eq. (2 ·12) for T(p., p', E) is easily 

solved to give 

where 

T(p ' E)- V( ) 
1 

V( ') 
'p ' - p 1/g + R (E) + il(E) p ' 

R(E) = 9? J V 2

(p) dp, 
E(p) -E 

ICE) =Jr ~ v;>,.2, 
. ~ VA, 

(4·2) 

(4·3) 

(4·4) 
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R(E) 

---- --- -1/g (g<O) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1

L1 £/ £/ E 
or---~£.~r~~L1~'~~A~",~~ 

I I 
I I 

F. Iwamoto 

I(E) 

0 A' li' E 

: I 
j : 

---~'~,.-
Fig. 3. Schematic graph for l(E). 

Fig. 2. Schematic graph for R(E). 

V(p;o.,) being simply denoted by V;o.,. R (E) 

and J(E) are connected by a dispersion 

relation, 
The solutions 1/ g+ R(E) =0 are 

denoted by Er when g<O, and by 

E/, Er'' when g>O. 
R(E) =p s l(E) dE. 

1C E-E 
(4·5) 

Figures 2 and 3 show schematically the behaviors of R (E) and J(E). Notice 

the singular behaviors near E=L1, L1' and LJ". If we make a parabolic approxi­

mation to E (p) near its minimum, 

E (p) = (p-PY/2fJ.+ L1, (4·6) 

R(E) and J(E) behave below and above the threshold L1 as 

R(E) = nV
2
(P)J L12_!!E, E-;:; L1 ' (4·7) 

I(E) =nV
2
(P)J E~L1, E?::LJ. (4·8) 

Similar behaviors are observed near Ll' and Ll". 
We discuss the phase shifts. Introducing a unit vector, 

/;o.,=J I(;)v;o., V;o.,' (4·9) 

we have from ( 4 · 2) 

n :E Tp;o., f. f.= I(E) 
;.,tt Jv

1
,v;o., P ;o,. 1/g+R(E) + il(E) 

(4·10) 

Comparing ( 4 ·10) with (2 · 22), we find that one eigenphase shift is given by 

tan iJ=- I(E) , 
1/U+ R(E) 

and the other two eigenphase shifts iJ2, (]3 for LJ<E<LJ' satisfy 

sin iJ~=sin iJ3=0. 

( 4 ·11) 

(4·12) 
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6 

'It g<O 

Fig. 4. Schematic plot of the phase 

shift (J when g<O. 

-1112 

-n 

I 
I 

n' 
Fig. 5. Schematic plot of the phase 

shift lJ when g>O. 

Therefore, only one eigenphase shift determines the scattering states. This 

property is a special character of the separable approximation. We show the 

behaviors of the phase shifts in Fig. 4 when the interaction is attractive, g<O, 

and in Fig. 5 when repulsive, g>O. Resonance energy Er is determined by 

1/g+R(Er) =0. (4·13) 

Now we calculate the Raman spectrum. Quite a simple formula is obtained 

if we put 

T(p) =cV(p). (4 ·14) 

Qualitative behavior of the spectrum does not change even if we use more general 

form for T(p). From (2·11), (3·6), (3·9), (4·2) and (4·14) we have 

!/(E)- 1 ( c )2 I(E) (4 15) 
--; g {1jg+R(E)P+I 2 (E) ' . 

which determines the spectrum by (3 · 8). Figure 6 shows qualitatively the be­

havior of ( 4 ·15) when g<O, and Fig. 7 when g>O. We notice the singular 

behavior just above the threshold Ll, where Eq. (4·15) is written by using (4·8) 

as 

,S(£) 

-o 

Fig. 6. Schematic graph of the Raman 

spectrum !/(E) when g<O for the 

;;;eparable inte:racti9t:h 

(4·16) 

0 

Fig. 7. Schematic graph of the Raman 

spectrum !?(E) when g>O for the 

separabl~ interacti()n, 
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1146 F. Iwamoto 

a, {3 being some constants. Without the final state interaction (g = 0), it diverges 

as (E-J)~ 1 1 2 • However, it behaves as (E-LJYI2 when g=/=0. Similar behaviors 

are observed at the other extremum points. We also notice the occurrence of 

a resonance. Its position depends on the sign of the pair interaction, g. 

