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Abstract: The accurate and efficient calculation of protein-protein binding affinities is an essential
component in antibody and antigen design and optimization, and in computer modeling of antibody
affinity maturation. Such calculations remain challenging despite advances in computer hardware
and algorithms, primarily because proteins are flexible molecules, and thus, require explicit or
implicit incorporation of multiple conformational states into the computational procedure. The
astronomical size of the amino acid sequence space further compounds the challenge by requiring
predictions to be computed within a short time so that many sequence variants can be tested. In
this study, we compare three classes of methods for antibody/antigen (Ab/Ag) binding affinity
calculations: (i) a method that relies on the physical separation of the Ab/Ag complex in equilibrium
molecular dynamics (MD) simulations, (ii) a collection of 18 scoring functions that act on an ensemble
of structures created using homology modeling software, and (iii) methods based on the molecular
mechanics-generalized Born surface area (MM-GBSA) energy decomposition, in which the individual
contributions of the energy terms are scaled to optimize agreement with the experiment. When
applied to a set of 49 antibody mutations in two Ab/HIV gp120 complexes, all of the methods are
found to have modest accuracy, with the highest Pearson correlations reaching about 0.6. In particular,
the most computationally intensive method, i.e., MD simulation, did not outperform several scoring
functions. The optimized energy decomposition methods provided marginally higher accuracy, but
at the expense of requiring experimental data for parametrization. Within each method class, we
examined the effect of the number of independent computational replicates, i.e., modeled structures
or reinitialized MD simulations, on the prediction accuracy. We suggest using about ten modeled
structures for scoring methods, and about five simulation replicates for MD simulations as a rule of
thumb for obtaining reasonable convergence. We anticipate that our study will be a useful resource
for practitioners working to incorporate binding affinity calculations within their protein design and
optimization process.

Keywords: molecular dynamics simulation; free energy; protein-protein interaction; scoring function;
protein-protein docking

1. Introduction

In computational antibody design, the essential goal is to optimize an antibody se-
quence to increase the binding affinity to an antigen, subject to other biological constraints,
such as solubility or lack of self-reactivity. Conversely, in computational vaccine design, a
desired outcome of optimization is to create an antigen with a high affinity for a particular
germline precursor, which can aid in the elicitation of a particular antibody lineage, e.g.,
to ensure a durable vaccine. Because the space of possible sequence variations is usually
very large, even if only a few residue positions are allowed to vary, it is important to have a
computational method that can make accurate and rapid predictions of antibody/antigen
(Ab/Ag) binding free energy (bFE) changes upon sequence mutation.
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Here, we report the results of our comparison of several methods of computing bFE,
which vary in computational cost and accuracy (see Ref. [1] for a review of the underlying
theory). At one end of the computational spectrum are physics-based methods that rely
on all-atom classical molecular dynamics (MD) simulations to generate a thermodynamic
ensemble of Ab/Ag structures in explicit solvent. These methods have the advantage that
the only assumption is that the chosen classical potential energy function [2–6] provides an
accurate approximation of the energy of the inherently quantum-mechanical, solvated pro-
tein complex. However, even using classical dynamics, such methods usually require very
long simulation times, often hundreds of nanoseconds to microseconds [7] corresponding to
billions to trillions of energy gradient evaluations, and thus, have not yet found routine use
in practical antibody or antigen design. However, advances in simulation software that use
graphical processor units (GPUs) [8–11] and in theoretical algorithms based on extended
statistical mechanical ensembles [12,13] are continually making MD-based methods more
competitive [7,14].

At the other end of the computational spectrum are more empirical methods, which
use a scoring function to approximate bFEs directly, i.e., without relying on a thermody-
namic ensemble of structures. Such methods technically only require a single structure,
which can be obtained from the Protein Data Bank (PDB) [15], homology [16,17] or ab ini-
tio [18,19] modeling. However, because proteins are flexible in solution [20,21], the bound,
unbound, and even transition states in the binding reaction [22] are composed of many
different structures or microstates and macrostates [23,24] that contribute to binding. Thus,
single-structure methods must implicitly represent potentially heterogeneous structural
ensembles, which can limit their predictive accuracy [25].

