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Abstract. In earlier work, we described a “pathological” example of a
signature scheme that is secure in the Random Oracle Model, but for
which no secure implementation exists. For that example, however, it
was crucial that the scheme is able to sign “long messages” (i.e., mes-
sages whose length is not a-priori bounded). This left open the possibility
that the Random Oracle Methodology is sound with respect to signa-
ture schemes that sign only “short” messages (i.e., messages of a-priori
bounded length, smaller than the length of the keys in use), and are
“memoryless” (i.e., the only thing kept between different signature gen-
erations is the initial signing-key). In this work, we extend our negative
result to address such signature schemes. A key ingredient in our proof
is a new type of interactive proof systems, which may be of independent
interest.

1 Introduction

A popular methodology for designing cryptographic protocols consists of the fol-
lowing two steps. One first designs an ideal system in which all parties (including
the adversary) have oracle access to a truly random function, and proves the se-
curity of this ideal system. Next, one replaces the random oracle by a “good
cryptographic hashing function” such as MD5 or SHA, providing all parties (in-
cluding the adversary) with a succinct description of this function. Thus, one
obtains an implementation of the ideal system in a “real-world” where random
oracles do not exist. This methodology, explicitly formulated by Bellare and Ro-
gaway [1] and hereafter referred to as the random oracle methodology, has been
used in many works (see some references in [5]).

In our earlier work [5] we investigated the relationship between the secu-
rity of cryptographic schemes in the Random Oracle Model, and the security
of the schemes that result from implementing the random oracle by so called
“cryptographic hash functions”. In particular, we demonstrated the existence of
“pathological” signature schemes that are secure in the Random Oracle Model,
but for which no secure implementation exists. However, one feature of these
signature schemes was that they were required to sign “long messages”, in par-
ticular messages that are longer than the length of the public verification-key.

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 40–57, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



On the Random-Oracle Methodology 41

Thus, that work left open the possibility that the Random Oracle Methodol-
ogy may still be sound with respect to limited schemes that only sign “short
messages” (i.e., messages that are significantly shorter than the length of the
public verification-key). In this work we extend the negative result of [5] and
show that it holds also with respect to signature schemes that are memoryless,
and in addition are only required to sign “short messages”. That is:

Theorem. 1 (sketch) There exists a memoryless (i.e., ordinary) signature
scheme that is secure in the Random Oracle Model, but has no secure imple-
mentations by function ensembles. Furthermore, insecurity is demonstrated by
an attack in which the scheme is only applied to messages of poly-logarithmic
length (in the security parameter).

Indeed, the improvement of Theorem 1 over the corresponding result of [5] is
only in the “furthermore” clause.

Our proof extends the technique from [5] of constructing these “pathological”
signature schemes. Intuitively, in these schemes the signer first checks whether
the message to be signed contains a “proof of the non-randomness of the oracle”.
If the signer is convinced it performs some highly disastrous action, and otherwise
it just employs some secure signature scheme. Such a scheme will be secure in
the Random Oracle Model, since the the signer is unlikely to be convinced that
its oracle is not random. In a “real world implementation” of the scheme, on
the other hand, the oracle is completely specified by a portion of the public
verification-key. The attacker, who has access to this specification, can use it to
convince the signer that this oracle is not random, thus breaking the scheme.
The “proof of non-randomness” that was used in [5] was non-interactive, and
its length was longer than the verification-key, which is the reason that it is
not applicable to “short messages”. The crux of our extension is a new type
of interactive proof systems, employing a stateless verifier and short messages,
which may be of independent interest.

To prove “non-randomness” of a function, we would like to show that there
exists a program that can predict the value of this function at “sufficiently many”
points. However, it seems that such proof must be at least as long as said pro-
gram. In our application, the proof needs to predict a function described in a
portion of the verification-key, hence it needs to be of length comparable to that
portion. But we want a signature scheme that only signs short messages, so the
attacker (prover) cannot submit to the signer (verifier) such a long proof in just
one message. It follows that we must use many messages to describe the proof,
or in other words, we must have a long interaction. But recall that in our ap-
plication, the proof has to be received and verified by the signing device, which
by standard definitions is stateless.1 Thus, the essence of what we need is an
interactive proof with a stateless verifier.

At a first glance, this last notion may not seem interesting. What good is
an interaction if the verifier cannot remember any of it? If it didn’t accept after
1 Indeed, the statelessness condition is the reason that a non-interactive information

transfer seems a natural choice, but in the current work we are unwilling to pay the
cost in terms of message length.
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the prover’s first message, why would it accept after the second? What makes
this approach workable is the observation that the verifier’s state can be kept
by the prover, as long as the verifier has some means of authenticating this
state. What we do is let the verifier (i.e., signer) emulate a computation of a
Turing machine M (which in turn verifies a proof provided by the prover), and
do so in an authenticated manner. The messages presented to the verifier will
have the form (cc, σ, aux), where cc is a compressed version of an instantaneous
configuration of the machine, σ is a “signature on cc”, and aux is an auxiliary
information to be used in the generation of a compressed version of the next
configuration. If the signature is valid then the verifier will respond with the
triple (cc′, σ′, aux′), where cc′ is a compressed version of the next configuration,
σ′ is a “signature on cc′”, and aux′ is an auxiliary information regarding its
update.