§ 5. General treatment near threshold 

In this sectiOiCwe show that the Raman spectrum near the 'threshold L1 be­

haves generally as 

E?:;LJ ' 

E;:SL1' 
(5 ·1) 

-yvhere z = J E- L1 and r;, = J LJ- E. The constants s0, s+ and s~ 'depend on the 

interaction W (p, p') and the form factor r (p). In the following, formulas are 

expanded in z or r;, up to the order necessary to give s0, s+ and s_. We first 

treat the quantities above the threshold, and then the formulas below the threshold 

are derived by a suitable analytic continuation. 

In order to discuss the behavior near the threshold, we distinguish the sin­

gular quantities from the regular ones. As is shown in Appendices C and D, 

the reaction matrix K(p, p', E) defined by (2 · 24) is a regular function with 

respect to the variable z 2 
= E- L1 above the threshold. All the irregularities above 

the threshold arise from v 2 and ViJ, which are 

V2= Vs=J: z, (5·2) 

by using the parabolic formula ( 4 · 6) near the threshold. We expand the reac­

tion matrix on the energy shell, K(p"'(E), p].,(E), E) with respect to z by using 

Pt (E) = Q + _!_z2
, 

VQ 

P2(E)f 1-
. = P-::r- v 2fl. z, 

Ps(E). 

(5·3) 

where Q is the other momentum than P satisfying E (Q) =L1, and VQ= ldE/dPI.v=Q· 
In order to arrange the expansion neatly, we introduce the symmetrized channels 

by the transformation\ matrix, 

1 0 0 

b 
1 1 

(U]..a) := -V2 ,J2 (5·4) 

0 
1 1 

-

-V2 -V2 

The reaction matrix S:Cao m the symmetrized channels defined by 
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On the Raman Scattering in Liquid 1--Ielium 1147 

(5·5) 

shows the following behavior for small z2:0; 

F 
1 

.JzA 
.JzB 

(~ab)= 1 l.c c 
.JzA z 

(5·6) 

.JzB c zH 

The constants m this expression are connected with K by 

F= _!£K(Q, Q, A+), 
VQ 

(5 ·7) 

These constants determine the scattering states near the threshold. This kind 

of approach is a generalization of the effective range theory. (See, for example, 

the article by Yamaguchi.6>) All the effects near the threshold for the various 

interactions W (p, p') are characterized by these constants. Actually the second 

derivative H does not affect the constants s0 , s+, and s_. In (5 · 7), K (p, p', A+) 

means lim K (p, p', E).. The reaction matrix K given by (2 · 24) defines different 
E->d+O 

analytic functions above and below the threshold. 

We compute the eigen-phase shifts (]a· From (2 · 26) and (5 · 5) the 

eigenvalues of (~ab) give tan (]a, 

tan (]a=l =tan (]Q + az, 

G. A 2 

tan (]a= 2=-+-, 
z G 

det ~ 
tan (] a=s = 

2
Z , 

FG-A 

(5 ·8) 
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1148 F. Iwamoto 

where 

From (5·8) the eigenphase shifts IJa are given by 

IJa=l=IJQ+a cos
21JQz, 

det~ 
z . 

FG-A2 

The matrix (haa), 

3 

haa = '2:: UM f}..a ' 
.l.=l 

(5·9) 

(5 ·10) 

(5 ·11) 

which transforms ~ from the symmetrized channels to the eigenchannels, is calcu­

lated from (5 · 6) and (5 · 8) ~ 

1 - t (t2 + u2) z 

(haa) = 
-tJz-vJ-zs 

-uJz 

The constants are expressed by 

A 
t=­

G' 

AC-BG 
u=----

FG-A2 ' 

tJz uJz 

1-t2z wz 

c 
1 -z 

G 

v= --
1
-(2aG+2uBG+t2A 2 +u2A 2

), 

2GA 

AB-CF 
w=----

FG-A2 

and there is a relation, 

(5·12) 

(5 ·13) 

(5 ·14) 

We can also compute the phase shift below the threshold by the analytic 

continuation, because S-matrix is the same analytic function of E abov~ and below 

the threshold~ 
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On the Raman Scattering in Liquid Helium 

exp (2iOo (C:)) = s'A.=O,'A.=O (C:) = s'A=l,'A.=l (z = iC:) • 

From (5·4) and (5·11) we have 

s'A.=l,'A.=l = :E hia exp (2ioa). 
a 

1149 

(5 ·15) 

(5·16) 

Inserting (5 ·10) and (5 ·12) into (5 ·16), we have the phase shift Oo below the 

threshold, 

(5·17) 

Of course, we can at once write down the scattering cross sections between two 

elementary excitations from the phase shifts, if necessary. 

