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ON THE RANGE OF VALIDITY OF THE AUTOREGRESSIVE
SIEVE BOOTSTRAP

BY JENS-PETER KREISS, EFSTATHIOS PAPARODITIS

AND DIMITRIS N. POLITIS

Technische Universität Braunschweig, University of Cyprus
and University of California, San Diego

We explore the limits of the autoregressive (AR) sieve bootstrap, and
show that its applicability extends well beyond the realm of linear time se-
ries as has been previously thought. In particular, for appropriate statistics,
the AR-sieve bootstrap is valid for stationary processes possessing a gen-
eral Wold-type autoregressive representation with respect to a white noise; in
essence, this includes all stationary, purely nondeterministic processes, whose
spectral density is everywhere positive. Our main theorem provides a simple
and effective tool in assessing whether the AR-sieve bootstrap is asymptot-
ically valid in any given situation. In effect, the large-sample distribution of
the statistic in question must only depend on the first and second order mo-
ments of the process; prominent examples include the sample mean and the
spectral density. As a counterexample, we show how the AR-sieve bootstrap
is not always valid for the sample autocovariance even when the underlying
process is linear.

1. Introduction. Due to the different possible dependence structures that may
occur in time series analysis, several bootstrap procedures have been proposed to
infer properties of a statistic of interest. Validity of the different bootstrap proce-
dures depends on the probabilistic structure of the underlying stochastic process
X = (Xt : t ∈ Z) and/or on the particular statistic considered. Bootstrap schemes
for time series rank from those imposing more parametric type assumptions on
the underlying stochastic process class to those accounting only for some kind of
mixing or weak dependence assumptions. For an overview see Bühlmann (2002),
Lahiri (2003), Politis (2003) and Paparoditis and Politis (2009).

A common assumption is that X is a linear time series, that is, that

Xt =
∞∑

j=−∞
bj et−j , t ∈ Z,(1.1)

with respect to independent, identically distributed (i.i.d.) random variables (et )—
often assumed to have mean zero and finite fourth order moments—and for abso-
lutely summable coefficients (bj ); this is not to be confused with the Wold repre-
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sentation with respect to white noise, that is, uncorrelated, errors that all stationary,
purely nondeterministic processes possess. If bj = 0 for all j < 0, then the linear
process is called causal.

Stationary autoregressive (AR) processes of order p are members of the lin-
ear class (1.1) provided the autoregression is defined on the basis of i.i.d. errors.
Model-based bootstrapping in the AR(p) case was among the first bootstrap pro-
posals for time series; see, for example, Freedman (1984). The extension to the
AR(∞) case was inevitable; this refers to the situation where the strictly station-
ary process Xt has the following linear infinite order autoregressive representation

Xt =
∞∑

j=1

πjXt−j + et , t ∈ Z,(1.2)

with respect to i.i.d. errors et having mean zero, variance 0 < E(e2
t ) = σ 2

e and
E(e4

t ) < ∞; here the coefficients πj are assumed absolutely summable and π(z) =
1−∑∞

j=1 πjz
j �= 0 for |z| = 1. The two representations, (1.1) and (1.2) are related;

in fact, the class (1.2) is a subset of the linear class (1.1). Furthermore, it can be
shown that the linear AR(∞) process (1.2) is causal if and only if π(z) = 1 −∑∞

j=1 πjz
j �= 0 for |z| ≤ 1.

There is already a large body of literature dealing with applications and prop-
erties of the AR-sieve bootstrap. Kreiss (1988, 1992) established validity of this
bootstrap scheme for different statistics including autocovariances and autocorrela-
tions. Paparoditis and Streitberg (1992) established asymptotic validity of the AR-
sieve bootstrap to infer properties of high order autocorrelations, and Paparoditis
(1996) established its validity in a multivariate time series context. The aforemen-
tioned results required an exponential decay of the AR coefficients πj as j → ∞;
Bühlmann (1997) extended the class of AR(∞) processes for which the AR-sieve
bootstrap works by allowing a polynomially decay of the πj coefficients. Further-
more, Bickel and Bühlmann (1999) introduced a mixing concept appropriate for
investigating properties of the AR-sieve bootstrap which is related to the weak de-
pendence concept of Doukhan and Louhichi (1999), while Choi and Hall (2000)
focused on properties of the AR-sieve bootstrap-based confidence intervals.

A basic assumption in the current literature of the AR-sieve bootstrap is that
X is a linear AR(∞) process, that is, Xt is generated by (1.2) with (et ) being an
i.i.d. process. One exception is the case of the sample mean Xn = n−1 ∑n

t=1 Xt ,
where Bühlmann (1997) proved validity of the AR-sieve bootstrap also for the case
where the assumption of i.i.d. errors in (1.2) can be relaxed to that of martingale
differences, that is, E(et |Et−1) = 0 and E(e2

t |Et−1) = σ 2
e with Et−1 = σ({es : s ≤

t − 1}) the σ -algebra generated by the random variables {et−1, et−2, . . .}. Notice
that the process (1.2) with innovations forming a martingale difference sequence is
in some sense not “very far” from the linear process (1.2) with i.i.d. errors. In fact,
some authors call the set-up of model (1.1) with martingale difference errors “weak
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linearity,” and the same would hold regarding (1.2); see, for example, Kokoszka
and Politis (2011).

To elaborate, for a causal linear process the general L2-optimal predictor
of Xt+k based on its past Xt,Xt−1, . . . , namely the conditional expectation
E(Xt+k|Xs, s ≤ t) of Xt+k , is identical to the best linear predictor P Mt (Xt+k);
here k is assumed positive, and PC denotes orthogonal projection onto the set C

and Ms = span{Xj : j ≤ s}, that is, the closed linear span generated by the random
variables {Xj : j ≤ s}. The property of linearity of the optimal predictor is shared
by causal processes that are only weakly linear. Recently, under the assumption of
weak linearity with (1.2), Poskitt (2008) claimed validity of the AR-sieve bootstrap
for a much wider class of statistics that are defined as smooth functions of means.
However, this claim does not seem to be correct in general. In particular, our Ex-
ample 3.2 of Section 3 contradicts Theorem 2 of Poskitt (2008); see Remark 3.2
in what follows.

The aim of the present paper is to explore the limits of the AR-sieve bootstrap,
and to give a definitive answer to the question concerning for which classes of
statistics, and for which dependence structures, is the AR-sieve bootstrap asymp-
totically valid. Moreover, we also address the question what the AR-sieve boot-
strap really does when it is applied to data stemming from a stationary process not
fulfilling strict regularity assumptions such as linearity or weak linearity. In order
to do this, we examine in detail in Section 2 processes possessing a so-called gen-
eral autoregressive representation with respect to white noise errors; these form a
much wider class of processes than the linear AR(∞) class described by (1.2).

Our theoretical results in Section 3 provide an effective and simple tool for
gauging consistency of the AR-sieve bootstrap. They imply that for certain classes
of statistics the range of the validity of the AR-sieve bootstrap goes far beyond
that of the linear class (1.1). On the other hand, for other classes of statistics, like
for instance autocorrelations, validity of the AR-sieve bootstrap is restricted to the
linear process class (1.1), while for statistics like autocovariances, the AR-sieve
bootstrap is only valid for the linear AR(∞) class (1.2). But even in the case of
the linear autoregression (1.2) with infinite order, the theory developed in this pa-
per provides a further generalization of existing results since it establishes valid-
ity of this bootstrap procedure under weaker assumptions on the summability of
the coefficients πj , thus relaxing previous assumptions referring to exponential or
polynomial decay of these coefficients.