Relation to the Adversarial-Memory Model. Our approach of emulating a com-
putation by interaction between a memoryless verifier and an untrusted prover
is reminiscent of the interaction between a CPU and an adversarially-controlled
memory in the works of Goldreich and Ostrovsky [7] and Blum et al. [2]. In-
deed, the technique that we use in this paper to authenticate the state is very
close to the “on line checker” of Blum et al. However, our problem still seems
quite different than theirs. On the one hand, our verifier cannot maintain state
between interactions, whereas the CPUs in both the works from above maintain
a small (updatable) state. On the other hand, our authenticity requirement is
weaker than in [7,2], in that our solution allows the adversary to “roll back” the
memory to a previous state. (Also, a main concern of [7], which is not required
in our context, is hiding the “memory-access structure” from the adversary.)

Organization. We first present our interactive proof with stateless verifier while
taking advantage of several specific features of our application: We start with an
overview (Section 2), and provide the details in Section 3. In Section 4 we then
sketch a more general treatment of this kind of interactive proofs.

2 Overview of Our Approach

On a high level, the negative result in our earlier work [5] can be described
as starting from a secure signature scheme in the Random Oracle Model, and
modifying it as follows: The signer in the original scheme was interacting with
some oracle (which was random in the Random Oracle Model, but implemented
by some function ensemble in the “real world”). In the modified scheme, the
signer examines each message before it signs it, looking for a “proof” that its
oracle is not random. If it finds such a convincing “proof” it does some obviously
stupid thing, like outputting the secret key. Otherwise, it reverts to the origi-
nal (secure) scheme. Hence, the crucial step in the construction is to exhibit a
“proof” as above. Namely, we have a prover and a verifier, both polynomial-time
interactive machines with access to an oracle, such that the following holds:
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– When the oracle is a truly random function, the verifier rejects with over-
whelming probability, regardless of what the prover does. (The probability
is taken also over the choice of the oracle.)

– For any polynomial-time function ensemble,2 there is a polynomial-time
prover that causes the verifier to accept with noticeable probability, when
the oracle is implemented by a random member of that ensemble. In this
case, the prover receives a full description of the function used in the role of
the oracle. (In our application, this description is part of the verification-key
in the corresponding implementation of the signature scheme.)

In [5] we used correlation-intractable functions to devise such a proof system.3

However, simpler constructions can be obtained. For example, when the oracle
is implemented by a polynomial-time function ensemble, the prover could essen-
tially just send to the verifier the description of the function that implements
the oracle. The verifier can then evaluate that function on several inputs, and
compare the outputs to the responses that it gets from the oracle. If the outputs
match for sufficiently many inputs (where sufficiently many means more that
the length of the description), then the verifier concludes that the oracle cannot
be a random function. Indeed, roughly this simplified proof was proposed by
Holenstein, Maurer, and Renner [10]. We remark that both our original proof
and the simplified proof of Holenstein et al., are non-interactive proofs of non-
randomness: The prover just sends one string to the verifier, thus convincing it
that its oracle is not a random function.

However, implementing the proof in this manner implies that the attacker
must send to the verifier a complete description of the function, which in our
application may be almost as long as the verification-key. In terms of the resulting
“pathological example”, this means that the signature scheme that we construct
must accept long enough messages.

Clearly, one can do away with the need for long messages, if we allow the sig-
nature scheme to “keep history” and pass some evolving state from one signature
to the next. In that case the attacker can feed the long proof to the scheme bit
by bit, and the scheme would only act on it once its history gets long enough. In
particular, this means that the signature scheme will not only maintain a state
(between signatures) but rather maintain a state of a-priori unbounded length.
Thus, the negative result will refer only to such signature schemes, while we seek
to present a negative result that refers also to stateless signature scheme, and in
particular to ones that only sign “short messages”.

2 A polynomial-time function ensemble is a sequence F = {Fk}k∈N of families of func-
tions, Fk = {fs : {0, 1}∗ →{0, 1}�out(k)}s∈{0,1}k , such that there exists a polynomial-
time algorithm that given s and x returns fs(x). In the sequel we often call s the
description or the seed of the function fs.

3 We used (non-interactive) CS-proofs (cf. [13]) to make it possible for the verifier to
run in fixed polynomial time, regardless of the polynomial that bounds the running
time of the ensemble.
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In this work we show how such a result can be obtained. Specifically, we
present a signature scheme that operates in the random-oracle model, with the
following properties:

– The scheme is stateless: the signer only keeps in memory the secret key, and
this key does not evolve from one signature to the next.

– The scheme is only required to sign short messages: On security parameter
k, the scheme can only be applied to messages whose length is less than k.
Furthermore, one could even restrict it to messages of length sub-linear in k
(e.g., polylog(k)).

– The scheme is secure in the Random Oracle Model : When the oracle is imple-
mented by a truly random function, the scheme is existentially unforgeable
under an adaptive chosen-message attack.

– The scheme has no secure implementation: When the oracle is implemented
by any function ensemble (even one with functions having description length
that is polynomially longer than k), the scheme is completely breakable
under an adaptive chosen-message attack. We remark that in this case the
function’s description is part of the verification-key.4

To construct such a scheme we need to design a “proof system” that only uses
very short messages. As opposed to previous examples, we will now have an
interactive proof system, with the proof taking place during the attack. Each
communication-round of the proof is being “implemented” by the attacker (in
the role of the prover) sending a message to be signed, and the signer (in the
role of the verifier) signing that message.

The ideas that make this work are the following: We start from the aforemen-
tioned non-interactive proof (of “non-randomness”), where the verifier is given
the description of a function, and compares that function to its own oracle (i.e.,
compares their values at sufficiently many points). Then, instead of having the
verifier execute the entire test on its own, we feed the execution of this test to the
verifier “one step at a time” (and, in particular, the input function is fed “one
step at a time”). Namely, let M be the oracle Turing machine implementing the
aforementioned test. The adversary provides the verifier with the relevant infor-
mation pertaining to the current step in the test (e.g., the state of the control
of M and the character under the head) and the verifier returns the information
for the next step. This requires only short messages, since each step of M has a
succinct description.