An obvious idea to improve the accuracy of single-structure methods is to score multiple
structures if they are available, e.g., from experiments [26], or from homology modeling
software [16,18]. However, it is not generally clear how many structures should be used to
achieve a good speed vs. accuracy compromise [27]. For example, different models produced
by homology modeling programs can be structurally similar [16]. Further, sophisticated
structure modeling algorithms can take minutes to hours [18], limiting high-throughput
applications. When using thermodynamic ensemble-based methods such as MD, conforma-
tional landscape exploration can be very slow, because proteins evolve on rugged landscapes,
trapped by large energy barriers [28–30]. Therefore, even for these methods it may be advan-
tageous to repeat the simulations starting from different initial structures, or from different
velocity realizations. Thus, aside from evaluating different methods for computing Ab/Ag
binding affinity, we investigate the effect of the number of structures on the accuracy of the
computed affinities. Single-structure scoring methods, as well as MD simulations, are tested
with multiple structures or simulation replicates, respectively.

2. Materials and Methods

We explored three types of approaches for computing protein-protein binding affinities.
To establish an approximate baseline for the expected accuracy of our calculations, we began
with a computationally intensive approach based on molecular dynamics (MD) simulations,
because an MD-based method that used alchemical free energy perturbation (FEP) previ-
ously achieved very good agreement with experiments [7]. To reduce computational cost,
we next tested a variety of fast scoring functions developed for docking, protein folding, or
protein–ligand binding. Finally, we tested several implicit solvent models, using an energy
decomposition similar to that used in molecular mechanics-generalized Born surface area
(MM-GBSA) models, over ensembles of up to twenty model structures. In this section, we
first describe the experimental dataset used to test the calculations. Then, the three types
of approaches are described in turn. We conclude this section with a description of the
correlation analysis used to compare the computational results with the experimental data.
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2.1. Experimental HIV Antibody–Antigen Binding Affinities

Because our primary interests are antibody and antigen design, and affinity matu-
ration simulations for modeling HIV [31], as the experimental dataset we chose binding
affinities between the HIV envelope glycoprotein (gp120) and the VRC01 broadly neu-
tralizing antibody (bnAb), obtained from two studies. First, Clark et al. [32] published
a dataset of 86 binding affinities for three different antibody–antigen complexes. They
used the resurfaced stabilized core 3 (RSC3) antigen bound to antibodies VRC01, VRC03,
or VRC-PG04. Because of the high overall computational expense of this study, here we
only considered the 30 binding affinities relative to VRC01: the unmutated complex and
29 single-point alanine mutants of the antibody. The average experimental error for this
dataset was estimated by the authors at 0.45 kcal/mol [7]. To model the structures of
the antibody/antigen (Ab/Ag) complexes, the PDB structure 3NGB [32] was used as the
template: it contains the correct antibody, but the antigen is 93TH057 instead of RSC3;
unfortunately, no structure for RSC3 is available in the PDB. The main difference between
the two antigens is the absence of a linker in RSC3, between residues 75 and 88. Following
Clark et al. [7], we did not model the linker; instead, we split the protein chains into
two parts. The second set of experimental binding affinities was taken from the study by
Zhou et al. [32], who studied the effect of mutations for the complex between 93TH057
and VRC01. Experimental binding affinities were available for the unmutated complex,
12 single-point mutations, 3 revertants (4, 7, and 11 mutations each), 1 double mutation,
and 2 insertions (AA and SY), for a total of 19 values. Structure 3NGB [32] was again used
as the template, which matched both the antibody and the antigen used in the experiments.
Thus, a total of 49 experimental binding affinities were obtained from the two sources
(see Table 1). In all of the modeled complexes, only the variable part of the antibody was
included; the constant region was deleted by cutting the heavy and light chains before the
patterns SS[AP]ST and [KHR]RT, respectively. Residues 1 and 2 of the VRC01 light chain
were not built as they were missing in the 3NGB structure.

