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In trod uct ion 
Most of the work done in cryptography in the last few years depend on the hardness 

of a few specific number theoretic problems, such as factoring, discrete log, etc. Since no 
one has so far been able to prove that these problems are genuinely hard, it is clearly of 
interest to find new candidates for hard problems. In this paper, we propose such a new 
candidate problem. namely the problem of predicting a sequence of consecutive Legendre 
(Jacobi) symbols modulo a prime (composite), when the starting point and possibly also 
the prime is unknown. Clearly, if this problem tums out to be hard, it can be used directly 
to construct a cryptographically strong pseudorandom bitgenerator. Its complexity seems 
to be unrelated to any of the well known number theoretical problems, whence it may be 
able to survive the discovery of fast factoring or discrete log algorithms. Although the ran- 
domness of Legendre sequences has part of the folklore in number theory at least since the 
thirties, they have apparently not been considered for use in cryptography before. 

We first survey some known results about the distribution of squares and nonsquares 
modulo a prime. These results all support the assumption that Legendre sequences look 
random with respect to elementary statistical tests. 

We then use Levin’s Isolation Theorem [BoHi] to relate the complexity of predicting 
Legendre sequences to the complexity of predicting Jacobi sequences. The main result of 
this is that if Legendre sequences are unpredictable in a very weak sense, then Jacobi 
sequences modulo composites with enough prime factors are strdngly unpredictable, as 
required for cryptographic strength. 

We end the paper by giving results of some emphirical tests on Legendre sequences, 
carried out for primes of length 25 to 400 bits. Also some possibilities for generalizing the 
ideas are mentioned. These ideas give significant efficiency improvements over the basic 
Legendre generator. 
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1. Notation 
Let p be a k-bit prime, and let a E Z,‘. We then define the Legendre symbol of a 

modulo p , (-) to be 1 if a is a square modulo p , and -1 if a is a non square. For conveni- 

ence, we define (-1 to be I .  

Q 

P 
When n = p . . . pr  is a k -bit composite with prime factors p 1, . . . , pr , we define the 

U U a Jacobi symbol o f a  modulo n to be (-) = (-). . . (-), for 0 I a I n-1. 
n P1 Pr 

The Legendre sequence with starting point a and length 1 is the i - 1  sequence 
a a+l  a +I 

(-), (-)* . ’ ’ , (--). 
P P  P 

Jacobi sequences are defined correspondingly. 
We can now state formally our basic problem: 

Problem PI. 
Let L be the Legendre sequence modulo p with starting point a and length P (k ), for some 

p lynomid  P . Given L (but not a or p 1, find ( )O 
a+P (kHl 

P 

Correspondingly for Jacobi symbols: 

Problem P2. 
Let J be the Jacobi sequence modulo n with starting point a and length P (k ), for a poly- 
nomial P . Given J ,  lind ( ) O  

a +P (k )+1 
n 

2. Known Results On the Distribution of Squares Jlodulo a Prime 
The distribution of quadratic residues and non residues has been studied at least since 

the end of the last centuury. One of the first major conmbutions was made by Davenport 
[Da]: 

Let S be a finite sequence of i - 1 ’ s  of length I .  Let p ( S )  be the number of 
occurrences of S in the complete Legendre sequence of p , i.e. the number of u E 2; such 
that 

Davenport proved that 

p ( S ) = - + + O E ) ,  P 
2’ 

where & is a constant between 0 and 1 which is only a function of I .  In other words: the 
distribution of subsequences of fixed length tends to the uniform distribution exponentially 
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in log2@). A uniform distribution is of course what one would expect from a really ran- 
dom sequence. 

Perron [Pel proved a more specific result: let SQ @ ) be the set of quadratic residues 
in Z,'. Then for any a ,  the set a +SQ (p) contains almost exactly as many squares as non 
squares, the difference being 0 or I ,  depending on whether p is 1 or 3 modulo 4. A similar 
result holds for Z i S Q  (p ). l h s  has a number of immediate consequences: 
- By setting a = l ,  we getp(l,l)=p(-l,l)=p(l,-l)=p(-l,-l), where the differences are 

at most 1. 