The remaining of the paper is organized as follows. Section 2 develops the back-
ground concerning the Wold-type infinite order AR representation that is required
to study the AR-sieve bootstrap, and states the necessary assumptions to be im-
posed on the underlying process class and on the parameters of the bootstrap pro-
cedure. Section 3 presents our main result and discusses its implications by means
of several examples. Proofs and technical details are deferred to the Appendix.
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2. The AR-sieve bootstrap and general autoregressive representation.
Here, and throughout the paper, we assume that we have observations X1, . . . ,Xn

stemming from a strictly stationary process X. Let Tn = Tn(X1, . . . ,Xn) be an es-
timator of some unknown parameter θ of the underlying stochastic process X. Sup-
pose that for some appropriately increasing sequence of real numbers {cn :n ∈ N}
the distribution Ln = L(cn(Tn − θ)) has a nondegenerated limit. The AR-sieve
bootstrap proposal to estimate the distribution Ln goes as follows:

Step 1: Select an order p = p(n) ∈ N, p � n, and fit a pth order autoregressive
model to X1,X2, . . . ,Xn. Denote by â(p) = (âj (p), j = 1,2, . . . , p), the Yule–
Walker autoregressive parameter estimators, that is, â(p) = �̂(p)−1γ̂p where for
0 ≤ h ≤ p,

γ̂X(h) = n−1
n−|h|∑
t=1

(Xt − Xn)
(
Xt+|h| − Xn

)
,

Xn = n−1 ∑n
t=1 Xt , �̂(p) = (γ̂X(r − s))r,s=1,2,...,p and γ̂p = (γ̂X(1), γ̂X(2), . . . ,

γ̂X(p))′.
Step 2: Let ε̃t (p) = Xt − ∑p

j=1 âj (p)Xt−j , t = p + 1,p + 2, . . . , n, be the

residuals of the autoregressive fit and denote by F̂n the empirical distribu-
tion function of the centered residuals ε̂t (p) = ε̃t (p) − ε, where ε = (n −
p)−1 ∑n

t=p+1 ε̃t (p). Let (X∗
1,X∗

2, . . . ,X∗
n) be a set of observations from the time

series X∗ = {X∗
t : t ∈ Z} where X∗

t = ∑p
t=1 âj (p)X∗

t−j + e∗
t and the e∗

t ’s are inde-

pendent random variables having identical distribution F̂n.
Step 3: Let T ∗

n = Tn(X
∗
1,X∗

2, . . . ,X∗
n) be the same estimator as Tn based on the

pseudo-time series X∗
1,X∗

2, . . . ,X∗
n and θ∗ the analogue of θ associated with the

bootstrap process X∗. The AR-sieve bootstrap approximation of Ln is then given
by L∗

n = L∗(cn(T
∗
n − θ∗)).

In the above (and in what follows), L∗,E∗, . . . will denote probability law, ex-
pectation, etc. in the bootstrap world (conditional on the data X1, . . . ,Xn).

Note that the use of Yule–Walker estimators in Step 1 is essential and
guarantees—among other things—that the complex polynomial Âp(z) = 1 −∑p

j=1 âj (p)zj has no roots on or within the unit disc {z ∈ C : |z| ≤ 1}, see the
discussion before (2.22), that is, the bootstrap process X∗ always is a stationary
and causal autoregressive process.

The question considered in this paper is when can the bootstrap distribution L∗
n

correctly approximate the distribution Ln of interest, and moreover what the AR-
sieve bootstrap does if the latter is not the case. To this end, let us first discuss a
general autoregressive representation of stationary processes.

Recall that by the well-known Wold representation, every purely nondeterminis-
tic, stationary and zero-mean stochastic process X = {Xt : t ∈ Z} can be expressed
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as

Xt =
∞∑

j=1

bjut−j + ut ,(2.1)

where
∑∞

j=1 b2
j < ∞ and ut = Xt − P Mt−1(Xt) is a zero mean, white noise “in-

novation” process with finite variance 0 < σ 2
u = E(u2

t ) < ∞; recall that Ms =
span{Xj : j ≤ s}.

Less known is that for all purely nondeterministic, stationary and zero-mean
time series unique autoregressive coefficients (ak :k ∈ N) exist that only depend
on the autocovariance function of the time series (Xt), such that for any n ∈ N,

P Mt−1(Xt) =
n∑

k=1

akXt−k + et,n, t ∈ Z,(2.2)

where (et,n : t ∈ Z) is stationary and et,n ∈ span{Xs : s ≤ t − n − 1}.
Under the additional assumption that the coefficients (ak, k ∈ N) are absolute

summable, that is,
∑∞

k=1 |ak| < ∞, one then obtains an autoregressive, Wold-type
representation of the underlying process given by

Xt =
∞∑

k=1

akXt−k + εt , t ∈ Z.(2.3)

Here again (εt : t ∈ Z) denotes a white noise, that is, uncorrelated, process with
finite variance σ 2

ε = Eε2
t which fulfills

σ 2
ε = γX(0) −

∞∑
k=1

akγX(k),(2.4)

where γX(·) denotes the autocovariance function of X.
Under the absolute summability assumption on the autoregressive coefficients

(ak)—conditions for which will be given in Lemma 2.1 in the sequel—we have
that Xt − P Mt−1(Xt) = Xt − ∑∞

k=1 akXt−k; this implies that the white noise pro-
cess (ut ) appearing in (2.1) coincides with the white noise process (εt ) in (2.3).
Notice that this does not mean that if we have an arbitrary one sided moving av-
erage representation of a time series (Xt), even with summable coefficients, that
this moving average representation is the Wold representation of the process; see
Remark 2.1 for an example. Furthermore, let fX be the spectral density of X, that
is,

fX(λ) = (2π)−1
∑
h∈Z

γ (h) exp{−iλh}, λ ∈ [−π,π ].

Then, from (2.3) one immediately obtains that∣∣∣∣∣1 −
∞∑

k=1

ake
−ikλ

∣∣∣∣∣
2

· fX(λ) = σ 2
ε

2π
, λ ∈ [−π,π ],(2.5)
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which implies that for strictly positive spectral densities fX the power series
A(z) := 1 − ∑∞

k=1 akz
k has no zeroes with |z| = 1. For more details of the autore-

gressive Wold representation (2.3) see Pourahmadi (2001), Lemma 6.4(b), (6.10)
and (6.12). It is worth mentioning that in the historical evolution of Wold decom-
positions the autoregressive variant preceded the moving average one.

REMARK 2.1. If we consider a purely nondeterministic and stationary time
series possessing a standard one-sided moving average representation, and if we
additionally assume that the spectral density is bounded away from zero and that
the moving average coefficients bj are absolutely summable, then this would im-
ply that the polynomial B(z) = 1+∑∞

j=1 bj z
j has no zeroes with magnitude equal

to one. There may of course exist zeroes within the unit disk. But since the closed
unit disk is compact and B(z) represents a holomorphic function there could exist
only finitely many zeroes with magnitude less than one. Following the technique
described in Kreiss and Neuhaus [(2006), Section 7.13] one may switch to another
moving average model for which the polynomial has no zeroes within the unit
disk. This procedure definitely changes the white noise process; for example, if
the white noise process in the assumed moving average representation consists of
independent random variables, this desirable feature typically is lost when switch-
ing to the moving average model with all zeroes within the unit disk removed.
In fact, only the property of uncorrelatedness is preserved. The modified moving
average process allows then for an autoregressive representation of infinite order
and this process, because of the uniqueness of the autoregressive representation,
coincides with the one in (2.3).

The following simple example, taken from Brockwell and Davis [(1991), Exam-
ple 3.5.2] illustrates these points. Based on i.i.d. random variables (et ) with mean
zero and finite and nonvanishing variance σ 2

e , construct the simple MA(1)-process

Xt = et − 2et−1, t ∈ Z.(2.6)

This MA(1)-model is not invertible to an autoregressive process. However, a gen-
eral autoregressive representation as described above exists. In order to obtain this
representation denote by L the usual lag-operator and consider B(L) := 1 − 2L as
well as B̃(L) := 1 − 0.5L. Of course

Xt = B̃(L)
B(L)

B̃(L)
et .(2.7)

Since |B(e−iλ)|2/|B̃(e−iλ)|2 = 4, we obtain that

εt := B(L)

B̃(L)
et = et − 3

2

∞∑
j=1

(
1

2

)j−1

et−j .
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Again (εt ) is a (uncorrelated) white noise process with variance σ 2
ε = 4σ 2

e . More-
over, we have

Xt = εt − 0.5εt−1 = −
∞∑

j=1

0.5jXt−j + εt .(2.8)

Obviously εt = Xt − P Mt−1(Xt) which means that (2.8) and not (2.6) is the Wold
representation of the time series (Xt). This also means that the modified moving
average (or Wold) representation of the process (Xt) possesses only uncorrelated
innovations (εt ) instead of independent innovations (et ). But the representation
(2.8) with uncorrelated innovations has the advantage that it indeed possesses an
autoregressive representation of infinite order. Of course, via the described mod-
ification, we do not change any property of the process (Xt). But, and this is es-
sential, the modification leading to the general AR(∞)-representation typically
destroys a existing independence property of the white noise in a former moving
average representation.