We calculate the Raman spectrum. Appendix C shows that D(p, E) given 

by (3 ·12) is a regular function of z 2 above the threshold. As we have done 

forK, we expand D(p,.(E), E) in powers of z, and its first few terms characterize 

the coupling with the electromagnetic :field near the threshold. The behavior of 

D in the symmetrized channels are 

Xa.=l + 0 (z
2
), 

:E D (p,., E) g,.a__ = -}z··· -Xa.=2 + 0 (z312)' 
;. Jv)., v 

vzXa.=s + 0 (z612
), 

where the three constants Xa. are given by 

X1= l D(O,.J+), 
V VQ 

X2 = ~2!1D(P, J+), 

Xs = ~8!1 3 _1_D(P, J+). 
fJP 

(5 ·18) 

(5 ·19) 

From (3 ·11) and (5 ·11) the matrix elements La are connected with these 

constants Xa. by 

La= exp (ioa) cos Oa (x1h1a + -/
1
z X2h2a + -/zXshsa). 

Inserting (5 ·10), (5 ·12) into (5 · 20), we have 

L1=exp(ioQ)cos 0Q{(X1-tX2)- (lR-ilz)z}, 

L .x2 r 
2=tGvz, 

where we put 

(5 ·20) 

(5·21) 
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1150 F. Iwamoto 

l1 =a cos20Q (X1- tX2). (5 · 22) 

From La given by (5 · 21) we can calculate the Raman spectrum .9(E) by 

(3 ·13). We find that the coefficients for the Raman spectrum in (5 ·1) above 

the threshold are given by 

(5. 23) 

and 

(5 ·24) 

Finally, we derive the Raman spectrum below the threshold by the analytic 

continuation. From (2 ·11) and (3 · 6) we have 

M(p].(E), E) =T(p].(E)) + ST(p)T(p,p].(E:, E)dp. 
E- E (p) + zr; 

(5 ·25) 

As a function of E, M(p1 (E), E) and M(p0 (E), E) are the same analytic func­

tion. Therefore, from (3 ·10) and (5 ·11) the matrix element L 0 below the thresh­

old is given by 

1 3 

Lo = 
1
-M(po(E), E)= I:: h1aLa. 

VVo a=l 

(5. 26) 

Inserting (5 ·12) and (5 · 21) into this expression and putting z = iC:,, we have the 

Raman spectrum below the threshold by .Y(E) = jL0 j2• We find again s0 given 

by (5·23) and s_ given by 

s_=2 cos 0Q(X1-tX2){{sinoQ(u
2
X1+uwX2+uXs) -cos OQ(l1+ ~ t)}· 

(5 ·27) 

§ 6. General analysis of a possible resonance 

In § 5 we have derived the phase shift just below the threshold. In order 

to discuss a possible resonance it is desirable to extend the formula so as to 

cover the wider range of energy. In this section we analyse K-matrix below 

the threshold, and derive a general formula which determines the resonance energy. 

The K-matrix above the threshold, K(p, p', E>J), is a regular function of 

E- .J. We rewrite its definition (2 · 24) in a form 

K(p,p', E>J) = W(p,p') 

+ Jw(p,p") {E ( \ . +ilt :1: ~E)&(p"-p,(E))} 
- E p + l'f/ .1.=1 V]. 

X K(p", p', E)dp", (6 ·1) 
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On the Raman Scattering in Liquid Helium 1151 

where v,. (E) and p,. (E) are given by (5 · 2) and (5 · 3). We denote the analytic 

continuation of K (p, p', E> A) beyond J by K1 (p, p', C), which follows the equa­

tion 

K1 (p, p'' C) = w (p, p') + f w (p, p") [J- c2 = E (p'') 

+j ~ ~ {o(p"-P+iv'2,aC)+o(p"-P-iv'2,aC)}] 

X Kl(p", p', C)dp". (6·2) 

Equation (6·2) is derived from (6·1) by putting E=J-C2
, or z=iC. The unusual 

a-function with complex argument is defined in the following way: 

f {o(p-P+ iq) + o(p-P- iq) }f(~)dp=J(P- iq) + j(P+ iq) 

(6·3) 

