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ABSTRACT

Ramey and Alam (1979) proposed a closed sequential procedure
for selecting that one of k > 2 multinomial events which has the
largest probability. They provided tables of constants necessary
to implement their procedure and, based on these constants, they
calculated certain performance characteristics of their procedure.
In the course of devising a fundamentally different procedure and
studying its performance, we had occasion to check their constants
and associated performance characteristics. We found quite a few
of them to be incorrect. In the present paper we provide extended
sets of correct constants and associated performance character-
istics (some of which were not provided by Ramey and Alam), and
describe the methods that we used to calculate them.

1. INTRODUCTION AND SUMMARY

Ramey and Alam (1979) proposed a closed sequential procedure
for selecting that one of k > 2 multinomial events which has the



largest probability. They provided tables of constants ((r,N)-
values) necessary to implement their procedure in order that it
would guarantee a specified probability requirement, and at the
same time possess a certain desirable property. These constants
were then used to study the performance of their procedure relative
to that of certain competing procedures. They concluded that their
procedure was "uniformly better" than these procedures with respect
to an important criterion of interest.

In the course of devising a fundamentally different competing
procedure, Bechhofer and Goldsman (1985) (B-G), and studying its
performance, we had occasion to check the accuracy of their con-
stants and associated performance characteristics. We found quite
a few of their calculated results to be incorrect. In the present
paper we provide extended sets of correct (r,N)-values and associ-
ated performance characteristics (some of which were not provided
by Ramey and Alam), and describe the methods that we used to calcu-
late them. These corrected results do not change the basic
conclusions of Ramey and Alam. Using their criterion of goodness,
their procedure appears to be the best one proposed to that date
for the problem under consideration. (Their procedure was con-
structed in such a way that it must perform at least as well as the
sequential procedures to which it was being compared.)

With the corrected set of (r,N)-values and associated perfor-
mance characteristics we were then able to make fairer comparisons
between the performance of their procedure and that of our new pro-
cedure described in B-G (1985). In that paper we show that in
several important respects our procedure is superior to theirs.

2. HISTORY OF THE PROBLEM

til

Let lj - (x]j,xzj,...,xkj) (j = 1,2,...) denote independent
vector-observations from a single k-variate multinomial population
(M) having an unknown probability vector p= (p],pz,...,pk).

Here p. (0 £p; &0, E:=1 Py = 1) denotes the probability of the



event Ei (1 <1< k), the events E,,E ..,E. being mutually

1°72°° k
i =1 or 0 according as E,i does or does not
occur on the jth vector-observation (hereinafter referred to simply

exclusive, and X

as the jth observation) (1 <1 <k, J =1,2,...). Let

Pr13 £ Pr2] L e & Prk] denote the ordered pi-values. It is
assumed that the experimenter has no prior knowledge concerning the
values of the p; or of the p[j]; it is further assumed that the
pairing of the P[5 with the Ei (1 £1,J £ k) 1is completely
unknown. The category associated with p[k] will sometimes be
referred to as the "best" category.

We are interested in statistical procedures which are devised
to select the best category with appropriate control over the
probability of a correct selection (P{CS}); we say that a correct
selection has been made if the event associated with p[k] is the
one selected. We limit consideration to procedures which guarantee
the following probability requirement:

Prob{CS} 2 P* whenever pr 2 8*pry q7. (2.1)

Here {o*,P*} (1 < 6* < =, 1/k < P* < 1) are constants specified
by the experimenter before the start of experimentation. We refer
to (2.1) as an indifference-zone probability requirement.

2.1 The Bechhofer-Elmaghraby-Morse Procedure

The requirement (2.1) was first stated for this problem by
Bechhofer, Elmaghraby and Morse (1959) (hereinafter referred to as
B-E-M) who proposed a single-stage procedure to guarantee (2.1).