2.2. Binding Affinities from Potentials of Mean Force (PMF) Simulations

Among the most accurate and physically motivated methods for simulating biomolecules
are classical molecular dynamics simulations [33], which use carefully parametrized Newto-
nian energy functions (force fields) to approximate the motions of individual atoms [2], often
immersed in explicit solvent molecules. Using classical statistical thermodynamics [34,35],
it is possible to compute, essentially from first principles, the equilibrium free energies of
the binding between proteins and ligands using restraining potentials [36,37] or alchemical
transformations [38]. Because of the requirement of computational efficiency, here we used a
fast method developed by us [39], in which the molecular solvent is modeled as a thin flexible
layer (typically 7–10 Å in thickness) of explicit solvent molecules around the biomolecules of
interest, with the bulk solvent omitted. When this method was applied to compute the po-
tential of mean force (PMF) of separating an influenza hemagglutinin (HA) antigen from the
bound anti-HA antibody [40], we observed very good agreement between the flexible-shell
simulation results and those using a box filled with explicit water [39]. Thus, we also used
the method in this study, with the approximations described below. As carried out by Clark
et al. [7], we obtained coordinates for the antibody (Ab) VRC01 bound to an HIV-1 gp120
glycoprotein antigen (Ag) from the PDB file 3NGB [32]. We did not model HIV glycans,
because they are generally not in close proximity to Ab loops. One exception is glycan
NAG776, which was found previously to significantly affect the free energy of mutating
residue Y28 in the VRC01 light chain to alanine [7]. However, our average computed ∆G
(1.97 kcal/mol) was within 1 kcal/mol of the experiment (0.97 kcal/mol), which was lower
than the combined RMS error between our simulations and experiment (about 2 kcal/mol).
Thus, including this glycan would not likely improve our results.
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Table 1. Dataset of the 49 experimental binding affinities used in this work, adapted from Refs. [7,32].
Energies are expressed in units of kcal/mol. The prefix H- or L- indicates whether the mutation was
made to the heavy or the light chain, respectively; letter pairs at the end of some of the mutants
correspond to the residue insertion code relative to the germline sequence, followed by the 1-letter
code of the residue after mutation. The reversion mutant definitions are taken from Table S10a in
Ref. [32]. They are: H-4rev—A56G, V57T, P62K, V73T (heavy chain); H-7rev—T33Y, G55S, A56G,
V57T, P62K, V73T, Y74S (heavy chain); HL-11rev chain: I30T, K52N, R53N, G54S, A56G, V57T, R61Q,
P62K, V73T, Y74S (heavy chain), Y28S (light chain).

93TH057/VRC01 RSC3/VRC01

Mutation ∆G Mutation ∆G

- −11.31 - −10.51
H-T33Y −11.23 H-I30A −10.51
H-G54S −10.56 H-T33A −9.81
H-A56G −11.37 H-W47A −9.32
H-V57T −11.17 H-W50A −9.23
H-P62K −11.08 H-K52A −9.89
H-R61Q −11.21 H-R53A −10.77
H-K52N −11.13 H-G54A −11.78
H-R53N −11.26 H-G55A −9.26
H-V73T −11.14 H-V57A −9.17
H-Y74S −10.98 H-N58A −8.76
H-I30T −11.26 H-Y59A −9.97
H-4rev −9.63 H-R61A −9.53
H-7rev −9.36 H-P62A −10.55

HL-11rev −10.44 H-Q64A −10.85
L-Y28S −10.65 H-M69A −9.99

H-C32S+H-C98A −11.05 H-R71A −8.88
L-iAA −8.92 H-V73A −9.43
L-iSY −10.38 H-Y74A −10.71

H-D99A −10.45
H-Y100A −9.10

H-N100AA −9.40
H-W100BA −6.09

L-V3A −11.28
L-Q27A −10.74
L-Y28A −9.54
L-S30A −10.65
L-Y91A −8.51
L-E96A −9.20
L-F97A −9.66

Ab light and heavy chains were truncated to retain only the variable segments. Only
residues 45–491 of the gp120 Ag were retained to reduce the system size. Although the HIV-1
spike is trimeric, only one Ag monomer bound to a single variable part of the antigen-binding
antibody fragment (Fab) were simulated to reduce simulation cost. To prevent possible
unphysical conformational changes due to the absence of stabilizing intermonomer contacts,
weak RMS restraints were applied to the Ag with a force constant of 10 kcal/mol/Å2, which
also prevented the overall translation and rotation of the Ag. Missing coordinates for loop
residues 318–323 of gp120 were constructed using Modeller [41], and residue mutations
to alanines were preformed using CHARMM [42] by truncating the side chains to the Cβ