The function K1 (p, p', C) is not the K-matrix below the threshold; the latter 

obeys Eq. (2 · 24) at E<.d. Their connection is given by (see Appendix B) 

K(p, p') =K1(p, p')- j ~ ~ {Kl(p, + )K( +, p') + K1(p,- )K( -, p') }, 

(6·4) 

where we simply denote P± i J2,aC by + and -, and we suppress the energy 

variable. In (6 · 4) and in the following, we understand K (p, p') to be the K­

matrix below the threshold. Putting p'=p0 (E) and p=P±iJ2,aC in (6·4), we 

have a coupled equation for K(+,p0) and K(-,p0), 

{c+nj ~Kt(+, +)}K(+,Po)+nj ~K1(+, -)K(-,Po) =CKl(+,Po), 

(6·5) 

n j ~ K1 (-, +) K ( +, Po) + {c + n j ~ K1 (-, -)} K (-,'Po)= Z:K1 (-,Po), 

which is solved to give 

K(+,Po)= dZ()[cxl(+,Po)+nj ~ {Kl(-, -)Kl(+,Po)-Kl(+, -)Kl-,Po)}], 

K(-,Po)= d~)[(Kl(-,Po)+nj ~ {K1(+, +)KI(-,po)-KI(-, +)KI(+,Po)}], 

(6·6) 
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1152 F. Iwamoto 

where 

d (() = (
2 + rc j ~ ( {K1 ( +, +) + K1 (-,-)} 

The formula for the phase shift o0 below the threshold is derived from (6 · 4) 

by putting p = p' =Po (E) and inserting (6 · 6), 

- Vo tan Oo = K (Po, Po) = K1 (Po, Po) - n (() , 
7C d(() 

(6·8) 

where 

+ K1 (Po, -) K1 ( + , + ) K1 (-, Po) - K1 (Po, -) K1 (-, + ) K1 ( + , Po)}. 

(6·9) 

This formula gives the phase shift below the threshold. In particular, the re­

sonance is determined by d (() = 0. The resonance exists below A if and only 

if the equation d (() = 0 has a real positive root for (. Of course, it is not dif­

ficult to rederive from (6 · 8) Eq. (5 ·17) for small (. 

§ 7. Interference effects 

As generally shown in § 5, the Raman spectrum does not diverge at the 

threshold, and the matrix elements La for eigen-channels varies as L 1 r...~ 0 (1) and 

L 2 r...~L 3 r...~O(./;;), although the density of states is proportional to 1/z. In order 

to see the physical implication of the result, we study the wave functions in this 

section and show that the destructive interference occurs between waves of 

negative group velocity (it= 2) and of positive group velocity (it= 3). 

We first consider in the symmetrized channels the wave function Ua (r), 

which is connected with the eigen-channel wave function Ua (r) by Ua (r) = 

"L.aUa (r) haa· From (2 · 23) its asymptotic form for large r slightly above the 

threshold A is 
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On the Raman Scattering in Liquid Helium 

exp (ioa) } sin (p1r+ Oa), 
vv1 

exp Cia a) ~ 2 : sin ( .j2ji zr+ Oa) cos Pr, 

a=1, 

a=2, 

a=3. 

1153 

(7 ·1) 

We can see the characteristic beat arising from the interference between wa~es of 

..l=2 and ..l=3; P2=P- .J2fJ.Z and Ps=P+ .J2fJ.Z· 

Next we calculate the eigenchannel wave function Ua (r). From (5 ·10) 

and (5 ·12) we have 

Ua=l (r) r-v exp (ioQ) L/ ;; sin (p1r+ OQ) - {/2/f. t cos ( .J2/f. zr+ OQ) sin Pr 

- {/2/f. u sin ( .J2fJ. zr+ OQ) cos Pr} + 0 (z), 

Ua= 2 (r) rv i ~~ sin ( .j 2/f. zr- ~ ) sin Pr + 0 (z
1
1

2
) , 

(7 ·2) 

From the above formula we can see that Ua= 2 and Ua=s are of the order of 1/ ..;; 

at very large r( .J2fJ.zr?:;1) due to flux normalization, while Ua=t is 0 (1). How­

ever, Ua= 2 and Ua=s become of the order of ..;; for small z ( .J2/f.zr::s;I). Notice 

that the asymptotic formulas for Ua= 2 and Ua=s are valid as long as Pr?:;I. We 

remark that the origin of such a destructive interference is traced back to the 

sign factor 6>. in Eq. (2 ·16) and to the infinite density of states at the threshold. 