In general. pairs of symbols separated by a fixed distance are uniformly distributed. 

Define a block to be a run of consecutive 1 ' s  or -1's. Then by setting a= l  we see that 
half the 1's in the Legendre sequence of p are at the end of a block, and sirmlarly for 
-1 's. Therefore the average length of a block is 2. 
Later, Burde Pu]  extended Perron's result for p ' s  congruent to 3 modulo 4. He 

obtained a system of linear equations with the number of Occurrences of subsequences of a 
fixed length as unknowns. The rank of the system is quadratic as a function of the length 
of the subsequences considered, and therefore the equations quickly become insufficient to 
determine the complete distribution. 3 is the largest length for which it can be done, and as 
for length 2, the distribution is uniform, apart from an "error" of order p- l .  

Thus the results of Penon and Burde also support the assumption that Legendre 
sequences will look random with respect to elementary statistical tests. 

From the work of Bach [Ba], one can get very interesting estimates on the distribu- 
tion of subsequences whose length is allowed to grow with the size of the prime, in con- 
trast with Davenpon's results. This is based on results from algebraic geomeay by Wed. 
For example, for p congruent to 3 modulo 4, one can obtain that 

- 
- 

for any S of length I .  Thus, there is a limit to "how bad" the distribution of subsequences 
can be, for example at least 

2' 6 
$- + 2'-1(1-1) 

different subsequences of length 1 must occur in the complete Legendre sequence. In fact, 
the results a e  much more general, and can give information also about the distribution of 
other character values. 

But since the bounds clearly get looser as the length I increases, we are still a long 
way from results that would imply the impossibility of predicting Legendre sequences in 
polynomial time. 

Many other researchers (Eliott [El], Burgess@ur]) have looked at this problem from 
other angles, typically they have been concerned with finding the smallest quadratic non 
residue, finding the first occurrence of a given substring, ttc. Thus these results do not say 
much about the overall distribution, which is of course what we are interested in. 
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The main conclusion of all this is a negative one: nothing has been found in the last 
100 years or so, which immediately renders Legendre sequences useless for pseudorandom 
bit generation. 

3. Jacobi Sequences are Harder to Predict than Legendre Sequences 
Let us first define formally the Legendre gerierator: 

Definition 3.1 
Let Q be a polynomial. Then with security parameter value k, the Legendre generator 
takes as input ("seed") a randomly chosen k-bit prime p and a uniformly chosen k-bit 
number 0. It produces as output the Legendre sequence modulo p with starting point 
u mod p and length Q (k ), where Legendre symbols are translated into bits such that - 1 
corresponds to a 1-bit, while 1 corresponds to 3 0-bit. This sequence will be called 
L @ ,a 1, and its i 'th element will be denoted L ( p  ,a )i ci 

Similarly, we define the Jacobi getierarur : 

Definition 3.1 
Let P and Q be polynomials. Then with security parameter value k ,  the Jacobi generator 
takes as input Q (k) randomly chosen k-bit primes p i , .  , . . p Q ( k )  and Q ( k )  uniformly 
chosen k-bit nilambers a . . . , u ~ ( ~ , .  Put n = p  I . .  ' p Q r k , ,  and let a be chosen, such that 
a is congruent to ai modulo pi for i = I . . . Q (k) (pi = p i  for i f j only happens with 
negligible probability). The generator produces as output the Jacobi sequence modulo tz 
with starting point a and length P ( k ) ,  where Jacobi symbol are translated into bits as 
above. The sequence will be catled J (n  ,a ), and its i 'th element will be called J(n  P )i 0 

Yao [Kr] has proved that, if given a prefix of the output from a pseudorandom bit 
generator, it is s t d  hard to predict the next bit, then output from the generator cannot be 
distinguished from truly random sequences by any feasible algorithm. Thus, informally 
speaking, all we have to do in order to prove the strength of our generators is to show that 
P 1 or P 2  are hard problems. This can also be stated using Levin's concept of isolation 
PoHi]: consider some prefix of the output from the generator as a function of the seed. 
Then we would like the bit following the prefix to be isolated from the prefix itself. 