atom (for glycines, by replacing the side-chain hydrogen with a methyl group). Due to the
high computational expense of the MD-based PMF simulations, as described below, we only
simulated the 30 alanine mutants (i.e., the VRC01/RSC03 dataset), as was performed by
Clark et al. [7]. However, this reduced set was sufficient to establish that the PMF method
did not outperform the less intensive scoring function methods (see Results).

To assign protonation states of ionizable residues, we checked the structures with the
program ProPka3 [43]. Residues D, E, K, R, C, and Y were predicted to be in their standard
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protonation states. All histidines were predicted to be uncharged; the two histidines with
the highest pKas were H72 and H85 in the gp120 subunit (pKa~6.6, i.e., close to neutral
pH); however, they are both solvent-exposed and located about 30 angstroms from the
binding interface, so that a change in their protonation state would not likely affect binding
affinities. The histidine closest to the binding interface was ~11 angstroms away, with a pKa
predicted at ~6.1. Because all of the histidines were relatively far away from the binding
interface, the location of the proton (Nd vs. Ne) is unlikely to affect the binding affinity,
and thus, the proton was placed on Nd.

Ag/Ab complexes were immersed in a large box of water solvent, water molecules
beyond 7.5 Å were removed, and Na+ and Cl− ions were added, as needed, to neutralize
the systems and to bring total ionic concentration to approximately 0.15 M. The total atom
counts for the solvated systems were around 19,000 atoms; they were not identical because
of the residue mutations.

MD simulations were performed using the CHARMM36 energy function [2] and PME
long-range electrostatics [44] using the program OpenMM [9,45], with the periodic box size
set to 128 Å in each dimension. Lennard-Jones interactions were smoothly attenuated to
zero in the range 7.5 Å–9 Å using the OpenMM cutoff function. Hydrogen masses were
increased to 4 a.m.u. by transferring mass from the corresponding bound heavy atom,
which permitted the use of a 4fs time step. To maintain the temperature at 300 K, we used
the Langevin dynamics thermostat coupled to all atoms with a friction of γ = 0.1 ps.

To compute the potential of mean force (PMF) of separating the Ab from the Ag, we
used the flat-bottom restraint method [46] implemented as an OpenMM plugin with the
following parameters. The reaction coordinate (RC) was the distance along the vector
connecting the centers of mass (COM) of the Ab and Ag. Eight flat-bottom windows
were used, with a force constant of 100 kcal/mol/Å2. The windows were centered on the
COM separation distances of 34.83, 35.60, 36.61, 37.72, 38.92, 40.17, 41.48, and 42.83 Å; the
flat-bottom region of each window was 0.5 Å wide. To accelerate convergence of the PMF,
a distance restraint was applied to the Ab in planes orthogonal to the RC. The orthogonal
distance force constant was 100 kcal/mol/Å2, and a flat-bottom region of 2.5 Å was used;
within this distance of the RC axis, translation was unhindered. In addition, Ab rotation
was penalized using translation-invariant RMSD restraints with the force constant set to
10 kcal/mol/Å2. An illustration of the procedure is given in Figure 1.