To keep the security of the scheme in the Random Oracle Model, we need
to make sure that the adversary can only feed the verifier with “valid states”
of the machine M . (Namely, states that can indeed result from the execution of
this machine on some input.) To do that, we have the verifier authenticate each
step of the computation. That is, together with the “local information” about
4 In contrast, if the function’s description is only part of the signing-key then using

any pseudorandom function [6] would yield a secure signature scheme. However, this
would not be an application of the Random Oracle Methodology, which explicitly
refers to making the function’s description public.
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the current step, the verifier also computes an authentication tag for the “global
state” of the machine in this step, which is done using Merkle trees [12]. Such
authentication has the property that it can be computed and verified using only
the path from the root to the current leaf in the tree, and the authentication
tag itself is very short. A little more precisely, the current configuration of the
machine M (using some standard encoding) is viewed as the leaves of a Merkle
tree, and the verifier provides the prover with an authentication tag for the root
of this tree. Then a typical step in the proof proceeds as follows:

1. The attacker sends to the verifier the “relevant leaf” of the tree (i.e., the one
containing the head of M), together with the entire path from the root to
that leaf (and the siblings for that path), and the authentication tag for the
root.

2. The verifier checks the authentication tag of the root and the validity of the
root–leaf path (using the siblings). If everything is valid, then the verifier
executes the next step of M , and returns to the attacker the updated path
to the root, and an authentication tag for the new root.

If the machine M ever enters an accept state, then the verifier accepts. This proof
can still be implemented using only short messages, since the root-leaf path has
only logarithmic depth. As for security, since it is infeasible for the attacker to
“forge a state” of M , then the verifier will accept only if the machine M indeed
has an accepting computation.

3 The Details

We now flesh out the description from Section 2. We begin in §3.1 with the
basic test that we are going to implement step-by-step. In §3.2 we describe the
Merkle-tree authentication mechanism that we use, and in §3.3 we describe the
complete “interactive proof system”. Finally, we show in §3.4 how this proof
system is used to derive our counter-example.

As we did in [5], we avoid making intractability assumptions by using the ran-
dom oracle itself for various constructs that we need. For example, we implement
the Merkle-tree authentication mechanism (which typically requires collision-
resistant hash functions) by using the random oracle. We stress that we only
rely on the security of this and other constructs in the Random Oracle Model,
and do not care whether or not its implementation is secure (because we are
going to demonstrate the insecurity of the implementation anyhow). Formally,
in the context of the proof system, the security of the constructs only effects the
soundness of the proof, which in turn refers to the Random Oracle Model.

In both the basic test and the authentication mechanisms we use access to
an oracle (which will be a random function in the Random Oracle Model, and a
random member in an arbitrary function ensemble in the “real world”). When we
work in the Random Oracle Model, we wish these two oracles to be independent.
Thus, we use the single oracle to which we have access to define two oracles that
are independent if the original oracle is random (e.g., using the oracle O, we
define oracles Oi(x) def= O(i, x)).
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In the rest of this section, we assume that the reader is familiar with the
notion of a polynomial-time function ensemble (as reviewed in Footnote 2).

3.1 The Basic Test

Our starting point is a very simple non-interactive “proof of non-randomness”
of an oracle O. (The basic idea for this proof is described by Holenstein et al. in
[10].) The verifier is a (non-interactive) oracle Turing machine, denoted M, which
is given a candidate proof, denoted π, as input. The input π is supposed to be a
program (or a description of a Turing machine) that predicts O. Intuitively, if O
is random then no π may be successful (when we try to use it in order to predict
the value of O on more than |π| predetermined inputs). On the other hand, if O
has a short description (as in case where it is taken from some function ensemble)
then setting π to be the program that computes O will do perfectly well. The
operation of M, on security parameter k, input π and access to an oracle O, is
given below:

Procedure MO(1k, π):
1. Let n = |π| be the bit length of π.

(π is viewed as a description of a Turing-machine.)
2. For i = 1 to 2n + k, let yi ← O(i) and zi ← π(i).
3. If yi and zi agree on their first bit for all i ∈ [1..2n + k], then accept.
4. Else reject.

Below it will be convenient to think of the machine M as having one security-
parameter tape (a read-only tape containing 1k), one “regular” work tape
that initially contains π, one oracle query tape and one oracle reply tape (the
last having just a single bit, since we only look at the first bit of the an-
swer). A configuration of this machine can therefore be described as a 4-
tuple c = (q, r, w, sp) describing the contents of each tape (i.e., q describes
the query, r the reply, w the contents of the work-tape and sp the security-
parameter). By convention, we assume that the description of each tape in-
clude also the location of the head on this tape, and that the description of
the work tape also includes the state of the finite control. Thus, for the above
machine M, we always have |q| = log(2|π| + k) + log log(2|π| + k), |r| = 1,
|w| ≤ |π| + sk(π) + log(2|π| + k) + log(|π| + s(π) + log(2|π| + k)) + O(1),
|sp| = k, where sk(π) is the space require for computing π(i) for the worst
possible i ∈ [2|π|+ k]. It follows that |c| = O(|π|+ sk(π) + k).