To elaborate, the problem of understanding the stochastic properties of the in-
novation process in linear time series has been thoroughly investigated in the liter-
ature. Breidt and Davis (1992) showed that time reversibility of a linear process is
equivalent to the fact that the i.i.d. innovations et are Gaussian and used this result
to derive for a class of linear processes uniqueness of moving average representa-
tions with i.i.d. non-Gaussian innovations and to discuss the stochastic properties
of the innovation process appearing in alternative moving average representations
for the same process class. Breidt, Davis and Dunsmuir (1995) used such results to
initialize autoregressive processes in Monte Carlo generation of conditional sam-
ple paths running autoregressive processes backward in time and Andrews, Davis
and Breidt (2007) for estimation problems for all-pass time series models. Proper-
ties of the innovation process in non-Gaussian, noninvertible time series have been
also discussed in Lii and Rosenblatt (1982, 1996).

As we have seen the variances of et and εt do not coincide and the same is
true for the fourth order cumulant E(e4

t )/σ
4
e − 3 which will be of some impor-

tance later. Using the fact that εt is defined via a linear transformation on the i.i.d.
sequence (et ) we obtain by straightforward computation

E(ε4
t )

(E(ε2
t ))

2
− 3 = 2

5

E(e4
1)

σ 4
e

− 6

5
,(2.9)

which only equals E(e4
1)/σ

4
e − 3 in case the latter quantity is equal to 0, for ex-

ample, when the et are normally distributed. The normally distributed case always
leads to the fact that uncorrelatedness and independence are equivalent, thus imply-
ing that the white noise process in the general autoregressive representation always
consists of independent and normally distributed random variables which leads for
the autoregressive sieve bootstrap in some cases to a considerable simplification as
we will see later.
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In order to get conditions which ensure the absolute summability of the autore-
gressive coefficients (ak, k ∈ N), one can go back to an important paper by Baxter
(1962). Informally speaking it is the smoothness of the spectral density fX which
ensures summability of these coefficients. To be more precise, we have the follow-
ing result.

LEMMA 2.1. (i) If fX is strictly positive and continuous and if

∞∑
h=0

hr |γX(h)| < ∞

for some r ≥ 0, then

∞∑
h=0

hr |ah| < ∞.(2.10)

(ii) If fX is strictly positive and possesses k ≥ 2 derivatives, then

∞∑
h=0

hr |γX(h)| < ∞ ∀r < k − 1.(2.11)

PROOF. Cf. Baxter (1962), pages 140 and 142. �

The uniquely determined autoregressive coefficients (ak) are closely related to
the coefficients of an optimal (in the mean square sense) autoregressive fit of or-
der p, or equivalently, to prediction coefficients based on the finite past. To be
precise, denote the minimizers of

E

(
Xt −

p∑
r=1

crXt−r

)2

(2.12)

by a1(p), . . . , ap(p), which of course are solutions of the following Yule–Walker
linear equations:⎛⎜⎝ γX(0) · · · γX(p − 1)

...
. . .

...

γX(p − 1) · · · γX(0)

⎞⎟⎠
⎛⎜⎝ c1

...

cp

⎞⎟⎠ =
⎛⎜⎝ γX(1)

...

γX(p)

⎞⎟⎠ .(2.13)

Recall from Brockwell and Davis [(1991), Proposition 5.1.1] that the covariance
matrix �(p) on the left-hand side is for all p invertible provided γX(0) > 0 and
γX(h) → 0 as h → ∞.

Now by slight modifications of Baxter (1962), Theorem 2.2 [cf. also Pourah-
madi (2001), Theorem 7.22], we obtain the following helpful result relating the
coefficients ak(p) of the pth order autoregressive fit to the (ak) of the general
autoregressive representation.
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LEMMA 2.2. Assume that fX is strictly positive and continuous and that∑∞
h=0(1 + h)r |γX(h)| < ∞ for some r ≥ 0. Then there exists po ∈ N and C > 0

(both depending on fX only) such that for all p ≥ po,

p∑
k=0

(1 + k)r |ak(p) − ak| ≤ C ·
∞∑

k=p+1

(1 + k)r |ak|(2.14)

as well as
∞∑

k=1

(1 + k)r |ak| < ∞.(2.15)

This means that we typically can achieve a polynomial rate of convergence of
ak(p) toward ak .

As already mentioned, γX(0) > 0 and γX(h) → 0 as h → ∞ ensure nonsin-
gularity of all autocovariance matrices appearing in the left-hand side of (2.13).
Since these matrices are positive semidefinite this means that under these con-
ditions �(p) actually is positive definite. This in turn with Kreiss and Neuhaus
[(2006), Section 8.7] implies that the polynomial Ap(z) = 1 − ∑p

k=1 ak(p)zk has
no zeroes in the closed unit disk. We can even prove a slightly stronger result.

LEMMA 2.3. Assume that fX is strictly positive and continuous, that∑∞
h=0 |γX(h)| < ∞ and γX(0) > 0. Then there exists δ > 0 and po ∈ N such that

for all p ≥ po,

inf|z|≤1+1/p

∣∣∣∣∣1 −
p∑

k=1

ak(p)zk

∣∣∣∣∣ ≥ δ > 0.(2.16)

The uniform convergence of Ap(z) toward A(z) on the closed unit disk imme-
diately implies the following corollary to Lemma 2.3.

COROLLARY 2.1. Under the assumption of Lemma 2.3, we have

A(z) = 1 −
∞∑

j=1

aj z
j �= 0 ∀|z| ≤ 1.(2.17)

Lemma 2.3 and Corollary 2.1 now enable us to invert the power series A(z) as
well as the polynomial Ap(z). Let us denote(

1 −
∞∑

j=1

aj z
j

)−1

= 1 +
∞∑

j=1

αjz
j ∀|z| ≤ 1(2.18)
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and for all p large enough (because of Lemma 2.3)(
1 −

p∑
j=1

aj (p)zj

)−1

= 1 +
∞∑

j=1

αj (p)zj ∀|z| ≤ 1 + 1

p
.(2.19)

From (2.19), one immediately obtains that

|αj (p)| ≤ C ·
(

1 + 1

p

)−j

∀j ∈ N.(2.20)

A further auxiliary result contains the transfer of the approximation property of
aj (p) for ak to the respective coefficients αk(p) and αk of the inverted series. For
such a result, we make use of a weighted version of Wiener’s lemma; cf. Gröchenig
(2007).

LEMMA 2.4. Under the assumptions of Lemma 2.3 and additionally∑∞
h=0(1 + h)r |γX(h)| < ∞ for some r ≥ 0 there exists a constant C > 0 such

that for all p large enough
∞∑

j=1

(1 + j)r |αj (p) − αj | ≤ C ·
∞∑

j=p+1

(1 + j)r |aj | →p→∞ 0.(2.21)

In a final step of this section, we now move on to estimators of the coefficients
ak(p). The easiest one might think of is to replace in (2.13) the theoretical au-
tocovariance function by its sample version γ̂X(h). Denote the resulting Yule–
Walker estimators of ak(p) by âk(p), k = 1, . . . , p. These Yule–Walker estimators
are under the typically satisfied assumption that γ̂X(0) > 0 uniquely determined
and moreover fulfill (by the same arguments already used) the desired property
that

Âp(z) = 1 −
p∑

k=1

âk(p)zk �= 0 ∀|z| ≤ 1.(2.22)

Thus, we can also invert the polynomial Âp(z) and we denote(
1 −

p∑
k=1

âk(p)zk

)−1

= 1 +
∞∑

k=1

α̂k(p)zk, |z| ≤ 1.(2.23)

We require that the estimators (âk(p) : k = 1, . . . , p) converge—even at a slow
rate—to their theoretical counterparts, namely:

(A1) p(n)2 · ∑
1≤k≤p(n) |̂ak(p(n)) − ak(p(n))| = OP (1), where p(n) denotes a

sequence of integers converging to infinity at a rate to be specified.

Assumption (A1), for example, is met if a sufficient fast rate of convergence for
the empirical autocovariances toward their theoretical counterparts can be guaran-
teed. The convergence property of âk(p) carries over to the corresponding coeffi-
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cients α̂k(p) of the inverted polynomials [cf. (2.23)] as is specified in the following
lemma.

LEMMA 2.5. Under the assumptions of Lemma 2.3 and (A1), we have uni-
formly in k ∈ N

|α̂k(p(n)) − αk(p(n))| ≤
(

1 + 1

p(n)

)−k 1

p(n)2 OP (1).(2.24)

3. Validity of the AR-sieve bootstrap.

3.1. Functions of generalized means. Consider a general class of estimators

Tn = f

(
1

n − m + 1

n−m+1∑
t=1

g(Xt , . . . ,Xt+m−1)

)
,(3.1)

discussed in Künsch (1989), cf. Example 2.2; here g : Rm → R
d and f : Rd → R.

