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Abstract. The purpose of this paper is to generalize the Brézis-Haraux theo-
rem on the range of the sum of monotone operators from a Hilbert space to gen-
eral Banach spaces. The result obtained provides that the range R(A+Bτ )
is topologically almost equal to the sum R(A)+R(B) where τ is a compatible
topology in X∗∗×X∗ as proposed by Gossez. To illustrate the main result we
consider some basic properties of densely maximal monotone operators.

1. Introduction and background

The Brézis-Haraux theorem [3] on the range of the sum of monotone operators
on a Hilbert space is an efficient tool in nonlinear analysis. Nevertheless, the ex-
ploration for this direction has continued its development also in a Hilbert space
to nonmonotone linear operators that have been obtained by Brézis and Nirenberg
[4]. In restrictive Banach spaces (Lp with 1 < p < +∞ and reflexive) for accretive
and φ-monotone operators, some of these results have been obtained by Browder
[5], Gupta and Hess [11], Calvert and Gupta [7], Reich [15],. . . . In a recent pa-
per, Morales [13] extended these results to some regular Banach spaces (uniformly
convex) for m-accretive operators. Most applications that prove the existence of
solutions for nonlinear partial differential equations, differential inclusions, opti-
mization, calculus of variations,. . . have been proposed in the references quoted
above (see, for instance, [17]).

The developed theory of monotone operators from a Banach space to its dual
space can be considered most naturally as an extension of the fundamental theory of
monotone operators on Hilbert spaces as was studied by Minty (1962) and Browder
(1963). Another treatment is to consider accretive operators from a Banach space
to itself. Naturally, in a Hilbert space one has the fundamental equivalence between
maximal monotonicity and m-accretivity.

The purpose of this paper is to treat the range of the sum of monotone oper-
ators. The result obtained generalizes the Brézis-Haraux theorem from a Hilbert
space to general Banach spaces by dealing with monotone operators. We derive
in a more general Banach space X the relations R(A+B) = R(A) +R(B) and
int(R(A + B)) ⊂ int(R(A) + R(B)) ⊂ int(R(A +Bτ )) where τ is a compatible
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topology in X∗∗×X∗ as proposed by Gossez. To illustrate the main result we con-
sider some basic properties of densely maximal monotone operators (see [9], [14]).
It is important to mention that these results can be applied to various problems in
nonlinear analysis; especially for studying nonlinear differential inclusions and the
Hammerstein integral equation.

Let X be a real Banach space, let X∗ be its topological dual space and let X∗∗

be its bidual space. The generalized duality pairing is denoted by 〈., .〉 (resp. 〈., .〉∗)
between X and X∗ (resp. X∗ and X∗∗). We use clν(C) and intν(C) to denote,
respectively, the closure and the interior of a subset C of X relative to the topology
ν. When ν is the strong (norm) topology, we write clν C = C̄ and intν(C) = int(C).
We also use a+ τB to denote the open ball centered at a ∈ X with radius r > 0.

By identifying the space X with a subspace of X∗∗, we see that clτ1 X = X∗∗,
where τ1 is the least fine topology for which the following mappings are continuous:

X∗∗ → R : x∗∗ → 〈x∗∗, x∗〉∗, ∀x∗ ∈ X∗,
X∗∗ → R : x∗∗ → ‖x∗∗‖.

Let τ = τ1 ⊗ τs where τs is the strong topology on X∗.
An operator A : X → 2X

∗
is a multivalued mapping from X to 2X

∗
. Its domain

and range are denoted by D(A) = {x ∈ X : Ax 6= ∅} and R(A) = {x∗ ∈ X∗ : x∗ ∈
Ax, x ∈ D(A)}. Throughout this paper we identify an operator A with its graph,
i.e.

x∗ ∈ Ax⇔ (x, x∗) ∈ A⇔ x ∈ A−1x∗.

We say that an operator A : X → 2X
∗

is monotone if

∀(x1, y1) ∈ A, ∀(x2, y2) ∈ A 〈y2 − y1, x2 − x1〉 ≥ 0.

It is said to be maximal monotone if its graph is maximal in the family of monotone
operators in X ×X∗, ordered by inclusion.