For their procedure n independent observations are taken in a

single stage of sampling from 1. Let Yo = (y1n’y2n""’ykn)

where y, = Zg=] x.. (1 <1 < k) denotes the outcome of the

experiment, and y[;;n Y21 £ s 2 Yk denote the ordered
values of the Yiq+ The B-E-M procedure selects as "best" the
category associated with y[k]n’ or selects one category at
random from among all categories which have yin-values tied with

Y[k]n® Kesten and Morse (1959) proved that the P{CS} is



minimized with respect to p subject to p[k] 3ke*p[k_13 when

~

the p, (1 < i< k) are in the so-called least-favorable (LF-)

configuration which is given for this procedure by

Pre] = ®Prk-11 Prk-11 T POl (2.2)

B-E-M choose n as the smallest integer that will guarantee (2.1)
when (2.2) holds. They also provide tables of the P{CS} under
(2.2) for selected values of k, 8* and n; a more comprehensive
table (Table H.1) is given in Gibbons, Olkin and Sobel (1977).

2.2 The Cacoullos-Sobel Procedure

Cacoullos and Sobel (1966) (hereinafter referred to as C-S)
proposed a closed inverse sampling sequential selection procedure
to guarantee (2.1). For their procedure, observations are taken
one-at-a-time until the count of any one category is equal to N,

and at that point the category having this largest count is
selected as best (no randomization ever being necessary). C-S
proved that (2.2) is the LF-configuration for their procedure (as
it was for the B-E-M procedure). They choose N as the smallest
integer that will guarantee (2.1) when (2.2) holds; C-S also
provide tables of N to implement their proceddre. It is to be
noted that the maximum possible number of observations that need be
taken by the C-S procedure is k(N-1)+1.

2.3 The Alam Procedure

Alam (1971) proposed an open sequential selection procedure to
guarantee (2.1). The procedure is said to be open since it is not
possible, before the experiment starts, to state an upper bound (as
can be given for the C-S procedure) on the number of observations
required to terminate sampling. For Alam's procedure observations

are taken one-at-a-time until YikIm = Y[k-1Im = T where
y. = Zm X.., and y < e <y are the ordered
im j=1 "3’ (m — ~ [k]m
yim-values after m observations have been taken (1 <1 <Kk,
m=1,2,...); r 1is prespecified as the smallest integer that will

guarantee (2.1). (Actually, Alam's proof that (2.1) is guaranteed



is given only for k = 2.) Values of r which are gﬁégg for

k = 2 and are approximate (being based on very Jimited Monte Carlo
(MC) sampling) for k = 3,4,5 are provided by Alam in his Table I;
based on his r-values he also gives MC estimates of the expected
number of vector-observations (E{n}) to terminate his procedure
when (2.2) holds.

Alam's procedure has the same form as an open sequential
selection procedure that had been proposed earlier by Bechhofer,
Kiefer and Sobel (1968) (hereinafter referred to as B-K-S), and
which they had proved will guarantee (2.1) for all k 22 and
{o*,P*] when (2.2) holds. The procedure given in Section 5.3.3 of
B-K-S can be simplified in a straightfdrward way using their
equation (12.9.4) with t =1 to obtain the Alam procedure. B-K-S
set r equal to the smallest integer equal to or greater than
[Tog{(k-1)P*/(1-P*)}]/10og 6*, and this choice of r will
guarantee (2.1) for all k > 2 and {e*,P*} when (2.2) holds.
However, this r 1is very conservative for k > 2, i.e., it may
result in P{CS|LF} >> P*, and a smaller r would reduce the
overshoot (P{CS{LF}-P*) as well as the expected number of
observations when (2.2) holds.