For this class of statistics, Bühlmann (1997) proved validity of the AR-sieve boot-
strap under the main assumption of an invertible linear process with i.i.d. innova-
tions for the underlying process (Xt); this means a process which admits an au-
toregressive representation (1.2). The class of statistics given in (3.1) is quite rich
and contains, for example, versions of sample autocovariances, autocorrelations,
partial autocorrelations, Yule–Walker estimators and the standard sample mean as
well.

The necessary smoothness assumptions on the functions f and g are described
below; these are identical to the ones imposed by Bühlmann (1997).

(A2) f (y) has continuous partial derivatives for all y in a neighborhood of
θ = Eg(Xt , . . . ,Xt+m−1) and the differentials

∑m
i=1 ∂f (y)/∂xi |x=θ do not vanish.

The function g has continuous partial derivatives of order h (h ≥ 1) that satisfy a
Lipschitz condition.

We intend to investigate in this section what the autoregressive sieve bootstrap
really mimics if it is applied to statistics of the form (3.1) and the observations
X1, . . . ,Xn do not stem from a linear AR(∞) process (1.2). To be precise, we
only assume that we observe X1, . . . ,Xn from a process satisfying the following
assumption (A3).

(A3) (Xt : t ∈ Z) is a zero mean, strictly stationary and purely nondeterministic
stochastic process. The autocovariance function γX satisfies

∑∞
h=0 hr |γX(h)| < ∞

for some r ∈ N specified in the respective results and the spectral density fX is
bounded and strictly positive. Furthermore, E(X4

t ) < ∞.

Notice that the processes class described by (A3) is large enough and includes
several of the commonly used linear and nonlinear time series models includ-
ing stationary and invertible autoregressive moving-average (ARMA) processes,
ARCH processes, GARCH processes and so on. Summability of the autocovari-
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ance function implies that the spectral density fX exists, is bounded and continu-
ous. We also added in (A3) the assumption of finite fourth order moments of the
time series. This assumption seems to be unavoidable due to the autoregressive
parameter estimation involved in Step 1 of the AR-sieve bootstrap procedure and
in regard of assumption (A1).

From Section 2, we know that if (Xt) satisfies assumption (A3) then it possesses
an autoregressive representation with an uncorrelated white noise process (εt ):
cf. (2.3). Because of the strict stationarity of (Xt), we have that the time series (εt )

is strictly stationary as well and thus that the marginal distribution L(εt ) of εt does
not depend on t .

Theorem 3.1 is the main result of this section. To state it, we define the com-
panion autoregressive process X̃ = (X̃t : t ∈ Z) where X̃t is generated as follows:

X̃t =
∞∑

j=1

aj X̃t−j + ε̃t , t ∈ Z;(3.2)

here (̃εt ) consists of i.i.d. random variables whose marginal distribution of ε̃t is
identical to that of εt from (2.3), that is, L(̃εt ) = L(εt ). It is worth mentioning
that all second order properties of (X̃t ) and (Xt), like autocovariance function
and spectral density, coincide while the probabilistic characteristics beyond second
order quantities of both stationary processes are not necessarily the same. Now, let
T̃n be the same statistic as Tn defined in (3.1) but with Xt replaced by X̃t , that is,

T̃n = f

(
1

n − m + 1

n−m+1∑
t=1

g(X̃t , . . . , X̃t+m−1)

)
.(3.3)

The main message of Theorem 3.1 is that the AR-sieve bootstrap applied to
data X1, . . . ,Xn in order to approximate the distribution of the statistic (3.1) will
generally lead to an asymptotically consistent estimation of the distribution of the
statistic T̃n. This implies that for the class of statistics (3.1), the AR-sieve bootstrap
will work if and only if the limiting distributions of Tn and of T̃n are identical.

THEOREM 3.1. Assume assumptions (A1), (A2), (A3) for r = 1 and the mo-
ment condition Eε

2(h+2)
t [cf. (A2) for the definition of h and (2.3) for the definition

of εt ], the condition p(n) = o((n/ logn)1/4) on the order of the approximating au-
toregression to the data and the following two further assumptions:

(A4) The empirical distribution function Fn of the random variables ε1, . . . , εn

converges weakly to the distribution function F of L(ε1).
(A5) The empirical moments 1/n

∑n
t=1 εr

t converge in probability to Eεr
1 for

all r ≤ 2(h + 2).

Then,

dK

(
L∗(√

n
(
T ∗

n − f (θ∗)
))

, L
(√

n
(
T̃n − f (θ̃)

))) = oP (1)(3.4)
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as n → ∞. Here θ∗ = Eg(X∗
t , . . . ,X

∗
t+m−1), θ̃ = Eg(X̃t , . . . , X̃t+m−1) and dK

denotes the Kolmogorov distance.

Some remarks are in order.

REMARK 3.1. (i) Assumption (A4) does imply that we need some conditions
on the dependence structure of the random variables εt . For instance, a standard
mixing condition on (εt ) suffices to ensure (A4): cf. Politis, Romano and Wolf
(1999), Theorem 2.1.

(ii) Assumption (A5) on the empirical moments is fulfilled if we ensure that
sufficiently high empirical moments of the underlying strictly stationary time se-
ries Xt itself would converge in probability to their theoretical counterparts.

(iii) As we already pointed out, Theorem 3.1 states that the AR-sieve bootstrap
mimics the behavior of the companion autoregressive process (X̃t ) as far as statis-
tics of the form (3.1) are considered. Of course if (Xt) is a linear process with
i.i.d. innovations and if the corresponding moving average representation is invert-
ible leading to an infinite order autoregression (1.2) with i.i.d. innovations, then
the AR-sieve bootstrap works asymptotically as is already known. Moreover, for
general process satisfying assumption (A3), if we are in the advantageous situ-
ation that the existing dependence structure of the innovations (εt ) appearing in
the general AR(∞) representation (2.3) does not show up in the limiting distribu-
tion of Tn, then Theorem 3.1 implies that the AR sieve bootstrap works. We will
illustrate this point by several examples later on.

Now we discuss relevant specializations of Theorem 3.1. Notice that the advan-
tage of this theorem is that in order to check validity of the AR-sieve bootstrap, one
only needs to check whether the asymptotic distributions of Tn = Tn(X1, . . . ,Xn)

based on the observed time series is identical to the distribution of the statistic
T̃n = Tn(X̃1, . . . , X̃n) based on fictitious observations X̃1, X̃2, . . . , X̃n from the
companion process X̃. If and only if this is the case, then the AR-sieve bootstrap
works asymptotically.

EXAMPLE 3.1 (Sample mean). Consider the case of the sample mean Tn =
Xn ≡ n−1 ∑n

t=1 Xt and recall that under standard and mild regularity conditions
(e.g., mixing or weak dependence) we typically obtain that the sample mean of
stationary time series satisfies

√
nTn ⇒ N(0,

∑∞
h=−∞ γX(h)) as n → ∞ where

⇒ stands for weak convergence. Thus, the asymptotic distribution of the sample
mean depends only on the second order properties of the underlying process X
and since the companion process X̃ has the same second order properties as X we
immediately get by Theorem 3.1 that the AR-sieve bootstrap asymptotically works
in the case of the mean for general stationary time series for which the spectral
density is strictly positive. Even the strict stationarity is not necessary in this case.
This is a novel and significant extension of the results of Bühlmann (1997).
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EXAMPLE 3.2 (Sample autocovariances). For 0 ≤ h < n, let Tn = γ̂ (h) ≡
n−1 ∑n−h

t=1 (Xt − Xn)(Xt+h − Xn) be the sample autocovariance at lag h. Let us
assume that

∑∞
h1,h2,h3=−∞ |cum(Xt ,Xt+h1,Xt+h2,Xt+h3)| < ∞ holds and denote

by

f4(λ1, λ2, λ3) =
∞∑

h1,h2,h3=−∞
cum(Xt ,Xt+h1,Xt+h2,Xt+h3)e

i
∑3

r=1 λrhr

the fourth order cumulant spectrum of X. Under standard and mild regularity con-
ditions [see, for instance, Dahlhaus (1985), Theorem 2.1 and Taniguchi and Kak-
izawa (2000), Chapter 6.1], it is known that

√
n(Tn − γ (h)) ⇒ N(0, τ 2) where

τ 2 = 2π

∫ π

−π
4 cos(λh)2f 2(λ) dλ

+
∫ ∫

4 cos(λ1h) cos(λ2h)f4(−λ1, λ2,−λ2) dλ1 dλ2.