Note that M itself is not a “verifier in the usual sense”, because its running
time may depend arbitrarily on its input. In particular, for some inputs π (de-
scribing a non-halting program), the machine M may not halt at all. Nonetheless,
we may analyze what happens in the two cases that we care about:

Proposition 2 (Properties of machine M):

1. Random oracle: For security parameter k, if the oracle O is chosen uniformly
from all the Boolean functions, then

Pr
O

[∃ π ∈ {0, 1}∗ s.t. MO(1k, π) accepts
]

< 2−k
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2. Oracle with succinct description: For every function ensemble {fs : {0, 1}∗ →
{0, 1}}s∈{0,1}∗ (having a polynomial-time evaluation algorithm), there exists
an efficient mapping s �→ πs such that for every s and every k it holds that
Mfs(1k, πs) accepts in polynomial-time.

Proof Sketch. In Item 1, we apply the union bound on all possible (i.e., infinitely
many) π’s. For each fixed π ∈ {0, 1}∗, it holds that the probability that MO(1k, π)
accepts is at most 2−(2|π|+k), where the probability is taken uniformly over all
possible choices of O. In Item 2, we use the program πs obtained by hard-wiring
the seed s into the polynomial-time evaluation algorithm associated with the
function ensemble. ��

3.2 Authenticating the Configuration

We next describe the specifics of how we use Merkle trees to authenticate the
configurations of the machine M. In the description below, we view the configu-
ration c = (q, r, w, sp) as a binary string (using some standard encoding).

We assume that the authentication mechanism too has access to a random
oracle, and this random oracle is independent of the one that is used by the
machine M. Below we denote this “authentication oracle” by A. To be concrete,
on security parameter k, denote �out = �out(k) =

⌈
log2(k)

⌉
,5 and assume that

the oracle is chosen at random, from all the functions A : {0, 1}∗ → {0, 1}�out .
(Actually, we may consider the functions A : {0, 1}3�out → {0, 1}�out .) We stress
again that we do not lose much generality by these assumptions, as they can be
easily met in the Random Oracle Model. Also, when the security parameter is
k, we use a random �out-bit string for authentication key, which we denote by
ak ∈R {0, 1}�out .

To authenticate a configuration c (on security parameter k, with access to an
oracle A, and with key ak), we first pad the binary encoding of c to length 2d ·�out
(where d is an integer). We then consider a complete binary tree with 2d leaves,
where the i’th leaf contains the i’th �out-bit chunk of the configuration. Each
internal node in this tree contains an �out-bit string. For a node at distance i
from the root, this �out-bit string equalsA(i, left, right), where left and right
are the �out-bit strings in the left and right children of that node, respectively.
The authentication tag for this configuration equals A(d, ak, root), where root is
the �out-bit string in the root of the tree.

The security property that we need here is slightly stronger than the usual
notion for authentication codes. The usual notion would say that for an attacker
who does not know the key ak, it is hard to come up with any valid pair (config-
uration,tag) that was not previously given to him by the party who knows ak.
In our application, however, the verifier is only presented with root–leaf paths in
5 The choice of �out(k) =

⌈
log2(k)

⌉
is somewhat arbitrary. For the construction below

we need the output length �out to satisfy ω(log k) ≤ �out(k) ≤ o(k/ log k), whereas the
input length should be at least 2�out(k) + ω(log k). (Note that 2�out(k) + ω(log k) <
3�out(k).)
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the tree, never with complete configurations. We therefore require that it is hard
even to come up with a single path that “looks like it belongs to a valid configura-
tion”, without this path being part of a previously authenticated configuration.
We use the following notions:

Definition 3 (valid paths) Let A : {0, 1}∗ → {0, 1}�out be an oracle and ak ∈
{0, 1}�out be a string as above. A valid path with respect to A and ak is a triple

(〈σ1 · · ·σd〉, 〈(v1,0, v1,1), ..., (vd,0, vd,1)〉, t)

where the σi’s are bits, and the vi,b’s and t are all �out-bit strings, satisfying the
following conditions:

1. For every i = 1, ..., d− 1, it holds that vi,σi = A(i, vi+1,0, vi+1,1).
2. t = A(d, ak,A(0, v1,0, v1,1)).

This path is said to be consistent with the configuration c if when placing c in the
leaves and propagating values described above,6 then for every i = 1, ..., d−1, the
node reached from the root by following the path σ1 · · ·σi is assigned the value
vi,σi

, and the sibling of that node is assigned the value vi,σi
.

In this definition, vi,σi
is the value claimed for the internal node reached from

the root by following the path σ1 · · ·σi. The value claimed for the root is
v0

def= A(0, v1,0, v1,1), and this value is authenticated by A(d, ak, v0), which also
authenticates the depth of the tree. Indeed, only the value of the root is directly
authenticated, and this indirectly authenticates all the rest.

Fix some �out ∈ N, and let A be a random function from {0, 1}∗ to {0, 1}�out

and ak be a random �out-bit string. Consider a forger, F , that can query the
oracle A on arbitrary strings, and can also issue authentication queries, where
the query is a configurations c and the answer is the authentication tag on c
corresponding to A and ak. The forger F is deemed successful if at the end of
its run it outputs a path (α, v̄, t) that is valid with respect to A and ak but is
inconsistent with any of the authentication queries. One can easily prove the
following:

Proposition 4 For any �out ∈ N and any forger F , the probability that F is
successful is at most q2/2�out , where q is the total number of queries made by F
(i.e., both queries to the oracle A and authentication queries). The probability is
taken over the choices of A and ak, as well as over the coins of the forger F .

Proof Sketch. Intuitively, the authentication of the root’s value makes it hard to
produce a path that is valid with respect to A and (the unknown) ak but uses
a different value for the root. Similarly for a path of a different length for the
same root value. On the other hand, it is hard to form collisions with respect to
the values of internal nodes (i.e., obtain two pairs (u, w) and (u′, w′) such that
for some i it holds that A(i, u, w) = A(i, u′, w′)). ��
6 That is, an internal node at distance i from the root is assigned the value A(i, u, w),

where u and w are the values assigned to its children.