2.4 The Ramey-Alam Procedure

Ramey and Alam (1979) (hereinafter referred to as R-A)
proposed a closed sequential selection procedure to guarantee
(2.1). That procedure is a composite of the C-S and Alam
procedures in that observations are taken one-at-a-time until
either YikIm * N or YkIm ~ Yk-1m = " (m=1,2,...),
whichever occurs first. The (r,N)-pair under consideration is

incorporated in the stopping rule, and all pairs which guarantee
(2.1) are eligible for consideration. R-A propose to choose that
‘pair which minimizes E{n} when the p, (1 <1 < k) arein the
configuration (2.2). (The (r,N)-pair chosen in this way will not
in general have the same r-value (N-value) as the Alam (C-S)
procedure when all guarantee (2.1); however, for simplicity of
notation we use the same symbols.) For the R-A procedure we shall
hereinafter denote E{n} when the p, (1 <1 <k) are in the



configuration (2.2) by E{n‘LF} (although (2.2) has not yet been
proved to be LF for their procedure); we shall denote E{n} when
the P; (1 <1 < k) are in the configuration p 1] = p[k], i.e.,
EP}. Since the
P{CS} s an increasing function of r and N, the C-S and the

the equal-parameter (EP-) configuration, by E{n

Alam procedures can be regarded as special cases of the R-A
procedure (the C-S (Alam) procedure being the R-A procedure with
r=eo (N=w)), Thus it is clear that in terms of minimizing
E{n,LF}, the R-A procedure can perform no worse than either the
Alam procedure or the C-S procedure when each uses its appropriate

value of (r,N), r or N to guarantee (2.1).

Remark 2.1: A perhaps more interesting criterion for choosing
(r,N) for the R-A procedure might be to again limit consideration
to all pairs which guarantee (2.1) but then to choose that pair
which minimizes E{nlEP}, obtaining in this way a minimax proce-
dure within the class being considered. This is analogous to the
approach adopted by Tamhane and Bechhofer (1977,1979) for the

normal means selection problem.

R-A in their Table 1 give for selected values of (k,P*,6*),
the values of (r,N) which they claim minimize E{n’LF} subject
to (2.1). Using these (r,N)-values they also provide in Table 1,
associated "exact" or estimated values of E{n‘LF}; they state that
their results for k =2 and 3 are based on exact calculations
while their estimates for k = 4, 5 and 6 are based on Monte Carlo
simulations, each employing 1000 replications. Using these results
they then conclude, based on the entries in their Table 2, that the
R-A procedure yields values of E{n‘LF} that are no larger (and
sometimes smaller) than those of the B-E-M, C-S and Alam procedures
when (r,N), n, N and r, respectively, are each chosen to
guarantee (2.1). Of course, this had to be the case for the C-S
and Alam procedures, but it was of interest to determine by how
much E{n}LF} was reduced.

In the course of devising a fundamentally different procedure
than that of R-A, and which could be regarded a§ a competing one to



theirs, we had occasion to check their (r,N)-values and associated
E{n'LF}-values. (They did not provide P{CS’LF}- or E{n'EP}-
values.) We found quite a few of their (r,N)-values to be
incorrect for k 2 3; also, even when their (r,N)-values were
correct, the associated E{n'LF}-values (given in their Table 1)
were often incorrect., In the next section we provide correct sets
of (r,N)-values and associated P{CS’LF}-, E{n'LF}- and E{n,EP}-
values for k = 2(1)5,10 and the same (P*,p*)-combinations as in
R-A's Table 1. R-A gave E{n’LF}-va1ues in Table 1 to two decimal
places; in many cases we were able to give E{n'LF}- and E{nIEP}-
values correct to four decimal places. In Section 4 we describe
the methods that we used to calculate these quantities.

3. CORRECT (OR IMPROVED) RAMEY-ALAM (r,N)-VALUES, AND ASSOCIATED
P{CS|LF}-, E{n|LF}- AND E{n|EP}-VALUES

We give in Tables IA, IIA, IIIA, IVA and VA for k = 2,3,4,5
and 10, respectively, our calculated correct (or improved) values
of (r,N) and the associated P{CS|LF}, E{n'LF} and E{n'EP} for
the Ramey-Alam procedure.