Notice that in contrast to the case of the sample mean, the limiting distribution
of the sample autocovariance depends also on the fourth order moment structure
of the underlying process X. Now, to check validity of the AR-sieve bootstrap we
have to derive the asymptotic distribution of the sample autocovariances for the
companion autoregressive process (X̃t ). This can be easily done, since the autore-
gressive polynomial in the general autoregressive representation (2.3) is always
invertible (cf. Corollary 2.1) from which we immediately get a one-sided moving
average representation with i.i.d. innovations (̃εt ) for the companion process (X̃t ).
Furthermore, the fourth order cumulant spectrum of (X̃t ) is given by

f̃4(λ1, λ2, λ3) = (2π)−3
(

Eε4
1

(Eε2
1)

2
− 3

)
α(λ1)α(λ2)α(λ3)α(−λ1 − λ2 − λ3),

where α(λ) = ∑∞
j=0 αj exp{−ijλ} and the coefficients (αk) are those appearing in

(2.18); see Section 2. Thus, for the sample autocovariance T̃n we get from Brock-
well and Davis [(1991), Proposition 7.3.1], that

√
n(T̃n −γ (h)) ⇒ N(0, τ̃ 2) where

τ̃ 2 = 2π

∫ π

−π
4 cos(λh)2f 2(λ) dλ

+
∫ ∫

4 cos(λ1h) cos(λ2h)f̃4(−λ1, λ2,−λ2) dλ1 dλ2

(3.5)

=
(

Eε4
1

(Eε2
1)

2
− 3

)
(γ (h))2

+
∞∑

k=−∞

(
γ (k)2 + γ (k + h)γ (k − h)

)
.
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Since the variances τ 2 and τ̃ 2 of the asymptotic distributions of Tn and T̃n do
not coincide in general, we conclude by Theorem 3.1 that the AR-sieve bootstrap
fails for sample autocovariances. Notice that this failure is due to the fact that in
general the limiting distribution of sample autocovariances depends additionally
on the fourth order moment structure f4 of the underlying process X, and this
structure may substantially differ from that of the companion process X̃.

Interestingly enough, even if the underlying process X is a linear time series,
that is, satisfies (1.1), the AR-sieve bootstrap may fail for the sample autocovari-
ances. To see why, note that from the aforementioned proposition of Brockwell
and Davis (1991), the asymptotic distribution of Tn satisfies

√
n(Tn − γ (h)) ⇒

N(0, τ 2
L) where τ 2

L is given by

τ 2
L =

(
Ee4

1

(Ee2
1)

2
− 3

)
γ 2(h) +

∞∑
k=−∞

(
γ 2(k) + γ (k + h)γ (k − h)

)
.(3.6)

Special attention is now due to the factor of the first summand of (3.6), which is
the fourth order cumulant of the i.i.d. process (et ). Recall the asymptotic distribu-
tion of the sample autocovariances for the companion autoregressive process (X̃t )

and especially its variance given in (3.5). The two asymptotic variances given in
(3.6) and (3.5) are in general not the same since the fourth order cumulant of the
two innovation processes (et ) and (εt ) are not necessarily the same. We refer to
Remark 2.1 for an example. Of course, all appearing autocovariances are identical
since we do not change the second order properties of the process when switching
from (Xt) to (X̃t ). The consequence is that for sample autocovariances, the AR-
sieve bootstrap generally does not work even for linear processes of the type (1.1)
and this is true even if the process is causal; see Remark 2.1 and example (2.6).

REMARK 3.2. If the innovations {et } in (1.1) are not necessarily i.i.d. but form
a martingale difference sequence, then we are in the above described situation
more general than in the case of (1.1) with i.i.d. innovations and thus the limiting
distribution of sample autocovariances and also of statistics of the type (3.1), is
not correctly mimicked by the AR-sieve bootstrap. This contradicts Theorem 2 of
Poskitt (2008).

We conclude this example by mentioning that in the case where the i.i.d. inno-
vations et in (1.1) are normally distributed, it follows that the random variables εt

are Gaussian as well, and that in both expressions (3.6) and (3.5) the fourth order
cumulants appearing as factors in the first summands vanish. This means that for
the special case of Gaussian time series fulfilling assumption (1.1) the AR-sieve
bootstrap works.

EXAMPLE 3.3 (Sample autocorrelations). Consider the estimator Tn =
ρ̂(h) ≡ γ̂ (h)/γ̂ (0) of the autocorrelation ρX(h) = γX(h)/γX(0). Due to the fact
that for general processes satisfying assumption (A3) the limiting distribution of
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Tn depends also on the fourth order moment structure of the underlying process X,
cf. Theorem 3.1 of Romano and Thombs (1996), which is not mimicked cor-
rectly by the companion process X̃, the AR-sieve bootstrap fails. Fortunately the
situation for autocorrelations is much better if we switch to linear processes of
type (1.1). From Theorem 7.2.1 of Brockwell and Davis (1991), we obtain that√

n(Tn − ρX(h)) ⇒ N(0, v2) where the asymptotic variance is given by Bartlett’s
formula:

v2 = ∑
k∈Z

{(
1 + 2ρ2

X(h)
)
ρ2

X(k) + ρX(k − h)ρX(k + h) − 4ρX(h)ρX(k)ρX(k + h)
}
.

As can be seen, in this case the asymptotic variance depends only on the auto-
correlation function ρX(·) [or equivalently on the standardized spectral density
γ −1
X (0)fX(·)] of the underlying process X. This means that the first summand in

(3.6) which refers to the fourth order cumulant of the i.i.d. innovation process et

in (1.1) does not show up in the limiting distribution of sample autocorrelations
and this in turn leads to the fact that the asymptotic distribution of sample auto-
correlations based on observations stemming from the process X is identical to
that of the sample autocorrelation based on observations stemming from the com-
panion autoregressive process X̃. This is true since the companion autoregressive
process X̃ shares all second order properties of the process X. Hence, the AR-sieve
bootstrap works for the autocorrelations given data from a linear process (1.1). We
stress here the fact that this result is true regardless whether the representation (1.1)
allows for an autoregressive inversion or not and holds even though the probabilis-
tic properties of the underlying process (Xt) and of the autoregressive companion
process (X̃t ) beyond second order properties are not the same.

REMARK 3.3. Similar to the autocorrelation case, the validity of the AR-sieve
bootstrap in the linear class (1.1) is shared by many different statistics whose large-
sample distribution depends only on the (first and) second order moment structure
of the underlying process. Examples include the partial autocorrelations or Yule–
Walker estimators of autoregressive coefficients.

REMARK 3.4. Consider statistics of the type (3.1) in the easiest case where
d = 1, that is,

1

n − m + 1

n−m+1∑
t=1

g(Xt , . . . ,Xt+m−1)(3.7)

for a function g : Rm → R. Here, the practitioner may approach this as the sample
mean of observations Y1, . . . , Yn−m+1 where (Yt = g(Xt , . . . ,Xt+m−1) : t ∈ Z).
Notice that strict stationarity as well as mixing properties easily carries over from
(Xt) to (Yt ). Thus, we may apply the AR-sieve bootstrap to the sample mean of Yt ,
which works under quite general assumptions; cf. Remark 3.1 and Theorem 3.1.
The only crucial assumption for establishing asymptotic consistency of the AR-
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sieve bootstrap is that we need the property that the spectral density fY of the
transformed time series (Yt ) is strictly positive and continuous. Although this is
not a very restrictive condition, it may be difficult to check since there seems to
be no general result describing the behavior of spectral densities under nonlinear
transformations.