The initial configuration in the first window, i.e., that with the shortest Ag/Ab separa-
tion distance, which corresponds to the bound complex, was taken from the PDB structure
3NGB. The initial configurations for each subsequent separation distance were generated
by pulling apart the complex to the new RC value over 400 ps. The simulation duration
was 180 ns per window. Prior to the analysis to compute PMFs, the first 45 ns of simulation
data in each window was discarded as part of equilibration. Each simulation was repeated
seven times with different random seeds to generate statistics. For each mutation, the
bFE difference was computed by subtracting the value in the last window of the PMF
corresponding to the mutated Ab from that corresponding to the PMF from the unmutated
complex. MD simulations were performed on GPU-accelerated supercomputers at Oak
Ridge, Lawrence Livermore, and Lawrence Berkeley National Laboratories; the simulation
speed per window was about 100 ns/day.

We note that a rigorous calculation of absolute binding free energies typically involves
a decomposition into conformational and rigid-body components [36,37,47], in which
the second category is of entropic origin (i.e., the logarithm of the configurational space
expansion factor due to translation and rotation). In our protocol, we did not explicitly
compute the rotational contribution to the FE because we expected it to approximately
be canceled out in the FE differences. We also did not account for the influence of weak
conformational RMSD restraints on the complex, because we, likewise, assumed that
their contributions would be canceled out in the FE differences. The second approxima-
tion was justifiable here because we only considered simple single-residue mutations to
alanine, which were not expected to cause major conformational rearrangements of the
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Ab complementarity-determining regions (CDRs). Ideally, the FE contributions of con-
formational restraints should be removed reversibly [37]; however, this would render
the estimation of FE differences too computationally costly to use in affinity maturation
simulations, or in high-throughput design projects.
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Figure 1. Schematic of the procedure used to compute PMFs of dissociation of Ab from the HIV
gp120 Ag. Starting from the bound Ab/Ag complex, the Ab is displaced away from the Ag (red)
along the vector (blue dashes) that points from the COM of the Ab in the direction that separates
the Ag and the Ab (heavy chain is in yellow, light chain in cyan). Only the initial position of the Ab
is shown. To preserve the relative orientations of Ag and Ab (indicated by the coordinate axes A1

and A2), weak harmonic restraints on the RMSDs of the Ag and Ab are applied, as described in the
text. The rectangle perpendicular to the reaction coordinate indicates the orientation of the additional
flat-bottom restraints to prevent excessive in-plane motion of the Ab, as described in the text. The
faint gray outline indicates the solvent shell.

2.3. Rapid Scoring Functions

Different scoring functions were used to estimate protein-protein binding affinities.
The procedure was to generate a set of 20 models of each complex using the homology
modeling programs Modeller [41] or Rosetta [18,48], evaluate each model using each scor-
ing function, and average the score over various subsets of the model set. The ensemble
average allows one to capture the sensitivity of the scoring function to the atomistic vari-
ability of the models, and also to estimate the number of structures needed for convergence.
Each structure was refined by CHARMM [42], using energy minimization. The model
generation and the evaluation of the scoring functions were performed via the python pro-
gram ppdx [49], which is freely available online at https://github.com/simonecnt/ppdx
(accessed on 28 July 2022), and includes the scripts with parameters used to create the
homology models for this study. We tested 18 scoring functions found in the literature, as
described below. The first five are scoring functions developed for ranking protein-protein
complexes in docking software. These are ZRANK [50] and ZRANK2 [51,52], PyDock [53],
ATTRACT [54], and FireDock [55]. In addition, we tested eight statistical potentials, so
called because they involve ad hoc pseudo-energy functions parametrized using struc-
tures in the PDB. Two of them, DOPE and DOPE-HR, are from the Modeller modeling
suite [41,56], two are atom pair potentials developed by Rykunov and Fiser (RF_HA_SRS
and RF_CB_SRS_OD) [57,58], and four are variations of the iPot potential (ipot_aace167,
ipot_aace18, ipot_aace20, ipot_rrce20) [59]. Another two are commonly used energy func-
tions, Rosetta [18] and FoldX [60,61]. Both are linear regressions of a variety of terms,
including, among others, approximations to the electrostatic and dispersion binding energy,
hydrogen bonds, and buried surface area. For Rosetta, we used the InterfaceAnalyzer
tool [62] after relaxing the structure [63]. With FoldX we used the AnalyseComplex tool
after RepairPDB, which also optimized the side chains. The final scoring function used was

https://github.com/simonecnt/ppdx
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Prodigy [64], which is a linear regression on interchain contacts and non-interacting surface
areas, fit to reproduce experimental protein-protein binding affinities. All the above scoring
functions are relatively fast, with running times ranging from less than a second for the pair
potentials, to several minutes for FoldX, Rosetta, or FireDock. The higher computational
time for the last three methods is due to the optimization of the structure, in particular of
the side-chain conformations.