In general, we can think of a pseudorandom bit generator as a probabilistic algorithm 
G which takes input ,r chosen from a h i t e  set X, , where {Xnt  ,"=1 is a family of finite 
sets, and rn can be thought of as a security parameter. The output G ( s )  is a bitstring 
whose i 'th bit is denoted G(X)[ .  We now have the following more formal d e h t i o n  of 
next-bit-security: 

Definition 3.3 
The generator G is said to be snorigly rinpredicrahle . if for all polynomials P and proba- 
bilistic circuits C , the following holds only for finitely many m : 
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there exists an i , such that 
1 1 Prob(C(G(x) l . .  . . ,G(,Y)~-~) = G ( , K ) ~ )  27 + - 

P ( m ) '  
where C(G( .K)~ ,  . . . , G ( - K ) ~ - ~ )  denotes the output of C on input G ( X ) ~ ,  . . . , G ( . Y ) ~ - ~ ,  and 
the probability is taken over the coinflips of C and a uniform choice of x E X, 0 

Definition 3.4 
The generator G is said to be weakly unpredictable, if the statement in Definition 3.3 

replaced by 1 - - 1 1 holds, with the probability - + - 
2 P t m )  P ( m )  

1 

Thus, for weak unpredictability, we allow algorithms that guess better as rn increases, 

For the next results. we need some more notation: 
as long as the success probability does not approach 1 too rapidly. 

Definition 3.5 
Let G be a pseudorandom bitgenerator as above, and let Q be a polynomial. Then GQ is a 
pseudorandbm bitgenerator which takes as input x = (x . . . , xQIm )), where xi E X,,, are 
cosen uniformly and independently. It produces as output the sequence whose j 'rh ele- 
ment is 

G Q (x); = G ( s  l ) j  @ . . ' @ G(,yQrn, ,)j 

We now quote from PoHi]  the following definition and theorem: 

Definition 3.6 
Let (X,,, 1 be an infinite family of finite sets, and let E be a function mapping X,,, to 

) for some polynomial P . Then 
we say that B is @ ,T)-isolated from f if every circuit with Q ( m  ) inputs and size at most 
T satisfies 

0.1 } . Let f be a function such that f X,,, -) { 0, l )  

IP , .ob (C( f ( ,~ ) )=B( ,K) ) -  - 1  I P  5 -  
2 2 '  

where x is chosen uniformly from X,,, 0 

Thus, isolation measures the hardness of predicting B (s) given f (x  ). 

Theorem 3.1 (Levin's Isolation Theorem) 
If the functions bi (xi ) are @ .T) isolated from fi (xi ) for all 1 I i I n , then for every &>O, 
the function 6 L(x 1) @ . . . 6, (x, ) is @" +E, E ~ (  1-p )?)-isolated from 
f I ( ~ 1 ) s . .  . r f n ( - r n ) U  



From this follows: 

Theorem 3.2 
Suppose that the pseudorandom bitgenerator G is weakly unpredictable. Then G"'- is 
strongly unpredictable. 
Proof. 
For x E X,, , let P, (G (-r )) denote the prefix of G (x ) of len,oth i -1. Then weak unpredicta- 
bility implies that for all i smaller than the outputlength of G ,  G(=c)i is 

(1-- * , T ( m  ))-isolated from P,(G(s) )  for arbitrary polynomials R and T and all 

sufficiently large m . Put p (m ) = 1 - -. Using the notation of Definition 3.5, we obtain 

from Levin's theorem by choosing R ( m ) = r n  that Gm'(x) i  is 
(p ( m  )"I2 + E.  E'( I-p ( m  )) 'T(m ) ) -  isolated from Pi (G (x I)). . . . , Pi (G (x,,,:)). From this 
last bit string, it is easy to compute Pi(G""(x)). Moreover, p(m)"'  converges to 0 fastei 
than any polynomial fraction. From these facts, we get the strong unpredictability of G"'- 
by choosing E = - , where P is the polynomial from Definition 3.3 [7 