3.2. Integrated periodograms. The considerations of Examples 3.2 and 3.3
can be transferred to integrated periodogram estimators for these quantities which
lead us to the second large class of statistics that we will discuss. Denote, based on
observations X1, . . . ,Xn, the periodogram In(λ) defined by

In(λ) = 1

2πn

∣∣∣∣∣
n∑

t=1

Xte
−iλt

∣∣∣∣∣
2

, λ ∈ [0, π],(3.8)

and consider a general class of integrated periodogram estimators defined by

M(In,ϕ) =
∫ π

0
ϕ(λ)In(λ) dλ,(3.9)

where ϕ denotes an appropriately defined function on [0, π]. Under the main as-
sumption that the underlying process X has the representation (1.1), Dahlhaus
(1985) investigated asymptotic properties of (3.9) and obtained the asymptotic
distribution of

√
n(M(In,ϕ) − M(fX,ϕ)). In particular, it has been shown that√

n(M(In,ϕ) − M(fX,ϕ)) converges, as n → ∞, to a Gaussian distribution with
zero mean and variance given by(

Ee4
1/(Ee2

1)
2 − 3

)(∫ π

0
ϕ(λ)fX(λ)dλ

)2

+ 2π

∫ π

0
ϕ2(λ)f 2

X(λ)dλ.(3.10)

Notice that substituting ϕ(λ) by 2 cos(λh),h ∈ N0, implies that M(In,ϕ) equals
the sample autocovariance of the observations X1, . . . ,Xn at lag h and (3.10)
would then exactly turn to be the asymptotic variance given in (3.6).

As we will see in Theorem 3.2, the situation for integrated periodograms (3.9)
is rather similar to that of empirical autocovariances which are of course special
cases of integrated periodograms. Thus, we only discuss briefly this rather relevant
class of statistics. As Theorem 3.2 shows, we obtain for this class that the AR-
sieve bootstrap asymptotically mimics the behavior of

√
n(M(Ĩn, ϕ)−M(fX,ϕ)),

where Ĩn is defined as In with Xt replaced by the companion autoregressive time
series X̃t , that is,

Ĩn(λ) = 1

2πn

∣∣∣∣∣
n∑

t=1

X̃t e
−iλt

∣∣∣∣∣
2

, λ ∈ [0, π].(3.11)

THEOREM 3.2. Assume (A1) and (A3) with r = 1 and assume that for all
M ∈ N

L∗(√
n
(
γ̂X∗(h) − E∗γ̂X∗(h)

)
:h = 0,1, . . . ,M

) ⇒ N(0,VM)(3.12)
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(in probability), where γ̂X∗(h) denote the empirical autocovariances of the boot-
strap observations X∗

1,X∗
2, . . . ,X∗

n and where

VM =
[(

Eε4
1

(Eε2
1)

2
− 3

)
γ (i)γ (j)

(3.13)

+
∞∑

k=−∞

(
γ (k)γ (k − i + j) + γ (k + j)γ (k − i)

)]M

i,j=0

.

Then we obtain for all ϕ bounded and with bounded variation that (in probability)

dK

(
L∗(√

n
(
M(I ∗

n , ϕ) − M(f̂AR, ϕ)
))

,
(3.14)

L
(√

n
(
M(Ĩn,ϕ) − M(fX,ϕ)

))) → 0.

Here f̂AR(λ) = σ̂ 2(p(n))
2π

|1 − ∑p(n)
j=1 âj (p(n))e−ijλ|−2, λ ∈ [0, π] and σ̂ (p(n))2 =

Eε̂1(p(n))2, cf. Step 2 in the definition of the AR-sieve bootstrap procedure.
Moreover, the limiting Gaussian distribution of

√
n(M(I ∗

n , ϕ)−M(f̂AR, ϕ) pos-
sesses the following variance:

(
Eε4

1/(Eε2
1)

2 − 3
)(∫ π

0
ϕ(λ)fX(λ)dλ

)2

+ 2π

∫ π

0
ϕ2(λ)f 2

X(λ)dλ.(3.15)

REMARK 3.5. (i) Assumptions under which (3.12) is fulfilled are given in
Theorem 3.1 since sample autocovariances belong to the class (3.1).

(ii) Theorem 3.2 implies that if
∫ π

0 ϕ(λ)f (λ) dλ = 0 then the AR-sieve bootstrap
asymptotically works for the integrated periodogram statistics M(In,ϕ) for time
series fulfilling (1.1). This follows immediately by a comparison of the asymptotic
variances (3.10) and (3.15). Clearly, the same result holds true if the underlying
time series is normally distributed since in this case both innovation processes,
(εt ) and (et ), are Gaussian and therefore the fourth order cumulants vanish. In all
other cases the AR-sieve bootstrap does not work in general, since the fourth order
cumulant Eε4

1/(Eε2
1)

2 −3 does not necessarily coincide with Ee4
1/(Ee2

1)
2 −3; see

Example 3.2.

Relevant statistics for which we can take advantage of the condition
∫ π

0 ϕ(λ) ×
f (λ)dλ = 0 are the so-called ratio statistics which are defined by

R(In,ϕ) = M(In,ϕ)∫ π
0 In(λ) dλ

.(3.16)

For this class of statistics, Dahlhaus and Janas (1996) showed that under the same
assumptions of a linear process of type (1.1) one obtains that

√
n(R(In,ϕ) −
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R(fX,ϕ)) has a Gaussian limiting distribution with mean zero and variance given
by

2π
∫ π

0 ψ2(λ)f 2
X(λ)dλ

(
∫

fX(λ)dλ)4

(3.17)
where ψ(λ) = ϕ(λ)

∫
fX(λ)dλ −

∫
ϕ(λ)fX(λ)dλ.

Thus, exactly as in the case of sample autocorrelations the fourth order cumulant
term [cf. (3.10)] of the i.i.d. innovation process disappears and therefore again
the following corollary to Theorem 3.2 is true. This corollary states that the AR-
sieve bootstrap works for ratio statistics under the quite general assumption that
the underlying process is a linear time series (1.1) with i.i.d. innovations and a
strictly positive spectral density which under model (1.1) is always continuous.

COROLLARY 3.1. Under the assumptions of Theorem 3.2, we have that (in
probability)

dK

(
L∗(√

n
(
R(I ∗

n , ϕ) − R(f̂AR, ϕ)
))

, L
(√

n
(
R(In,ϕ) − R(f,ϕ)

))) → 0.(3.18)

Moreover, the limiting Gaussian distribution of
√

n(R(I ∗
n , ϕ) − R(f̂AR, ϕ)) pos-

sesses the variance given in (3.17).

Another class of integrated periodogram estimators is that of nonparametric
estimators of the spectral density fX which are obtained from (3.9) if we allow for
the function ϕ to depend on n. In particular, let ϕn(λ) = Kh(ω − λ) for some ω ∈
[0, π] where h = h(n) is a sequence of positive numbers (bandwidths) approaching
zero as n → ∞, Kh(·) = h−1K(·/h) and K is a kernel function satisfying the
following assumption:

(A6) K is a nonnegative kernel function with compact support [−π,π ]. The
Fourier transform k of K is assumed to be a symmetric, continuous and bounded
function satisfying k(0) = 2π and

∫ ∞
−∞ k2(u) du < ∞.

Denote by fn,X be the resulting integrated periodogram estimator, that is,

fn,X(ω) =
∫ π

−π
Kh(ω − λ)In(λ) dλ.(3.19)

Notice that the asymptotic properties of the estimator (3.19) of the spectral den-
sity are identical to those of its discretized version f̂n,X(ω) = (nh)−1 ∑

j Kh(ω −
λj )In(λj ), where λj = 2πj/n are the Fourier frequencies, as well as of so-called
lag-window estimators; cf. Priestley (1981).

Now, let f ∗
n,X be the same estimator as (3.19) based on the AR-sieve bootstrap

periodogram I ∗
n (λ) = (2πn)−1|∑n

t=1 X∗
t exp{iλt}|2. We then obtain the following

theorem.
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THEOREM 3.3. Under the assumptions of Theorem 3.2 with r = 2 and as-
sumption (A6), we have that (in probability)

dK

(
L∗(√

nh
(
f ∗

n,X(λ) − f̂AR(λ)
))

, L
(√

nh
(
fn,X(λ) − fX(λ)

))) → 0.(3.20)

Moreover, conditionally on X1,X2, . . . ,Xn,
√

nhE∗(
f ∗

n,X(λ) − f̂AR(λ)
)

(3.21)

→
⎧⎨⎩

0, if n−1/5h → 0,
1

4π
f ′′

X(λ)

∫
u2K(u)du, if n−1/5h → 1,

where f ′′
X denotes the second derivative of fX and

nhVar(f ∗
n,X(λ)) → (1 + δ0,π )f 2

X(λ)(2π)−1
∫

K2(u) du,(3.22)

where δ0,π = 1 if λ = 0 or π and δ0,π = 0 otherwise.