On the Random-Oracle Methodology 49

3.3 An Interactive Proof of Non-randomness

We are now ready to describe our interactive proof, where a prover can convince
a “stateless” verifier that their common oracle is not random, using only very
short messages.

The setting is as follows: We have a prover and a verifier, both work in
polynomial time in their input, both sharing a security parameter k ∈ N (encoded
in unary), and both having access to an oracle, say O′ : {0, 1}∗ → {0, 1}�out . (The
parameter �out is quite arbitrary. Below we assume for convenience that this is
the same parameter as we use for the authentication scheme, namely �out =⌈
log2(k)

⌉
.)7 In this proof system, the prover is trying to convince the verifier

that their common oracle in not random. Specifically, both prover and verifier
interpret their oracle as two separate oracles, A and O (say, O(x) = O′(0x)
and A(x) = O′(1x)), and the honest prover has as input a description of a
Turing machine that computes the function O. However, we place some severe
limitations on what the verifier can do. Specifically, the verifier has as private
input a random string ak ∈ {0, 1}�out , but other than this fixed string, it is not
allowed to maintain any state between steps. That is, when answering a message
from the prover, the verifier always begin the computation from a fixed state
consisting only of the security parameter k and the string ak. In addition, on
security parameter k, the verifier is only allowed to see prover-messages of length
strictly smaller than k. (In fact, below we only use messages of size polylog(k).)

The proof that we describe below consists of two phases. In the first (ini-
tialization) phase, the prover uses the verifier to authenticate the initial config-
uration of the machine MO(1k, x), where k is the security parameter that they
both share, and x is some input that the prover chooses. For the honest prover,
this input x will be the description of the Turing-machine that implements the
oracle O. In the second (computation) phase, the prover takes the verifier step-
by-step through the computation of MO(1k, x). For each step, the prover gives
to the verifier the relevant part from the current authenticated configuration,
and the verifier returns the authentication tag for the next configuration. The
verifier is convinced if the machine M ever reaches the accepting state.

For notational convenience, we assume below that on security parameter k,
the verifier only agrees to authenticate configurations of M whose length is less
than 2�out(k). Indeed, in our application the honest prover will never need to use
larger configuration (for large enough k).

Initialization Phase. This phase consists of two steps. In the first step, the
prover will use the verifier in order to authenticate “blank configuration” (lacking
a real input) for the computation, whereas in the second step the prover will feed
an input into this configuration and obtain (via interaction with the verifier) an
initial configuration fitting this input.

7 Note that even a binary oracle (i.e., �out = 1) suffices, since in the Random Oracle
Model it is easy to convert one output length to another.
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First Step. The prover begins this phase by sending a message of the form
(‘Init’, 0, sb) to the verifier, where the integer sb < 2�out(k) is an upper bound
on the length of the configurations of M in the computation to come, and it
is encoded in binary. In response, the verifier computes a blank configuration,
denoted c0, of length sb and sends the authentication tag for this configuration,
with respect to oracle A and key ak. The blank configuration c0 consists of the
security-parameter tape filled with 1k, all the other tapes being “empty” (e.g.,
filled with �’s), the heads being at the beginning of each tape, and the finite
control being in a special blank state. Specifically, the work-tape consists of sb
blanks (i.e., �’s), and the query-tape consists of �out(k)/2 = ω(log k) blanks.8

We note that authenticating the blank configuration in a straightforward
manner (i.e., by writing down the configuration and computing the labels of
all nodes in the tree) takes time O(sb), which may be super-polynomial in k.
Nonetheless, it is possible to compute the authentication tag in time polynomial
in k, because the configuration c0 is “highly uniform”. Specifically, note that the
work tape is filled with �’s, and all the other tapes are of size polynomial in k.
Thus, in every level of the configuration tree, almost all the nodes have the same
value (except, perhaps, a polynomial number of them). Hence, the number of
queries to A and total time that it takes to compute the authentication tag is
polynomial in k.

Conventions. For simplicity, we assume that the contents of the query-tape as
well as the machine’s state are encoded in the first �out(k)-bit long block of the
configuration. Typically, in all subsequent modifications to the configuration, we
will use this block as well as (possibly) some other block (in which the “actual
action” takes place). We denote by 〈i〉 the bit-string describing the path from the
root to the leaf that contains the i’th location in the work-tape. Needless to say,
we assume that the encoding is simple enough such that 〈i〉 can be computed
efficiently from i.

Second Step. After obtaining the authentication tag for the blank configuration,
the prover may fill in the input in this configuration by sending messages of
the form (‘Init’, i, b, p̄1, p̄i, t) to the verifier. Upon receiving such a message, the
verifier checks that (〈1〉, p̄1, t) and (〈i〉, p̄i, t) are valid paths w.r.t. A and ak, that
path p̄1 shows the heads at the beginning of their tapes and the control in the
special “blank state”, and that path p̄i shows the i’th location in the work-tape
filled with a �. In case all conditions hold, the verifier replaces the contents of the
i’th location in the work-tape with the bit b, recomputes values along the path
from that tape location to the root, and returns the new authentication tag to
the prover. That is, the values along that path as recorded in p̄i correspond to
a setting of the i’th location to �, and setting this location to b typically yields
new values that propagate from this leaf up-to the root.

8 On input (1k, x), the query tape of M is of size log2(2|x| + k). For ensemble F , the
honest prover will use |x| ≤ poly(k) + O(1), and so the length of the query tape
would be O(logk).
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Thus, using |x| rounds of interaction, the honest prover can obtain (from the
verifier) the authentication tag on the initial configuration of M(1k, x), where x
is a string of the prover’s choice. Note that a cheating prover may obtain from
the prover an authentication tag that does not correspond to such an initial
configuration. (In fact, even the honest prover obtains such tags in all but the
last iterations of the current step.)