We say that an operator A : X → 2X
∗

is densely maximal if there exists a
maximal monotone operator B : X∗∗ → 2X

∗
such that B ⊂ Āτ where

Āτ = clτ A := {(x∗∗, x∗) ∈ X∗∗ ×X∗; ∃(xi, x∗i ) ∈ A with (xi, x
∗
i )

τ−→ (x∗∗, x∗)}.
The operator Āτ need not be monotone in X∗∗ ×X∗ (see [10]). If A is monotone,
the dense maximality can be expressed by Āτ is maximal monotone in X∗∗ ×X∗.

We now define the normalized duality mapping J : X → 2X
∗

by

J(x) = {x∗ ∈ X∗; 〈x∗, x〉 = ‖x‖2, ‖x∗‖ = ‖x‖}.
The ε-normalized duality mapping Jε : X → 2X

∗
is a multivalued operator defined

by

Jε(x) = {x∗ ∈ X∗; 1
2 (‖x‖2 + ‖x∗‖2) ≤ 〈x∗, x〉+ ε}.

Given f : X → R ∪ {+∞} convex, lower semicontinuous and proper, its effective
domain is given by dom(f) = {x ∈ X/f(x) < +∞}. The subdifferential (resp.
ε-subdifferential) operator ∂f (resp. ∂εf) : X → 2X

∗
is defined by

y ∈ ∂f(x) iff f∗(y) + f(x) = 〈y, x〉
(resp.

y ∈ ∂εf(x) iff f(v) ≥ f(x) + 〈y, v − x〉 − ε for all v in X),

where f∗(y) = supu∈X(〈y, u〉 − f(u)) is the Legendre-Fenchel conjugate of f .
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The operator ∂f ⊂ X ×X∗ is maximal monotone (see [16]). It is also densely
maximal (see [8, Théorème 3.1]). It follows from these definitions that

J(x) = ∂

(
1

2
‖ · ‖2

)
(x) and Jε(x) = ∂ε

(
1

2
‖ · ‖2

)
(x).

The inf-convolution (also called epigraphic sum) of f and g is given by

f
e
+ g(x) = inf

u∈X
(f(u) + g(x− u)).

2. The main results

Definition (Aubin and Ekeland [2, p. 393], Zeidler [17, p. 901]). Let A be a
monotone operator from a Banach space X to its dual X∗. Then A is said to
be 3∗-monotone if for all x∗ ∈ R(A) and x ∈ D(A) there is a real number α such
that

inf
(u,v)∈A

〈x∗ − v, x− u〉 ≥ α.

Lemma 1. (a) The operator Jε : X → 2X
∗

is bounded and coercive, i.e.

inf
x∗∈Jε(x)

〈x∗, x〉
‖x‖ = +∞.

(b) If x∗ ∈ Jε(x), then | ‖x‖ − ‖x∗‖ | ≤
√

2ε and ‖x‖ · ‖x∗‖ − ε ≤ 〈x∗, x〉.

Proof. For (a) see [8, Lemme 1.3]. To show (b) it suffices to use the fact Jε(x) =
∂ε(

1
2‖ · ‖2)(x).

Lemma 2. Let A be a densely maximal monotone operator on X×X∗ and E ⊂ X∗.
Suppose that ∀u∗ ∈ E, ∃u ∈ X such that

inf
(v,v∗)∈A

〈v∗ − u∗, v − u〉 > −∞.(1)

Then

E ⊂ R(A) and int(E) ⊂ R(Āτ ).

Proof. • Let us prove that E ⊂ R(A). For, let u∗ ∈ E, and let us fix ε > 0
sufficiently small. Then by [8, Theorem 4.1], for every λ > 0 there exists vλ ∈
D(A), y∗λ ∈ Jεvλ and z∗λ ∈ Avλ such that

u∗ = λy∗λ + z∗λ.

By (1) there exist u ∈ X and c > 0 such that

∀(v, v∗) ∈ A 〈v∗ − u∗, v − u〉 ≥ −c.(2)

Let us take v = vλ and v∗ = z∗λ = u∗ − λy∗λ; then for every λ > 0

〈v∗ − u∗, v − u〉 = −〈λy∗λ, vλ − u〉 ≥ −c.