Recall that under Assumption (A3) it has been shown under different regularity
conditions [see Shao and Wu (2007)] that

√
nh(fn,X(λ) − fX(λ)) converges to a

Gaussian distribution with mean and variance given by the expression on the right-
hand side of (3.21) and (3.22), respectively. Thus, the above theorem implies that
for spectral density estimators like (3.19), the AR-sieve bootstrap asymptotically
is valid for a very broad class of stationary time series that goes far beyond the
linear processes class (1.1).

Corollary 3.1 and Theorem 3.3 highlight an interesting relation between fre-
quency domain bootstrap procedures, like for instance those proposed by Franke
and Härdle (1992) and Dahlhaus and Janas (1996) and the AR-sieve bootstrap.
Notice that the basic assumptions imposed on the underlying process X for such a
frequency domain bootstrap procedure to be valid are that the underlying process
satisfies (1.1) with a strictly positive spectral density fX . Furthermore, validity of
such a frequency domain procedure has been established only for those statistics
for which their limiting distribution does not depend on the fourth order moment
structure of the innovation process et in (1.1). Thus, such a frequency domain boot-
strap essentially works for statistics like ratio statistics or nonparametric estimators
of the spectral density like (3.19). The results of this section, that is, Theorem 3.2,
Corollary 3.1 and Theorem 3.3, imply that if the underlying stationary process
satisfies (1.1) and if the spectral density is strictly positive then the AR-sieve boot-
strap works in the same cases in which the frequency domain bootstrap procedures
work.

4. Conclusions. In this paper, we have investigated the range of validity of
the AR-sieve bootstrap. Based on a quite general Wold-type autoregressive repre-
sentation, we provided a simple and effective tool for verifying whether or not the
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AR-sieve bootstrap asymptotically works. The central question is to what extent
the complex dependence structure of the underlying stochastic process shows up
in the (asymptotic) distribution of the relevant statistical quantities. If the asymp-
totic behavior of the statistic of interest based on our data series is identical to that
of the same statistic based on data generated from the companion autoregressive
process, then the AR-sieve bootstrap leads to asymptotically correct results.

The family of estimators that have been considered ranges from simple arith-
metic means and sample autocorrelations to quite general sample means of func-
tions of the observations as well as spectral density estimators and integrated peri-
odograms. Our concrete findings concerning validity of the AR-sieve bootstrap are
different for different statistics. Generally speaking, if the asymptotic distribution
of a relevant statistic is determined solely by the first and second order moment
structure, then the AR-sieve bootstrap is expected to work. Thus, validity of the
AR-sieve bootstrap does not require that the underlying stationary process obeys
a linear AR(∞) representation (with i.i.d. or martingale difference errors) as was
previously thought. Indeed, for many statistics of interest, the range of the validity
of the AR-sieve bootstrap goes far beyond this subclass of linear processes. In con-
trast, we point out the possibility that the AR-sieve bootstrap may fail even though
the data series is linear; a prominent example is the sample autocovariance in the
case of the data arising from a noncausal AR(p) or a noninvertible MA(q) model.

Finally, our results bear out an interesting analogy between frequency domain
bootstrap methods and the AR-sieve method. In the past, both of these methodolo-
gies have been thought to work only in the linear time series setting. Nevertheless,
we have just shown the validity of the AR-sieve bootstrap for many statistics of in-
terest without the assumption of linearity, for example, under the general assump-
tion (A3) and some extra conditions. In recent literature, some examples have been
found where the frequency domain bootstrap also works without the assumption
of a linear process; see, for example, the case of spectral density estimators studied
by Shao and Wu (2007). By analogy to the AR-sieve results of the paper, it can be
conjectured that frequency domain bootstrap methods might also be valid without
the linearity assumption as long as the statistic in question has a large-sample dis-
tribution depending only on first and second order moment properties; cf. Kirch
and Politis (2011) for some results in that direction.

APPENDIX: AUXILIARY RESULTS AND PROOFS

PROOF OF LEMMA 2.2. From Baxter [(1962), Theorem 2.2] in a slightly more
general version given in Baxter [(1963), Theorem 1.1], we obtain for arbitrary
submultiplicative weight or norm functions ν(k) ≥ 1, that is, ν(n) ≤ ν(m) · ν(n −
m) for all n,m, that the following bound holds true for all p ∈ N and a constant
C > 0

p∑
k=0

ν(k)

∣∣∣∣ ak(p)

σ 2(p)
− ak

σ 2
ε

∣∣∣∣ ≤ C ·
∞∑

k=p+1

ν(k)

∣∣∣∣ ak

σ 2
ε

∣∣∣∣.(A.1)
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Here, σ 2(p) = E(Xt −∑p
k=1 ak(p)Xt−k)

2 ≤ σ 2(0) for all p ∈ N and σ 2(p) → σ 2
ε

[cf. (2.4)] as p → ∞.
Since ν(k) = (1 + k)r is submultiplicative for all r ≥ 0, cf. Gröchenig [(2007),

Lemma 2.1], we obtain from (A.1)
p∑

k=0

(1 + k)r |ak(p) − ak|

≤
p∑

k=0

(1 + k)r
∣∣∣∣ ak(p)

σ 2(p)
− ak

σ 2
ε

∣∣∣∣ · σ 2(p)

(A.2)

+
p∑

k=0

(1 + k)r |ak|
∣∣∣∣ 1

σ 2
ε

− 1

σ 2(p)

∣∣∣∣ · σ 2(p)

≤ Cσ 2(0)

σ 2
ε

(
1 +

∞∑
k=0

(1 + k)r |ak|
)

·
∞∑

k=p+1

(1 + k)r |ak|,

which is the assertion of Lemma 2.2. To see the last bound, observe that because
of a0(p) = a0 = 1 we can bound | 1

σ 2(p)
− 1

σ 2
ε
| by the right-hand side of (A.1) as

well. �

PROOF OF LEMMA 2.3. As mentioned just in front of the statement of Lem-
ma 2.3, we have Ap(z) = 1 − ∑p

k=1 ak(p)zk for all |z| ≤ 1. Now assume that
(2.16) is false. Then there exists a sequence {p(k) :k ∈ N} ⊂ N, p(k) → ∞ and a
sequence {zk :k ∈ N} of complex numbers with |zk| ≤ 1 + 1/p(k) such that

Ap(k)(zk) →k→∞ 0.(A.3)

Let us further assume that we can find a subsequence of {zk :k ∈ N} which com-
pletely stays within the closed unit disk. Without loss of generality, assume that
{zk} itself has this property. Since we have Ap(z) �= 0,∀|z| ≤ 1 and because Ap is
holomorphic, the minimum principle of holomorphic functions leads to

|Ap(z)| ≥ min|z|=1
|Ap(z)| ∀|z| ≤ 1.(A.4)

The set {z ∈ C||z| = 1} is compact and |Ap| is continuous, thus there exists a z∗
p

with |z∗
p| = 1 and |Ap(z∗

p)| = min|z|=1 |Ap(z)|.
Without loss of generality, assume that z∗

p converges to a complex number z∗
with |z∗| = 1. From the above, we have∣∣Ap(k)

(
z∗
p(k)

)∣∣ ≤ ∣∣Ap(k)(zk)
∣∣ →k→∞ 0.(A.5)

Writing

A(z∗) = A(z∗) − A
(
z∗
p(k)

) + A
(
z∗
p(k)

) − Ap(k)

(
z∗
p(k)

) + Ap(k)

(
z∗
p(k)

)
(A.6)
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and having in mind that Ap(z) converges to A(z) uniformly on the closed unit disk
because of Lemma 2.2 and regarding (A.5) as well as the continuity of A(z) we
finally obtain A(z∗) = 0 which is a contradiction to A(z) �= 0 for all |z| = 1 [cf.
below (2.5)].

Since we cannot find a subsequence of zk , completely staying in the unit disk it
exists a subsequence (zk′) that completely stays in the region 1 < |z| ≤ 1+1/p(k′).
Again assume without loss of generality that k′ = k and that zk converges to some
zo which necessarily must fulfill |zo| = 1.

We will show that A(zo) = 0 holds, which again is a contradiction to A(z) �= 0
for all |z| = 1. To this end, let us write A(zo) in the following way:

A(zo) = Ap(k)(zk) +
p(k)∑
j=1

(
aj (p(k)) − aj

)
z
j
k

(A.7)

+
p(k)∑
j=1

aj (z
j
k − zj

o) −
∞∑

j=p(k)+1

aj z
j
o.