In Tables IB, IIB, IIIB and IVB for k = 2,3,4 and 5, respec-
tively, we give the original R-A (r,N)-values which are incorrect;
the correct values of P{CS’LF} and E{n’LF} associated with
each incorrect (r,N)-value are given in their respective columns.
(R-A did not give P{CS’LF}.) It will be seen that the (r,N)
errors are of two types: 1) The original (r,N)-value yields a
P{CS|LF} < P*, or ii) the original (r,N)-value yields a
P{CS|LF} > P* but a different (r,N)-value yields a P{CS’LF} > p*
with a smaller E{n’LF} than that yielded by the original one.
Thus in Table IB for (k = 2, P* = 0.95, o* = 2.4) the incorrect
(r,N) = (3,6) yields P{CSILF} = 0.91130 < P* = 0.95 while in
Table IA the corresponding correct (r,N) = (4,9) yields P{CSILF}
= 0,95477 > P* = 0.95. In Table IIB for (k = 3, P* = 0.75, e* = 2.0)
the incorrect (r,N) = (3,6) yields P{CS’LF} = 0.77287 > 0.75
with E{n[LF} = 8.8250 while the correct (r,N) = (4,5) yields
P(CS[LF} = 0.75556 > 0.75 with E{n|[LF} = 8.8087 < 8.8250; the



remaining three incorrect (r,N)-values in Table IIB are associated
with P{CS*LF}-values < p*x, (Additionally, several of the E{n‘LF}
entries in the R-A Table 1 are incorrect even though their (r,N)-
value is correct. For example, for k = 3, P* = 0.90, e* = 2.0 and
1.6, R-A give E{n‘LF} = 15.01 and 34.77 respectively, while our
Table IIA gives E{n‘LF} = 16.5142 and 37.8247, respectively.)

A1l of the entries associated with P{CS‘LF}, E{n‘LF} and
E{n‘EP} for k = 2 and 3 and certain entries for k =4 and 5
were calculated using an iterative method which yields exact
results (see Section 4 and the Appendix), and are correct to the
number of decimal places given. It would have been prohibitively
costly to calculate exact values when N is large, and hence all of
the entries not calculated using the iterative method were computed
using Monte Carlo (MC) sampling. Below each entry computed using
MC sampling we give, in parentheses, the estimated standard error
of the number above it, while to the left of each such entry we
give, in parentheses, the number of independent replications (in
thousands) on which the corresponding entries are based. Thus,
e.g., in Table IIIA for P* =0.90, &* = 1.6 we have (r,N) =
(7,33). The associated estimated values of P{CS\LF}, E{n‘LF} and
E{n‘EP} are 0.9098, 63.33 and 89.82, respectively, with estimated
standard errors of 0.0018, 0.20 and 0.29 based on 24,000, 24,000
and 12,000 replications, respectively. All P{CS‘LF} estimates
obtained by MC sampling and recorded in Tables I1IIA, IVA and VA are
at least one standard error greater than the specified P*. In some
instances a slightly smaller N-value than the one recorded might
also have yielded P{CS‘LF} > P*; however, in order to save compu-
ting costs we did not attempt to pin down N exactly. It is for
this reason that we refer to our results as correct (or improved).

Although R-A did not give any results for k = 10, we have
done so in Table VA. Our purpose in obtaining estimates for
k = 10 (instead of for k =6 as R-A had done) was to study how
E{n‘LF} and E{niEP} changed with increasing k; the results for
the R-A procedure were then compared with the corresponding

Bechhofer and Goldsman (1985) results in the latter paper.



TABLE IA

Correct Ramey-Alam (r,N)-values for k = 2
with associated values of P{CS‘LF}, E{n'LF} and E{n’EP}

p* o* | (r,N) P{CS‘LF} E{n'LF} E{n;sp}
3.0 | (1,1) | 0.75000 1.0000 1.0000

075 | 24 | (2,2) | 0.79137 2.4152 2.5000
. 2.0 | (2,3) | 0.77366 3.0864 3.2500
1.6 | (3,5) | 0.75588 5.9560 6.2578

3.0 | (2,12) | 0.90000 3.2000 3.9985

090 | 24 | (3,6) | 0.91130 5.7177 6.9434
. 2.0 | (4,8) | 0.90325 8.8993 | 10.5862
1.6 | (5,21) | 0.90057 | 17.0012 | 21.4820