According to Lemma 1, one has

〈y∗λ, vλ〉 ≥ ‖y∗λ‖ · ‖vλ‖ − ε and ‖y∗λ‖2 ≥ 2ε+ ‖vλ‖2,
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which imply that

c ≥ λ(〈y∗λ, vλ〉 − 〈y∗λ, u〉)

≥ λ

2
(‖y∗λ‖2 + ‖vλ‖2 − 2ε)− λ

2
(‖y∗λ‖2 + ‖u‖2)

≥ λ

2
(‖vλ‖2 − ‖u‖2 − 2ε).

We deduce that the family {
√
λ‖vλ‖ : λ > 0} is bounded for bounded λ > 0. This

yields limλ→0+ ‖λvλ‖ = 0 and in view of ‖λy∗λ‖ ≤ ‖λvλ‖+ λ
√

2ε, we derive

lim
λ→0+

‖λy∗λ‖ = 0.

Since z∗λ ∈ Avλ (i.e., z∗λ ∈ R(A)) and z∗λ = u∗ − λy∗λ strongly converges to u∗, it

follows that u∗ ∈ R(A).
• Let us prove that int(E) ⊂ R(Āτ ). Let u∗ ∈ int(E). Then there exists r > 0

such that u∗ + rB∗ ⊂ E. Let w∗ ∈ rB∗. Then, as a result of these facts and
assumption (2), there exists w ∈ X such that for every λ > 0 we have

〈−λy∗λ + w∗, vλ − w〉 ≥ −c,
since z∗λ = u∗ − λy∗λ ∈ Avλ. Hence for some λ0 > 0 we have ∀λ ∈ ]0, λ0]

〈w∗, vλ〉 ≤ c+ λ(〈y∗λ, w〉 − 〈y∗λ, vλ〉) + 〈w∗, w〉

≤ c+
λ

2
(‖w‖2 − ‖vλ‖2 + 2ε) + 〈w∗, w〉

≤ c+
λ0

2
(‖w‖2 + 2ε) + 〈w∗, w〉.

Thus ∀w∗ ∈ rB∗, sup0<λ≤λ0
〈w∗, vλ〉 < +∞. We conclude by using the uniform

boundedness theorem that {vλ; 0 < λ ≤ λ0} is bounded in X ⊂ X∗∗.
We can extract a subnet, also denoted by {vλ}, such that vλ ⇀ v̄ ∈ X∗∗ for

the weak topology σ(X∗∗, X∗) whenever λ → 0+. We claim that v̄ ∈ D(Āτ ) and
u∗ ∈ Āτ (v̄). For, it suffices to show that

∀(v, v∗) ∈ A 〈u∗ − v∗, v̄ − v〉 ≥ 0.

To that end, let (v, v∗) ∈ A. Since z∗λ ∈ Avλ and A is monotone, we deduce

∀λ > 0 〈z∗λ − v∗, vλ − v〉 ≥ 0.(3)

Now, limλ→0+ ‖z∗λ − u∗‖ = limλ→0+ ‖λy∗λ‖ = 0 and vλ ⇀ v̄ ∈ X∗∗ for σ(X∗∗, X∗)
imply that

0 ≤ lim inf
λ→0+

〈z∗λ − v∗, vλ − v〉

≤ lim sup
λ→0+

〈z∗λ, vλ〉 − lim inf
λ→0+

〈z∗λ, v〉 − lim inf
λ→0+

〈v∗, vλ〉+ 〈v∗, v〉

≤ 〈u∗ − v∗, v̄ − v〉.

It follows that u∗ ∈ Āτ (v̄), and thus u∗ ∈ R(Āτ ).

Theorem 1. Let X be a general Banach space. Let A1 and A2 be two monotone
operators satisfying

(i) A1 and A2 are 3∗-monotones.
(ii) A1 +A2 is densely maximal.
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Then

R(A1 +A2) = R(A1) +R(A2)

and

intR(A1 +A2) ⊂ int(R(A1) +R(A2)) ⊂ intR(A1 +A2
τ ).

Proof. It is obvious that

R(A1 +A2) ⊂ R(A1) + (R(A2)) and intR(A1 +A2) ⊂ int(R(A1) + (R(A2)).