The first summand on the right-hand side converges to zero by (A.3) and the last
summand is bounded through

∑∞
j=p(k)+1 |aj | → 0 as k → ∞. The second sum-

mand in turn is bounded by

sup
|z|≤1+1/p

∣∣∣∣∣
p∑

j=1

(
aj (p) − aj

)
zj

∣∣∣∣∣ ≤
p∑

j=1

|aj (p) − aj | sup
|z|≤1+1/p

|z|p →p→∞ 0.(A.8)

For the third and last summand, which reads

∞∑
j=1

aj (z
j
k − zj

o)1{j ≤ p(k)},(A.9)

one obtains by dominated convergence [recall that |zk|j for j ≤ p(k) is bounded
by 3 and that zk → zo] also convergence to zero.

This concludes the proof of Lemma 2.3. �

PROOF OF LEMMA 2.4. Under the assumptions the autoregressive coeffi-
cients, ak have the following property:

a := (1,−a1,−a2, . . .) ∈ �v
1

(A.10)

:=
{
(zj : j ∈ N0) ⊂ C

∣∣∣ ∞∑
j=0

(1 + j)r |zj | < ∞
}
.

Because of 1 − ∑∞
j=1 aj z

j �= 0 ∀|z| ≤ 1 (cf. Corollary 2.1) we have from

Gröchenig [(2007), Theorem 6.2] that a multiplicative inverse a−1 ∈ �v
1 exists. For
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this result, observe that our weight function ν(k) = (1 + k)r satisfies the so-called
Gelfand–Raikov–Shilov (GRS) condition

ν(nk)1/n → 1 as n → ∞;(A.11)

cf. Gröchenig (2007), Lemma 2.1.
Since multiplication here is the usual convolution of sequences, we have that

a−1 = (1, α1, α2, . . .), where the coefficients αk coincide with the power series
coefficients of (1 − ∑∞

k=1 akz
k)−1. The assertion a−1 ∈ �v

1 then just means that we
have for the coefficients αk in (2.19)

∞∑
j=0

(1 + j)r |αj | < ∞.(A.12)

Exactly along the same lines, we obtain [cf. (2.19)]

a(p)−1 = (1,−a1(p),−a2(p), . . . ,−ap(p),0, . . .)−1

(A.13)
= (1, α1(p),α2(p), . . .) ∈ �v

1.

We have
∞∑

k=0

(1 + k)r |αk(p) − αk|

= |a(p)−1 − a−1|�v
1

= ∣∣a(p)−1(
a − a(p)

)
a−1∣∣

�v
1

= |a(p)−1 − a−1|�v
1
|a − a(p)|�v

1
+ |a−1|�v

1
+ |a−1|�v

1
|a − a(p)|�v

1
.

Simple algebra finally leads to

∞∑
k=0

(1 + k)r |αk(p) − αk| = |a(p)−1 − a−1|�v
1
≤

|a−1|2
�v

1
|a − a(p)|�v

1

1 − |a−1|�v
1
|a − a(p)|�v

1

.

Recall that |a − a(p)|�v
1

= ∑p
k=1(1 + k)r |ak − ak(p)| + ∑∞

k=p+1(1 + k)r |ak| in
order to obtain from Lemma 2.2 the desired assertion. �

PROOF OF LEMMA 2.5. For simplicity, we write p instead of p(n). From
Lemma 2.3, we have that the polynomial Ap(z) has no zeroes with magnitude less
than or equal to 1 + 1/p. Since we easily get from assumption (B) convergence
of Âp(z) = 1 − ∑p

k=1 âk(p)zk to Ap(z) uniformly on the closed disk with radius
1+1/p(n) the polynomial Âp(z) does not possess zeroes with magnitude less than
or equal to 1 + 1/p(n). Therefore, Cauchy’s inequality for holomorphic functions
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applies and yields

|α̂k(p) − αk(p)| ≤ 1

(1 + 1/p)k
max|z|=1+1/p

|Ap(z)−1 − Âp(z)−1|

= 1

(1 + 1/p)k
max|z|=1+1/p

|Ap(z) − Âp(z)|
|Ap(z)Âp(z)|

≤ 1

(1 + 1/p)k
max|z|=1+1/p

∑p
k=1 |̂ak(p) − ak(p)|(1 + 1/p)k

|Ap(z)Âp(z)|

=
(

1 + 1

p

)−k

· 1

p2 · OP (1). �

PROOF OF THEOREM 3.1. A careful inspection of the proof of Theorem 3.3 in
Bühlmann (1997) [see also the corresponding technical report Bühlmann (1995)]
shows that only the following properties of the underlying, the companion and the
fitted autoregressive process really are needed:

(i) ε∗
t

D∗−→ ε̃t in probability,

(ii) (X∗
t1
, . . . ,X∗

td
)

D∗−→ (X̃t1, . . . , X̃td ) in probability,
(iii)

∑∞
j=0 |α̂j (p(n)) − αj | →n→∞ 0 in probability,

(iv)
∑∞

j=0 j |α̂j (p(n))| is uniformly bounded in probability,

(v)
∑∞

j=0 j |αj | < ∞,
(vi) the empirical moments of ε̂t (p(n)) converge for orders up to 2(h + 2) to

the moments of ε̃1,
(vii) the autoregressive representation of infinite order of the process (X̃t ) is

invertible,
(viii) Yule–Walker parameter estimators are used for the autoregressive fit of

order p(n) to the data X1, . . . ,Xn.

Because of (A4) and (A5) and the easily obtained fact that for the Mallows met-
ric d2

d2(F̂n,Fn) → 0 in probability,(A.14)

where F̂n denotes the empirical distribution function of the centered residuals
ε̂t (p(n)), t = p(n) + 1, . . . , n of the autoregressive fit and Fn denotes the empir-
ical distribution function of fictitious observations εt (p(n)), t = p(n) + 1, . . . , n,
we obtain (i).

(ii) is obtained exactly along the lines as in Corollary 5.6 of Bühlmann (1997).
To see (iii), recall from Section 2 that we have |α̂j (p(n)) − αj (p(n))| = (1 +

1/p(n))−j · 1/p2OP (1) as well as
∑∞

j=1 j |αj (p(n)) − αj | ≤ C · ∑∞
j=p(n) j |aj |

which converges to 0 as n goes to infinity. These two assertions ensure (iii).
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(iv) is obtained exactly along these lines by using the fact that
∑∞

j=1 j |αj | ≤ ∞,
cf. (2.29), which also is (v).

Furthermore, it is easy to see that the difference of the empirical moments (up
to the necessary order) of ε̂t (p(n)) and of εt converge to zero due to the bounds
for α̂j (p)−αj (p), αj (p)−αj and αj , cf. (2.24), (2.21) and (A.12). Together with
(A5), we obtain (vi).

Finally, we use for the autoregressive fit Yule–Walker parameter estimators and
the autoregressive representation of (X̃t ) is invertible (cf. Section 2). This con-
cludes the proof of Theorem 3.1. �

PROOF OF THEOREM 3.2. Also due to the results of Dahlhaus (1985), we
obtain that the distribution of

√
n(M(Ĩn, ϕ) − M(fX,ϕ)), where Ĩn denotes the

periodogram of n observations of the autoregressive companion process (X̃t ), cf.
(3.2), asymptotically is normal with mean zero and variance

(
Eε4

t /(E(εt )
2)2 − 3

)(∫ π

0
ϕ(λ)fX(λ)dλ

)2

+ 2π

∫ π

0
ϕ2(λ)f 2

X(λ)dλ.(A.15)

Thus, it suffices to show that the distribution of the bootstrap approximation
of

√
n(M(Ĩ ∗

n , ϕ) − M(f̂AR, ϕ)) shares the same asymptotic distribution. Exactly
along the lines of proof of Theorem 4.1 in Kreiss and Paparoditis (2003) (without
the additional nonparametric correction considered therein) which makes use of
Proposition 6.3.9 of Brockwell and Davis (1991), we obtain the the desired result.

�

PROOF OF THEOREM 3.3. Let f̃n(λ) = ∫ π
−π Kh(ω − λ)Ĩn(λ) dλ and consider

Ỹn = √
nh(f̃n(λ) − fX(λ)). Since Ỹn converges to a Gaussian distribution with

mean and variance as in (3.21) and (3.22), respectively, it suffices to show that√
nh(f ∗

n (λ) − fAR(λ)) shares exactly the same asymptotic behavior as Yn. This
however, follows exactly along the same lines as in the proof of Theorem 5.1 in
Kreiss and Paparoditis (2003), again without the additional nonparametric correc-
tion considered therein. �
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