Finally, we discuss the asymptotic form of the wave function at the resonance. 

Because the formalism developed in § 6 is too general, we employ the separable 

approximation given in § 4. At the resonance Eq. ( 4 · 2) gives 

T(p p' E)= -i V(p) V(p') . (7·3) 
- ' ' r _](Er) 

Inserting (7 · 3) into (2 ·11) and performing the integration In (2 ·15) for large 

r, we can easily show that 

nV(P) V(Po)j 2/f. 
u 0 (r) rvi cos p 0r+ i I(Er) Ll- Er exp (- J2p. (J- Er)r) sinPr 

(7 ·4) 

at the resonance. The first term in (7 · 4) is the incoming and the outgoing 

spherical waves of momentum p0 (Er) with the phase shift n/2. The second term 
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1154 F. Iwamoto 

represents a bound state. formed by the waves near the mm1mum momentum P. 

We notice that the waves near P interfere constructively to form the bound state. 

The change of the interference nature from above to below the threshold reflects 

upon the analytic behavior of the reaction matrix K as explained in § 6. 

§ 8. Discussion 

We have shown that the final state interaction between the pair of excita­

tions has a drastic influence on the Raman spectrum at the threshold, and in 

general the spectrum has no peaks just at the thresholds contrary to the infinite 

density of states. We remark, however, that the final state interaction makes 

little change to the integrated spectrum, 

(8·1) 

where the energy range E2 - E 1 is wider than . the strength of the pair interac­

tion, E 2 - E1> I W (p, p') I, because the interaction TV (p, p') induces a unitary 

transformation which makes 1Jf, <-) with energy E, be a superposition of non­

interacting two-particle states BP + B!p1Jf0 with energy about in the range E,- I WI 
1"./E, +I WI, and we have from (3 · 7) 

(8·2) 

Experimene) suggests s+>O, s_<O at the threshold L1 and s+>O, s_>O at J', 

and indicates no sharp resonances. It is highly desirable to perform the experi­

ment at lower temperature and with sharper energy resolution in order to have 

informations about the interactions between phonon-rotons. 

Experimene) shows that the scattered light is highly depolarized. As noticed 

by Stephen,3
) this property is probably due to the dipole-dipole interaction between 

helium atoms; the dipole-dipole interaction leads to the D-wave form factor T 2 (p). 

In this connection we remark that measurements on the angular distribution of 

the scattered light irrespective of its polarization will also tell us the relative 

magnitudes of the S-wave and D-wave form factors. 

Raman scattering gives us informations about the states of total momentum 

0 almost zero. However, there is a high-density band of two-particle states with 

mean energy about 20°K extending from Q = o to around 0 = 4A-1
• This band 

seems to be found by the neutron scattering experiment of Cowley and W oods.7
) 

Analysis of the .band_ is an interesting problem. At nonzero 0 the angular mo­

mentum is no longer a good quantum number. As 0 increases from zero, S-, 

D-, ···-waves are mixed with each other. Such an analysis will shed light on 

the structure of phonon-rotons as well as the high density band. 

The author has profited from conversations with Dr. M. Kato and with Dr. 

T. Terasawa on some aspects on the scattering theory. 
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Appendix 

A) Asymptotic form of the wave function. We derive Eq. (2 ·16). By inserting 

the well-known formula 

1 p 
-

E- E (p) + i'Yj E- E (p) 
ireo(E-E(p)) (A·1) 

into (2 ·11) and by using the asymptotic form i~prj~ (pr) "-'Sin pr for even l, Eq. 

(2 ·15) is written as 

u>- (r) "-'Sin P>-r- ire± I dp I . Ttt>- sin pP-r+ P f sin prT(p, P>-, E) dp. 
/1=1 dE P='P/1 E- E (p) 

(A·2) 

The range of the integral in (A· 2) is divided into three parts, each containing 

p P (!1 = 1, 2, 3) . One part of the integral containing p P- in its range is 

1 s (sin pP-r cos x+ cos pP-r sin x) T(pP- + xjr, P>-, E) 
-P ~ 
r E-E(pP-+x/r) 

(A·3) 

by using the integral variable x = (p-pp) r. For large r the range of the x-integral 

becomes - oo""' + oo, and we have 

(A·3)=-re(dp) TP-,._cospPr (A·4) 
dE P=P/1 

by making use of f~co(sinx/x)dx=re. Combining (A·2) and (A·4) we have 

Eq. (2·16). 