Let us establish the other ones. Define A and E of the last lemma by A := A1 +A2

and E := R(A1) + R(A2). All that needs to be shown is condition (1). For, let
u∗ ∈ E; then u∗ = u∗1 + u∗2 for u∗i ∈ R(Ai). By 3∗-monotonicity of Ai, we have for
u ∈ D(A1) ∩D(A2)

inf
(v,v∗)∈Ai

〈v∗ − u∗i , v − u〉 > −∞ for i = 1, 2,

which implies that

inf
(v,v∗)∈A

〈v∗ − u∗, v − u〉 = inf
v∗1+v∗2∈A1(v)+A2(v)

〈(v∗1 − u∗1) + (v∗2 − u∗2), v − u〉

≥ inf
(v,v∗1 )∈A1

〈(v∗1 − u∗1), v − u〉+ inf
(v,v∗2 )∈A1

〈(v∗2 − u∗2), v − u〉

> −∞.
This means condition (1) is satisfied. Hence the theorem is proven.

Remarks. (a) Let us remark that the 3∗-monotonicity condition on A1 and A2 can
be replaced by

∀u∗ ∈ R(A1) +R(A2), ∃u ∈ X such that inf
(v,v∗)∈A1+A2

〈v∗ − u∗, v − u〉 > −∞.

(b) The assertion of the main theorem remains true when we replace the 3*-
monotonicity of A1 by D(A1) ⊂ D(A2).

Corollary 1. Suppose that X is a reflexive Banach space. Let A1 and A2 be two
3∗-monotone operators satisfying that A1 +A2 is maximal. Then

intR(A1 +A2) = int(R(A1) +R(A2)) and R(A1 +A2) = R(A1) +R(A2).

The proof is immediate, since when the space X is reflexive and A = A1 +A2 is
maximal monotone, Āτ = A.

Corollary 2. Let f and g be two proper convex lower semicontinuous functions
defined from a Banach space X in R ∪ {+∞}. Assume that⋃

t>0

t(dom(f)− dom(g)) is a closed linear subspace of X.(4)

Then

R(∂f) +R(∂g) = R(∂(f + g)) and (R(∂f) +R(∂g)) = intD∂(f∗
e
+ g∗).

Proof. Using [1, Corollary 1] we have ∂(f + g) = ∂f + ∂g. Rockafellar’s theorem
in [16] guarantees that ∂f and ∂g are cyclic monotone, in particular, 3∗-monotone.
We have

R(∂f) +R(∂g) = R(∂f + ∂g) = R(∂(f + g))
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and

int(R(∂f) +R(∂g)) = intR(∂(f + g)τ ).

Attouch and Brézis [1, Theorem 1] show that under assumption (4)

(f + g)∗ = f∗
e
+ g∗.

Therefore

∂(f + g)τ = (∂(f + g)∗)−1 = (∂(f∗
e
+ g∗))−1,

which completes the proof.
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J. Math. Anal. Appl. 34 (1971), 371–395. MR 47:2442

9. , On the range of a coercive maximal monotone operator in a nonreflexive Banach
space, Proc Amer. Math. Soc. 35 (1972), 88–92. MR 45:7544

10. , On the extensions of the bidual of a maximal monotone operator, Proc. Amer. Math.
Soc. 62 (1977), 67–71. MR 55:1150

11. C. Gupta and P. Hess , Existence theorems for nonlinear noncoercive operator equations and
nonlinear elliptic boundary value problems, J. Differential Equations 22 (1976), 305–313. MR
57:13600

12. A. G. Kartsatos, Mapping theorems involving ranges of sums on nonlinear operators, Nonlin-
ear Anal. T.M.A. 6 (1982), 271–278. MR 83k:47036

13. C. H. Morales, On the range of sums of accretive and continuous operators in Banach spaces,
Nonlinear Anal. T.M.A. 19 (1992), 1–9. MR 93d:47096

14. R. R. Phelps, Lectures on maximal monotone operators, Lectures given at Prague-Paseky
Summer School, 1993.

15. S. Reich, The range of sums of accretive and monotone operators, J. Math. Anal. Appl. 68
(1979), 310–317. MR 80g:47060

16. R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math.
33 (1970), 209–216. MR 41:7432

17. E. Zeidler, Nonlinear functional analysis and applications II-B: Nonlinear monotone opera-
tors, Springer-Verlag, New York, 1990. MR 91b:47002

Semlalia Faculty of Sciences, Mathematics, University Cadi Ayyad, Boulevard My

Abdellah, B.P.S. 15, 40 000 Marrakesh, Morocco

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