Computation Phase. This phase begin with a message of the form
(‘Comp’, p̄1, t) that the prover sends. The verifier checks that (〈1〉, p̄1, t) is a
valid path, and that p̄1 shows the heads at the beginning of their tapes and the
control in the special “blank state”. If these conditions hold, the verifier changes
the state to the initial state of M, recomputes the values on the path p̄1 from the
initial tape location to the root, and returns the new authentication tag to the
prover. (In fact, one may view this step as belonging to the initialization step.)

Thereafter, upon receiving a message of the form (‘Comp’, i, j, p̄1, p̄i, p̄j , t),
where j ∈ {i−1, i, i+1} (and indeed when j = i it holds that p̄i = p̄j), the verifier
checks that (〈1〉, p̄1, t), (〈i〉, p̄i, t), (〈j〉, p̄j , t), are all valid paths. Furthermore, it
checks that p̄i contains the head position and p̄j describes a legal contents of
the position that the head will move to after the current step. That is, p̄1 and
p̄i provide sufficient information to determine the single-step modification of
the current configuration (which may include a movement of some heads and
a change in the contents of a single symbol in some of the tapes). In case all
conditions hold, then the verifier executes the current step (making a query to
its oracle O if this step is an oracle query), recomputes the values on the three
paths to the root, and returns the new authentication tag to the prover. If after
this step the machine M enters its accept state, the verifier accepts.

It can be seen that the honest prover can use these interaction steps to take
the verifier step-by-step through the computation of M. It follows that if the
input to the honest prover is indeed a polynomial-time machine that computes
the function O, then the verifier will halt and accept after polynomially many
steps. We conclude this subsection by showing that the above constitutes a proof
system for non-randomness (satisfying additional properties that we will need in
the next subsection).

Proposition 5 The above construction constitutes a proof system with the fol-
lowing properties:

Efficiency. Each verifier step can be computed in time polynomial in the security
parameter k.

Stateless verifier. The verifier is stateless in the sense that it begins every
step from the same state, consisting only of the security parameter k and its
private input ak ∈ {0, 1}�out . Formally, the verifier replies to each incoming
message m with V (1k, ak, m), where V is a fixed (efficiently computable)
function.9

9 We slightly abuse notations here, and use V for both the verifier and the functions
that it implements.
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Soundness. If O′ is chosen as a random function O′ : {0, 1}∗ → {0, 1}�out(k)

and ak is chosen at random in {0, 1}�out(k), then for every (possibly cheating)
prover P it holds that

PrO′,ak

[
The verifier V O′

(1k, ak) accepts when talking to PO′
]

≤ (q + �out(k) ·m)2 · 2−�out + 2−k

where q is the total number of queries that P makes to the oracle A and m
is the total number of messages that it sends to the verifier V .

Completeness with short messages. For every polynomial-time-computable
function ensemble F , there exists a polynomial-time prover PF such that:
1. For every choice of s ∈ {0, 1}poly(k) and ak ∈ {0, 1}�out(k), the verifier

V fs(1k, ak) always accepts when talking to PF (s).
2. On security parameter k, the prover PF (s) only sends to the verifier

poly(k) many messages, each of length O((log k) · �out(k)) = O(log3 k).

Proof Sketch. The only assertions that are not obvious are the soundness bound
and the size of the messages. For the soundness bound, recall that (by Proposi-
tion 2) whenO′ is a random function (and therefore alsoO is a random function),
the probability that there exists an input x that makes MO(1k, x) accept is at
most 2−k. If there is no such input, then the only way to make V O′

accept is
“forge” some valid paths, and (by Proposition 4) this can only be done with prob-
ability at most q22−�out . Slightly more formal, consider the transcript of a proof
in which PO′

causes V O′
to accept. Considering all the messages that P sent

to V in this transcript, one can easily define a “depend-on” relation among then
(namely, when one message contains an authentication tag that was obtained
in a previous message). This, in turn, allows us to define the complete configu-
rations that were “rightly authenticated” during this transcript (namely, those
configurations that correspond to a computation that starts from the initial con-
figuration of Mk on some input x.) Hence, we either find an initial configuration
from which M(1k, x) accepts (a probability 2−k event), or we find a computation
that begins from some non-initial configuration. Since the verifier V O′

never au-
thenticates a non-initial configuration unless it sees a valid path belonging to a
configuration that directly precedes it, the valid path belonging to the first non-
initial configuration must be a forgery. (By making suitable oracle calls before
sending each message to the verifier, we can convert the cheating prover to a
forger that makes at most q + �out ·m queries, and soundness follows.)

As for the size of the messages sent by the honest prover, let F be any
polynomial-time-computable functions ensemble. This means that there is a
polynomial p(·) such that on security parameter k, specifying any function
fs ∈ Fk can be done using at most p(k) bits, and moreover, computing fs(x)
for any |x| < k takes at most p(k) time. (Below we assume for convenience
that p(k) ≥ k.) For any fs ∈ Fk, let πs be a description of a Turing machine
computing fs. By the above, |πs| = |s| + O(1) < p(k) + O(1). This implies
that for any fs ∈ Fk, the non-interactive verifier M(1k, πs) runs in time at most
O(k+2p(k)) ·p(k) = O(p2(k)), and therefore it only has configurations of length
at most O(p2(k)).
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The honest prover PF , having access to s, can compute the description πs

and take the verifier step-by-step through the execution of Mfs(1k, πs), which
consists only of O(p2(k)) steps. It begins by sending a message (‘Init’, 0, sb),
with the bound sb being set to sb = O(p2(k)), and in each step thereafter it only
needs to send a constant number of paths in the tree, each of length log(sb). Since
each node in the tree contains a string of length �out(k), it follows that the total
length of the prover’s queries is O(log(sb) · �out(k)) = O(�out(k) · log(p2(k))) =
O(�out(k) · log k). ��

3.4 The Signature Scheme

Combining the proof system from the previous section with the ideas outlined
in Sections 1 and 2, it is quite straightforward to construct the desired signature
scheme (summarized in the next theorem).