3.0 | (3,6) | 0.95222 5.2514 6.9434

0.95 | 2.4 | (4,9) | 0.95477 8.4651 | 11.3796
2.0 | (5,14) | 0.95365 | 13.0906 | 17.8976

TABLE IB

Original incorrect Ramey-Alam (r,N)-values for k = 2
with associated values of P{CS'LF} and E{n‘LF}

p* o* | (r,N) P{CS’LF} E{nlLF}

0.95 | 2.4 (3,6)1 0.91130 5.7177

fIncorrect value of (r,N); the correct values of P{CSiLF} and
E{n‘LF} associated with this incorrect (r,N) are given in their
respective columns,



TABLE TIA

Correct Ramey-Alam (r,N)-values for k = 3
with associated values of P{CS‘LF}, E{n’LF} and E{niEP}

p* o* | (r,N) P{CS‘LF} E{n‘LF} E{n#EP}
3.0 | (2,3) | 0.79615 3.6844 4,2469

0 75 | 2.4 | (2,5) | 0.76008 4.7031 5.5431
: 2.0 | (4,5) | 0.75556 8.8087 9.6290
1.6 | (4,12) | 0.75722 | 18.2404 | 20.9289

3.0 | (3,5) | 0.90037 | 6.7618 8.7405

090 | 24 | (4,8) | 0.91043 11.7850 | 15.5062
: 2.0 | (4,15) | 0.90149 | 16.5142 | 23.6043
1.6 | (6,30) | 0.90207 | 37.8247 | 53.0739

3.0 | (4,7) | 0.95051 9.7676 | 13.7312

0.95 | 2.4 | (4,14) | 0.95090 | 13.8371 | 22.8192
2.0 | (5,22) | 0.95052 | 22.4013 | 37.0271

TABLE 11IB

Original incorrect Ramey-Alam (r,N)-values for k = 3.
with associated values of P{CS‘LF} and E{n’LF}

p* o* | (r,N) P{CS‘LF} E{njLF}

t 0.74679 4.4339
t 0.77287 8.8250
)

2.4
0.75 | 2.0
1.6 t1 0.74692 | 17.4847

0.90 { 2.4 (3,20)f| 0.89896 9.7068

tIncorrect value of (r,N); the correct values of P{CS‘LF} and
E{niLF} associated with this incorrect (r,N) are given in their

respective columns.



TABLE IIIA

Correct Ramey-Alam (r,N)-values for k = 4
with associated values of P{CS*LF}, E{niLF} and E{n’EP}

p* o* | (r,N) P{csiLE} E{niLF} s{n{EP}
3.0 | (2,4) 0.77178 5.1483 6.3858
o5 | 24 | (3:5) 0.77309 9.2210 10.9002
' 200 | (3.8) 0.75253 13.3713 16.1677
16 | (a.20) 0.7514] 30.0511 37.2898
3.0 | (3,7) 0.90912 9.8687 14.7088
000 | 204 | (3110) 0.91069 16.9796 243486
90 2% | (5015) 0.90602 27.9279 39.2176

6 1 (7.33) 0.9098 53,33 59.87

(28) (070018) |28 (0.20)  |(12)(0.29)
3.0 | (4,9) 0.95774 13,7471 22.1928
0.95 | 2.4 | (5.13) 0.95310 22.2965 34.6525
2.0 | (6.21) 0.95340 36.2551 57.5616

TABLE 1118

Original incorrect Ramey-Alam (r,N)-values for k = 4
with associated values of P{CSILF} and E{n‘LF}

p* o* | (r,N) P{csiLF} E{n’LF}

3.0 (2,5)t 0.78931 5.4949

0.75 | 2.0 (3,9)t 0.76612 14,0139

1.6 (4,19)% 0.74770 29.6979

3.0 (3,8)t 0.91932 10.2283

2.4 (4,9)1 0.89696 16.1806

0.90 | 2.0 (4,19)t 0.88985 23.6407
1.6 (6,44)1 (8) 0.8932 (8)57'67
(0.0035) (0.40)

0.95 | 2.0 (5,23)t 0.94033 31.1514

tincorrect value of (r,N); the correct values of P{CS'LF} and

E{n‘LF} associated with this incorrect value are given in their
respective columns.