2 
m 

R ( m )  

P ( m )  
Alternatively, we could have used Yao's xor-Theorem, although the conclusion of 

Theorem 3.2 was already known (see [a]) for the special case of generators con- 

We call attention to two points in connection with this result, which are of interest 

What Theorem 3.2. proves is that the next bit of the XOR of several generators is 
hard to predict, even when given prefixes of the output from each i)ia'ividual genera- 
tor. But in a known plaintext attack on the resulting cryptosystem. a cryptanalyst 
only knows the XOR of the prefixes, and therefore seems to be faced with an even 
harder problem. It would be very interesting to find out. whether the conditions on G 
needed to make G Q  strong can be relaxed using this fact. 

With essentially the same argument as for Theorem 3.2, one can prove a more general 
statement, which loosely speaking says that if the generator G cannot be predicted 

for some polynomial R ,  then the generator 1 with probability better than 1 - - 
R ( m )  

is strongly unpredictable. In other words: by XOR-ing more "copies" of G ,  
one can get aw3y with a weaker assumption on the security of G . 

It is now trivial to prove: 

that theorem as stated in Kr] is slightly weaker than that of Levin's Theorem. 

structed with m unapproximable predicate and a friendship function IJ31Mil. 

from a cryptographic point of view: 
- 

- 

G " ~ R [ ~ I  ) . 

Corollar) 3.1 
If the Legendre Generator is weakly unpredictable, then the Jacobi Generator is strongly 
unpredictable 
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Proof. 
By the way we translate Legendre and Jacobi symbols into bits, it is clear that the Jacobi 
generator in fact outputs the xor of the output of several Legendre generators. We can 
therefore use Theorem 3.2 0 

4. Emphirical Tests 
A number of elementary statistical tests were performed on primes and sequences of 

various lengths. The primes were of length approximately 25, 50, 100,200 and 400 bits, 
and 6 primes of each length were tested. The sequence length was fixed to IOO.log~@ ). 

The sequences were generated using special purpose hardware (a FAP6 processor), 
and the tests included: 
- A Chi-square test €or equidistribution of subsequences of length 1 to 10. For each 

subsequence length a Chi-square value was computed based on the occurrences 
found. Representative results for the distribution of these Chi-square values can be 
found in Fig. 1. 

A Chi-square test on the distribution of block lengths. This produced results quite 
similar to those of the subsequence test. 

A test on the linear complexity of the strings. Using the Berlekamp-Massey algo- 
rithm. the linear complexity of prefixes of the Legendre sequences was computed. 
For a really random sequence, the linear complexity is expected to be close to half the 
sequence length mu]. Our sequences seem to fit nicely with this expectation. Fig. 2. 
shows a typical result. 

No statistical weaknesses were found during these tests, and moving to composite 
numbers and Jacobi symbols produced no significant change in the results. 

This can hardly be said to be surprising: as mentioned, all known results indicate, that 
a highly non-elementary test would be needed to detect any weakness in the Legendre gen- 
erator. 

Finally, let us remark that the tests mentioned here are just preliminary. Many other 
and more sophisticated tests with larger test material could (and should) be carried out. 

5. Practical Implementation 
If one wants to use special purpose hardware in implementing this system, using 

Gauss’s Reciprocity Theorem for computing Legendre symbols hardly seems an attractive 
solution, at least judging from the hardware available today: most modular arithmetic 
chips are much better suited €or exponentiation. 

Computing Legendre and Jacobi symbols by exponentiation is cubic in the length of 
the modulus, and therefore slower asymptotically than generators based on squaring 
modulo a composite. In practice, the difference may not be so large, however, since it is 
not clear at all, that one mus; use primes large enough to make discrete log hard, €or exam- 
ple. 

- 

- 
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If for example we use the Jacobi generator with 2 prime factors of size about 25 bits, 
this produces an effective key space of more than 90 bits, which is certainly enough to 
prevent exhaustive search. 