B) Proof of Eqs. (2 · 25) and (6 · 4). We use a lemma: The integral equa­

tion for ¢ (p, p'), 

¢ (p, p') = W (p, p') + f W (p, p") { G1 (p") + G2 (p")} ¢ (p", p') dp", (B ·1) 

is rewritten with the solution X (p, p') of the integral equation 

X (p, p') = W (p, p() + f W (p, P"") G1 (p") X (p", p') dp'' (B·2) 

as 

¢ (p, P') = X (p, p') + fx (p, p") G2 (p1
') ¢ (p", p') dp". (B·3) 

The lemma is easily proved by putting p=q in (B·3), multiplying o(p-q)­

W (p, q) G1 (q), integrating with respect to q, and using (B · 2). 

If we put in the lemma 

G ( )- p 
1P-E ()' -E jY 

G2 (p) =- ireo(E- E (p)) =-ire :E_!_o(p-p,J, 

(B·4) 

ll v p 
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1156 F. Iwamoto 

and identify ¢ = T and X= K, we have at once the Heider equation (2 · 25). 

By taking in the lemma 

G1(p) = 2p ( ) +jfl. !£{o(p-P+iJ2p.()+o(p-P-iJ2p.()}, 
J-( - E p 2 ( 

G2(p) = -jfJ. !£{o(p-P+iJ2p.()+o(p-P-iJ2p.()}, 
2 ( 

(B·5) 

Eq. (6·4) is derived. 

C) Analytic properties of the principal value integral. We show that the 

integral 

J(E)=Pf f(p) dp 
E(p) -E 

(C·1) 

is a regular function of E near J when defined at E>J, assuming J(p), E (p) 

to be regular functions of p. On the contrary, when defined at E<J, J(E) is 

an analytic function of J J-E except a term proportional to 1/ J J-E. 

We first consider a part O<p<P'. For this part the integral is rewritten 

as 

i
J' F( E) 

J1 (E) = P ~--dE , 
0 E-E 

(C·2) 

where F(E) =f(p)dpjdE is a regular function of E. We write J 1 (E) as 

J1(E) = F(E)P [
4

' ~+ [ 4

'F(E)- F(E)dE. 
Jo E -E Jo E -E 

(C·3) 

The first term is F(E)ln(J'-E/E), which is regular near J. The integrand 

of the second term is a regular function of E - E, so the integral is also regular 

with respect to E. 

Next we choose q0 such that E (P-q 0) and E (P+ q0) are slightly above E. 

For the part P'<p<P-q0 and p>P+q0, we have 

J2(E)= f. f(p) t ( E-J y~dp. 
E (p) - J n=O E (p) - J ) 

(C·4) 

Because (E-J)/(E(p)-J)<1 for this part, J 2 (E) is regular. 

Finally the rest part, P-q0<p<P+q0, is written as 

Js (E)= 2p.P JHo 2 f(P+ q) dq, (C · 5) 
-qoq -2p.(E-J) 

where we approximate E (p) = J + (p- PY /2p., and put q = p- P. Expanding 

f(P+ q) with respect to q, we have, when E>J, 

+ 2p.qof" (P) + · · ·, (C·6) 
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which is regular with respect to E- J. When E<J, we have 

Ja(E) = {f(P) -fJ.(Ll-E)f"(P) + ···}J L12_!:E(n-2 tan_ 1 ../ 2 !J.~-E)) 

+ 2!J.qof" (P) + ... , (C · 7) 

which contains 

nj J 2_!: E {f( P) - fJ. (J- E)f" (P) + · · ·} 

apart from the analytic continuation of (C · 6). 

D) Analytic property of K(p,p', E>J). To show that K(p,p', E>J) Is re­

gular, we have from Eq. (2·24) 

K(p, p', E>J) = W(p, p') + p s W(pt~~ ~~f",p') dp" 

+ s w (p, p") p w (p"' p"') . fP w (p"'' p') dp~' dp"' + .... 
E- E (p") E- E (p"') 

(D·1) 

Appendix C says that each term in (D ·1) is regular with respect to E, and the 

series will converge uniformly, at least, when the interaction W is sufficiently 

weak. 
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