TABLE IVA

Correct Ramey-Alam (r,N)-values for k = 5
with associated values of P{CSILF}, E{nfLF} and E{niEP}

p* o* | (r,N) P{CS‘LF} E{ntLF} E{n’EP}

3.0 | (2,5) 0.75436 6.6614 8.7608

2.0 | (306) 0.76827 126540 15.5788

0.75 | 2.0 | (3011) 0.75041 18.8469 24 .2930
T 5 T (5.79) 0.7533 1860 58.56
(24)5%0028) |12 (001a)  |112) (0320)

30 [ (3.8) 0.90462 125819 199499

20 | (&) 0.90458 21.8719 324554
7.0 [ (5.18) 0.9093 37.76 56.94
0.90 (24) 5%0019) |®¥1002)  |112) (0e)
T 1 17.36) 0.9076 80.733 122.00
(36) (9 0016) [13€)(0i21) |112) (0i38)

30 | (4.70) 095730 17,3659 29,8049
>4 T (5.75) 0.9577 25.05 78.76
0.95 (28) 9%0013) | (0%09)  [U2) (0013)
2.0 1 (6,23) (24)(8:8812) (24>?8j§;) (12) Zgﬁgﬁ)

TABLE IVB

Original incorrect Ramey-Alam (r,N)-values for k = 5
with associated values of P{CS'LF} and E{n’LF}

p* o* | (r,N) P{csiLF} E{n’LF}

. . 40.

0.7 | 116 | 2T ey 0-122, (8)(0:38)
) T ) .

S Rl Al O e B!
T. T 91 .

g I e e

2.4 | (4,28)1 0.9446 24.42

0.95 (8)(0l0026) |®)(017)

"0 Ee) G0z |03z

tIncorrect value of (r,N); the correct values of P{CS|LF} and

E{nfLF}
respective columns,

associated with this incorrect value are given in their

12



Correct Ramey-Alam (r,N)-values for k = 10

TABLE VA

with associated values of P{CS'LF}, E{nILF} and E{n'EP}

p* Ch (r,N) P{CS‘LF} E{n’LF} E{n'EP}
3.0 | (3,6) 0.7803 20.04 27.21
( (4)00065) | @) (013) |1 (0.13)

2.4 | (3,10) 0.7605 32.22 44 .66
- (4)0%0067) | ) (0i27) | (0:32)
) 2.0 | (4,14) 0.7626 58.62 76.17
( (8)(0.00a8) | &) (0.29) |*) (042)
I e e W

3.0 | (4,9) 0.9047 31.33 48.23
(24)(9°0019) |12%) (0.08) |*) (0.18)

2.4 | (4,16) 0.9060 50.36 85.87
- ( (12) 970027) |112) (0.24) |*) (0252)
) 2.0 | (5,25) 0.9030 87.61 145.87
(24) 5" 0019) |12%) (0l29) |*) (0.85)
T g [ [

3.0 | (4,13) 0.9566 36.17 71.70
( (12)9%0019) |12 (0i17) |**) (0:36)

2.4 | (5,19) 0.9529 63.26 116.16
0.95 (12) 9%0019) |12) (0i28) |'*) (0.53)
o [T gt [ e [T
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4, METHOD OF CALCULATION OF P{CS}- and E{n}-VALUES

As mentioned earlier, most of the P{CS‘LF}-, E{n’LF}- and
E{n‘EP}—ca]cu]ations for each (k,P*,e*) and (r,N) pair were
carried out using an iterative method, described in Appendix A,
which yields exact results. For each (k,P*,p*) combination an
efficient search procedure was carried out on the (r,N)-grid in
order to determine the eligible set of (r,N)-values which yielded
P{CSiLF} > P*; within the eligible set, that (r,N) pair was found
which minimized E{n|LF}. This tedious and costly search was aided
by the fact that P{CS‘LF} and E{n‘LF} are increasing functions
of both r and N; thus for each fixed r, the smallest N
which guaranteed P{CS!LF}‘Z p* yielded an (r,N) in the eligible
set. Because of cost considerations, all searches were restricted
to N <50 (except for k = 10 where we searched to N < 60).