If one is willing to use the same amount of hardware as would be needed for a 600 bit 
RSA implementation, one could compute 12 bits of the keystream in parallel, whch  with 
state of the art hardware would give a speed of about 100 Kbits pr. sec. Even use of just 2 
25-bit slices would still give a speed of about 10 Kbits pr. sec. 

6. Generalizations 
The method we present can be generalized in several ways: 

6.1. The Linear Congruence hlethod 
First, one could consider, in stead of Legendre symbols of consecutive numbers. sym- 

bols for numbers generated by the well known Linear Congruence Generator, i.e. taking 
Legendre symbols for a sequence a I . . a,, where 

u , + ~  = ( m a i  + b ) modp , 

for constants m and b , and a prime p . Note, however, that since 

a, = r n ' - ' ~ ~ + r n ~ - ~ b  + . . . +  mb + b ,  

then by the multiplicative property of Legendre symbols, 

where all =alb-' ,  and u ' ~ + ~  = mati + 1. So if this generalization is used in a cryptosys- 
tem, there is no point in including the choice of b in the key: up to a sign, all the possible 
sequences can already be obtained just by using b=l and varying the starting point a l .  
Variation of m , on the other hand, does seem to generate new sequences compared to the 
basic Legendre generator. This introduces 3 possibility of enlarging the key-space without 
using a larger prime. 

One should take some care, however, in choosing m .  as shown by the following 
Lemma: 

Lemma 6.1 
The period of the sequence defined by a I = a and a,+l = (nu!  + b ) mod p for a prime p is 

P ifm=L 
-1 

orcl(m) i f m  # 1 ,anda  #- 
m-1 

1 otherwise, 
where ord (m ) denotes the order of m as element in Z,'. 

Proof. 
The m=l-case is trivial. For the other cases, use the recurrence 
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m k - l  
m-1 a,+k = (m'a,, + - modp 

and elementary number theory 
-1 
m -I  Thus, the starting point for the sequence should be chosen different from - , a d  

ord(m ) should be large. This can be ensured by choosing p such that the factorization of 
p-1 is known, computing the order of a candidate m from this, and discard low-order m 's. 
In practice, however, it is probably better to construct p such that p-1 has a large prime 
factor q . Then an m chosen uniformly from 10 . . . p -11 wil l  have order divisible by 4 
with probability l-4-l. 

Finally, let us remark that the results of Perron (see Section 2) for the basic Legendre 
sequences are easily seen to generalize to sequences generated by the method from this 
section. 

6.2. Using Other Character Values 
Another interesting idea is to consider other characters than the quadratic one. Such 

character values can also be produced easily by exponentiation: If q is a divisor in p - 1, 
then a + a @-''q is a surjective homomorphism from 2,' to G , the subgroup of order q . 
By choosing some 1-1 correspondence between elements of G and the set of complex q 'th 
roots of unity, each element in G corresponds to one of the q possible values of the 
corresponding character of Z;. These elements can be represented by bit strings of length 
approximately log2(q 1. We can therefore constNct a generator by computing a @-l)'q for 
consecutive values of a ,  and at each point output the corresponding bit string. Clearly, 
there is a limit to how Large q can be chosen before the generator becomes insecure (just 
consider q =p -1 ! ). Determining the maximal useful value of q will be an interesting field 
for new research. This problem can be thought of as corresponding to that of finding out 
how many of the least sigmficant RSA-bits are cryptographically secure (see for example 
WiSc]). 

7. Conclusion and Open Problems 
We have presented a new pseudorandom bit generator, based on a number theoretic 

problem, the complexity of which may be unrelated to the well known candidate hard 
problems in number theory. 

We have seen that to prove the cryptographic strength of the generator, it is enough to 
prove that Legendre Sequences are weakly unpredictable. 

A number of open problems remain, however: 

Are Legendre sequences weakly unpredictable'? 
Is the complexity of predicting Legendre sequences related to other number theoretic 
problems? 
Are other characters than the quadratic one usable for pseudo random generators? 

- 

- 

- 
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