Theorem. 6 (Theorem 1, restated) There exists a signature scheme S that is
existentially unforgeable under a chosen message attack in the Random Oracle
Model, but such that when implemented with any efficiently computable function
ensemble, the resulting scheme is totally breakable under chosen message attack.
Moreover, the signing algorithm of S is stateless, and on security parameter k,
it can only be applied to messages of size poly-logarithmic in k.

Proof. Let (Ppf , Vpf) be the proof system for “non-randomness” described in
Section 3.3. Let S = (Gsig, Ssig, Vsig) be any stateless signature scheme that is
existentially unforgeable under a chosen message attack in the Random Oracle
Model (we know that such schemes exist, e.g., using Naor-Yung [14] with the
random oracle used in the role of a universal one-way hash function)). We view
all the machines Ppf , Vpf , Gsig, Ssig, and Vsig as oracle machines (although Gsig,
Ssig, or Vsig may not use their oracle). We modify the signature scheme to obtain
a different signature scheme S ′ = (G′, S′, V ′).

– On input 1k (k being the security parameter), the key generation algorithm
G′ first runs Gsig to obtain a private/public key-pair of the original scheme,
(sk, vk)← GO

sig(1
k). Then it chooses a random �out-bit “authentication key”

ak ∈R {0, 1}�out(k) (to be used by Vpf). The public verification key is just vk,
and the secret signing key is the pair (sk, ak). (We assume that the security
parameter k is implicit in both vk and sk.)

– On message m, signing key (sk, ak) and access to oracle O, the signature
algorithm S′ works as follows: If the message m is too long (i.e., |m| > log4 k)
then it outputs an empty signature ⊥.10 Otherwise, it invokes both the proof-
verifier Vpf and the signer Ssig on the message m to get σpf ← V O

pf (ak, m),
and σsig ← SO

sig(sk, m).
If the proof-verifier accepts (i.e., σpf = “accept”) then the signature consists
of the secret key σ = (σsig, (sk, ak)). Otherwise, the signature is the pair
σ = (σsig, σpf).

10 Alternatively, S′ may return (SO
sig(sk, m), ⊥), and we should note that in the (“real

world”) attack described below only short messages are used.
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– The verification algorithm V ′, on message m, alleged signature σ = (σ1, σ2),
verification key vk and access to oracle O, just invokes the original signature-
verifier Vsig on the first part of the signature, outputting V O

sig(vk, m, σ1).

It is clear from the description that this scheme is stateless, and that it can only
be used to sign messages of length at most log4 k. It is also easy to see that
with any implementation via function ensemble, the resulting scheme is totally
breakable under adaptive chosen message attack. When implemented using func-
tion ensemble F , an attacker uses the prescribed prover PF (of Proposition 5).
Recall that the seed s for the function fs that is used to implement the oracle
is included in the public key, so the attacker can just run PF (s). The attacker
sends the prover’s messages to the signer S′, and the size of these messages is
O(log3 k) < log4 k, where the constant in the O-notation depends on the ensem-
ble F . The second component of the signatures on these messages are the replies
from the proof-verifier V fs

pf . From Proposition 5 we conclude that after signing
polynomially many such messages, the proof-verifier accepts (with probability
one), at which point the signing algorithm will output the secret signing key.
Thus, we totally break the scheme’s implementation (by any function ensem-
ble).

Next we show that the scheme S ′ is existentially unforgeable under a chosen
message attack in the Random Oracle Model. Informally, the reason is that in
the Random Oracle Model a forger will not be able to cause the proof-verifier to
accept, and thus it will be left with the task of forging a signature with respect
to the original (secure) signature scheme.

Formally, consider a polynomial-time forger F ′, attacking the scheme S ′, let
ε = ε(k) denote the probability that F ′ issues a forgery, and assume – toward
contradiction – that ε is non-negligible. Consider the invocations that the signing
algorithm makes to the proof-verifier Vpf during the attack. Let δ = δ(k) be the
probability that Vpf replies to some query with “accept”. Since we can view
the combination of F ′ and the signing algorithm as a (cheating) prover PO,
Proposition 5 tells us that δ ≤ q2/2�out +2−k where q is bounded by the running
time of F ′ (which is polynomial in k). Hence δ is negligible.

Next we show a polynomial-time forger Fsig against the original scheme S
that issues a forgery with probability at least ε− δ, contradicting the security of
S. The forger Fsig is given a public key vk that was generated by Gsig(1k), it has
access to the signing oracle SO

sig(sk, ·) for the corresponding signing key sk, and
also access to the random oracle O. It picks at random an “authentication key”
ak ∈ {0, 1}�out(k), and then invokes the forger F ′ on the same public key vk.