We checked the exact results obtained using our iterative
method against exact results obtained using complete enumeration of
sample paths and found them to agree; however, the latter could be
calculated only for moderate values of (k,r,N). Next we checked
the results obtained using our simulation program against the exact
results obtained using our iterative method, and found them to be
in very close agreement--well within sampling error based on large
numbers of replications. Since MC simulation was much less costly
to carry out than exact calculations, especially for large N, the
former was used in such cases. Because of the cross-checking that
we have conducted, we have confidence in the results cited.

The MC simulations were carried out on CDC 6500 and CDC 6600
computers at Purdue University and on an IBM 3081 at Cornell
University. The random variates were generated using the IMSL
(1982) subroutines GGUBS or GGMTN. Our exact results were

calculated using the machines on Purdue's VAX network.

5. CONCLUDING REMARKS

As noted in Section 3 and supported by the entries in the

tables, quite a few of the R-A (r,N)-values are incorrect, several
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of them considerably so. We suspect that the incorrect entries are
a consequence of errors in the methods of calculation and/or in the
MC simulation program that was used (or perhaps the simulations were
not based on a sufficient number of replications). However, the
correct results support the basic Ramey-Alam conclusion--namely that
their procedure yields E{n‘LF}-values which are no larger than (and
sometimes quite a bit smaller than) those obtained with the corre-
sponding B-E-M, C-S or Alam procedures. Whether or not minimizing
E{n’LF} is the most meaningful criterion when comparing procedures
js an open question. In B-G (1985) we focus not only on minimizing
E{n’LF} but also on minimizing E{n‘EP}.

APPENDIX
ITERATIVE METHOD OF CALCULATING EXACT VALUES OF P{CSlLF}, E{n‘LF}
AND E{n|EP} FOR THE RAMEY-ALAM PROCEDU E
For given (k,P*,0*,r,N), we can calculate the P{CS‘LF},
E{n‘LF} and E{n‘EP} resulting from the implementation of the
Ramey-Alam procedure; the conjectured LF-configuration is given by

(2.2). We then search various values of r and N to find that
(r,N) pair which minimizes E{n‘LF} while satisfying P{CS‘LF} > P*.

Consider the counts at stage t of sampling,

Y“t ’)'Zt ,.‘.’ykt
t =1,2,... . The R-A procedure terminates sampling when either

Yl ~ Yik-11t =roor Yreje T N. Define #(1],12,...,1k) to
be the number of distinct paths of the sampling process
{yt, t =1,2,...} which lead to procedure termination exactly when

(y*‘t,yzt,-o.,ykt) = (l",lz,cc.,lk)c

Example: Suppose k = 2, r =2 and N = 3. Then #(2,0) =1 since
only one path of the sampling process leads to termination exactly
when (y]t,th) = (2,0), viz., y;*= (1,0), Yo = (2,0).

Obviously,
total number of number of paths to
#(11""’xk) = | paths to - (11,...,1k) for which
(1],...,2k) the R-A procedure

terminates en route
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®

Example: Suppose k =2, r = 2 and N = 3. We wish to calculate
#(3,1). Noting that the R-A procedure terminates (en route to

Yp = (3,1)) if y, = (2,0), we have:
4 Number of paths 2
#(3,1) = - (2,0) =4 - (§)1 =2
(3.1 = ) from (2,0) to (3,1) 1

It is clear that

#(1] ,12,...,1k) =

hoooh 5 75y (a-35)

i=1

- . E X z R z . . . #(j])Ot-ajk) (])
CO3T0 30 30 T Ay e Iy
a1 (T2 ny)!
where = is the multinomial coefficient.
! I
n],nz,...,nk n]!nz....nk.

Remark: By symmetry, #(1],...,1 ) = #(any permutation of
ll"”’lk)' Hence, we need only explicitly calculate the following
#(1],...,£k) S:

#(J2+F,32,J3,.--,Jk), 0<3, SN-r=1, 352 032 eee 23y (2)
and

#(N,32,33,.--,Jk), N-r <3y <N-T, Jp 2 J3 2 «ee 2 0y (3)

Any #(1],...,xk) which is not a permutation of (2) or (3) must

equal zero; this is so because it is impossible for the R-A proce-
dure to terminate at such (1],...,1k) values.

Remark: The #(1],...,1

manner:

k)'s are to be computed in an iterative

A. Initialize all #(«)'s to equal zero.

B. Using (1), left-lexicographically calculate only those #(-)'s
of the forms (2) or (3). By the above Remarks, we obtain (with no
further calculations) all #(e<)'s which are permutations of the
forms (2) or (3); all other #(+)'s equal zero:



#(j+r,3,0,...,0), h
#(j+r’j’] ’O”"9O)$
#(J+r9~39‘ " )0)"‘30)9

.

#(j+r§j ’1 !'\"”!])

#(j+r,i,2,0,...,0) #(e)'s of the
. form (2)

.

#(J+r+1,3+41,0,...,0)

.

#(N-T,N-r-1,N-r=1,...,N-r-1) )

#(N,N-r,O,...,O) h
#(N,N—r,1,0,...,0)
. > #(+)'s of the
. form (3)

4(N,N-T,N=1,...,N-1)

4
The left-lexicographic order of calculation is necessary since the
computation of #(x],...,xk) involves all of the previous #()'s.
"On the fly" storage of the values of these previous #(e)'s

avoids recursive re-computation in (1).

Suppose that p s in the LF-configuration. Without loss of

~

i = * i = . i -
generality, assume that p, = 8%p;, 1 2y0005k5 T80y Py = Pryqe
Then,

p{csiLF} =
N-r-1 N-r-1

Jo d J
T I A Lo PR RN )pM+rp 2p 3...p k
L s 23 /Py P2 P3 k
J,=0 j. =0
2 k

N-1 N-1 Jo J J
. . N Y2 “3 K
o oo L AN, L dge a3 IPyPy P3Py
32::0 szo

where M = M(i) = max(jz,j3,..‘,jk).

o~
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ok

= lj=p Ji0 M€

Letting p =

"
o
~o
i
~
>
e o]
i1}
D
*
-
oW
3
(=¥
(Vo)
1
w
———
1=
—
HE

have:

M+r M+r+S
p

.
P{CS;LF} e E BN, 55005000050y )8

v . . N _N+S

LD SERORUND SN 1S PV PYPPRI IR L R (4)
370 3,70

We remind the reader that many of the #(+)'s in (4) equal zero.

Now,

E{n,LF}

contribution to E{n|LF}
1 given that cell i s chosen

contribution to E{n'LF} contribution to E{n'LF} —}
n

it
B~ =

i

+ (k-1
given that cell 1 is chosen ( ) given that cell 2 is chose

r-1 N-r-1
= T eee L (MEreS)E(MErLI,,..d) )8
=0 jkzo

N-T  N-T
. . +
S T U T VICTR PUUPIR -

M+tr M+r+S
P

-1 N-r-1

r . . 32 e
+ (k']) L eee X (M+F+S)#(32,M+F,J3,...,Jk)e 2pM+r :

J
Fk1) T e T (S)E(GpuNadgeensady )0 R,
3,70

P

J
(M+r+S)#(M+r,j2,...,jk)pM+r+S[9M+r+(k-1)e 2]

it
o~1
~1

N-1 N-1 J
PRI (N4S)# (N5 5 eed 03T (k=108 20, (5)
I

E{nlEP} is obtained by setting & =1 and p = 1/k in (5).
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We note that the above expressions can be written somewhat
more efficiently for computational purposes; however, they become
more complex in appearance.
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