When F ′ asks for a signature on a message m, the forger Fsig behaves much
like the signature algorithm S′. Namely, if |m| > log4 k it returns ⊥. Otherwise,
it computes σpf ← V O

pf (ak, m), and it queries its signing oracle on m to get
σsig ← SO

sig(sk, m). If the proof-verifier accepts, σpf = “accept”, then Fsig aborts.
Else it returns the pair σ = (σsig, σpf). If F ′ issues a forged message m′ with
signature (σ′

1, σ
′
2) then Fsig issues the same forged message m′ and signature σ′

1.
It is clear that Fsig succeeds in forging a signature if and only if F ′ forges a
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signature without causing the proof-verifier Vpf to accept, which happens with
probability at least ε− δ. ��

Remark 7 (Message length) Tracing through the arguments in this section,
it can be seen that the message-length can be decreased from log4 k to ω(log2 k):
It suffices to use a space-bound SB = ω(log k), which yields a (prescribed) proof
system with prover message of length ω(log2 k), for any function ensemble. How-
ever, achieving poly-logarithmic message length relies heavily on the fact that
we use the random oracle for authentication, and on the fact that the random
oracle yields authentication with “exponential hardness”. In Section 4 below, we
instead use standard collision-intractable functions and message-authentication
codes, that only enjoy “super-polynomial hardness”. In this case, the achievable
message length would be O(kε) for any desired (fixed) ε > 0.

4 A Proof System for Any NP-Language

The description in Section 3 combined the specifics of our application (i.e., prov-
ing non-randomness of an oracle) with the general ideas underlying the construc-
tion of the new proof system. In this section, we apply the latter ideas in order
to derive a new type of proof systems for any language in NP.

The model is similar to ordinary interactive proofs as in GMR [9] (and argu-
ments as in BCC [3]), except that the verifier is stateless. That is, the verifier is
represented by a randomized process that given the verifier’s input and the cur-
rent in-coming message, determines the verifier’s next message. This process is
probabilistic polynomial-time, but it cannot effect the verifier’s state. In particu-
lar, the verifier’s decision to accept or reject (or continue in the interaction) will
be reflected in its next message. (In a sense, the verifier will not even remember
its decision, but merely notify the world of it.)

The above model, per se, allows to prove membership in any NP-set, by
merely having the prover send the corresponding NP-witness. However, we are
interested in such proof systems in which the prover only sends short messages.
This rules out the simple solution just suggested. But, as stated, this model does
not allow to do much beyond using short NP-witnesses whenever they exist. The
reason being that, from the verifier’s point of view, there is no “relation” between
the various communication rounds, and the only function of the multiple inter-
actions is to provide multiple attempts of the same experiment. The situation
changes once we provide the verifier with an auxiliary secret input. This input
is chosen uniformly from some domain and remains fixed throughout the run of
the protocol. The goal of this auxiliary input is to model some very limited form
of state that is kept between sending a message and receiving the response.

To summarize, we are interested in proof systems (or arguments) that satisfy
the following three conditions:

1. In addition to the common input, denoted x, the verifier receives an auxiliary
secret input, denoted s, that is chosen uniformly from some domain. As
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usual, we focus on a probabilistic polynomial-time prover that also receives
an auxiliary input, denoted y.

2. The verifier employs a stateless strategy. That is, there exists a probabilis-
tic polynomial-time algorithm V such that the verifier answers the current
message m with V (x, s, m).

3. The prover can only send short messages. That is, it can only send messages
of length �(|x|), where �(n) n (e.g., �(n) =

√
n).

One may think of such proofs as proving statements to a child: The verifier’s
attention span limits us to sending it only �(n) bits at a time, after which its
attention is diverted to something else. Moreover, once we again capture the
verifier’s attention, it has already forgotten everything that had happened before.

Assuming the existence of collision-resistant hash functions, we can show
that such a proof system can emulate any proof system (having an efficient pre-
scribed prover strategy).11 The emulation will only be computationally-sound
(i.e., it is possible but not feasible to cause the verifier to accept false state-
ments). In fact, we have already shown such a proof system: It is implicit in
the description of Section 3, when one replaces the two different roles of A
(see proof of Proposition 4) by a collision-resistant hash function and a message-
authentication scheme, respectively. Indeed, the description in Section 3 referred
to the emulation of a specific test, but it applies as well to the emulation of any
ordinary verifier strategy (i.e., one that does maintain state between communica-
tion rounds). Specifically, one may first transform the original interactive proof
to one in which the prover sends a single bit in each communication round, and
then emulate the interaction of the resulting verifier by following the descrip-
tion in Section 3. Note that what we need to emulate in a non-trivial manner is
merely the state maintained by the (resulting) verifier between communication
rounds.

Comments: Since anyhow we are obtaining only a computationally-sound in-
teractive proof (i.e., an argument system), we may as well emulate argument
systems of low (total) communication complexity (cf. Kilian [11]), rather than
interactive proofs or NP-proofs.12 This way, the resulting proof system will also
have low (total) communication complexity (because the length of the state
maintained by the original verifier between communication rounds need not ex-
ceed the length of the total communication). (We stress that the original ar-
gument systems of low communication complexity cannot be executed, per se,
in the current model, because its soundness relies on the verifier’s memory of a
previous message.) We also comment that (like in the description of Section 3),
11 In fact, the existence of one-way functions suffices, but this requires a minor modi-

fication of the argument used in Proposition 4. Specifically, instead of using a tree
structure to hash configurations into short strings, we use the tree as an authentica-
tion tree, where collision-resistant hashing is replaced by (length-decreasing) MACs.

12 Recall that interactive proof systems are unlikely to have low (total) communication
complexity; see the work of Goldreich and Hastad [4]. The interested reader is also
referred to a follow-up work by Goldreich, Vadhan and Wigderson [8].
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we can handle the case where the actual input (i.e., x) or part of it is sent to
the verifier during the proof process (rather than being handed to it at the very
start).
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