2.4. Implicit Models of Solvation

Protein-protein binding affinities can be approximated by the interaction energy
between the two proteins using implicit models of solvation [65,66]. In a popular subset of
these methods, MM-GBSA, the total energy of the biomolecular system is taken to be the
sum of a molecular mechanics (MM) energy, a polar solvation contribution evaluated using
the generalized Born approximation (GB), and a non-polar solvation term approximated to
be proportional to the solvent accessible surface area (SASA). In this model, the protein-
protein binding affinity ∆G is evaluated as:

∆G = ∆EMM + ∆GGB + γ∆SASA, (1)

where EMM is the classical energy obtained using an empirical potential energy function
(here, the CHARMM36 energy function [2]), which includes bonded energy terms, and van
der Waals and electrostatic interactions, GGB is the generalized Born solvation free energy,
and γ is an empirical surface tension coefficient. If the same structures are used for both
the bound and unbound proteins, as carried out presently, the bonded interactions are the
same for the bound and unbound structures, and cancel out. Two GB models were tested
here: GBSW [67], and FACTS [68] as implemented in CHARMM [42]. The surface tension
coefficient is an empirically tunable parameter, typically set around 0.005 kcal/mol/Å2 [69].
Furthermore, different implicit solvent models use slightly different definitions of the
surface area, making γ non-transferable between models. Because the non-polar solvation
energy is generally much smaller than the other energy terms (in view of the small surface
tension coefficient above), we initially set this parameter to zero. Subsequently, to improve
the agreement between the experiment and the MM-GBSA implicit solvent results, we
optimized the coefficients of the individual energy terms, i.e., we wrote ∆G as:

∆G = a∆Eelec + b∆Evdw + c∆GGB + d∆SASA + e (2)

and considered a–e to be free parameters to be fit to experimental binding affinities, as
performed by others [70]. We note that the use of fitting implies that the model is not purely
predictive, as it relies on parametrization using experimental data, and was included here
as an example of the highest accuracy attainable with this approach.

2.5. Comparison between Computed and Experimental Binding Affinities

Because values computed from scoring functions are not directly interpretable as
binding free energies, we quantified the agreement between the experimental binding
affinities and computational results using the Pearson correlation coefficient, whose values
were in the interval [−1, 1], with the left and right endpoints corresponding to perfect
anticorrelation and perfect correlation, respectively. To account for the computational
uncertainties in the correlations, we estimated the average and standard deviation of
the Pearson coefficient using bootstrapping. Briefly, given the set of n (at most 20 here)
computed scores for each protein-protein complex, a new set of n scores was sampled
randomly from the original set with replacement. This random sample was averaged to
obtain a value for the binding affinity prediction. The Pearson correlation coefficient was
computed between this set of data and the experimental values, and the full procedure was
repeated 1000 times, followed by computing the average and standard deviation.
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2.6. An Upper Bound for the Pearson Correlation

We note that the presence of random error in the experiment implies an upper bound
for the correlation between prediction and experiment. To account for this experimental
uncertainty, we used the reported experimental random error (0.45 kcal/mol) [7], and
considered each experimental value as corresponding to a Gaussian distribution with
a mean equal to the experimental value, and standard deviation equal to the random
error. The upper bound in the correlation can be estimated by computing correlations
between different samples drawn randomly from the experimental Gaussian distributions.
A histogram can be built of the distribution of the Pearson correlation coefficients, from
which an average and standard deviation can be computed. Using the standard deviation
of 0.45 kcal/mol for all 49 protein-protein complexes, the computed average Pearson
(self-correlation) coefficient was 0.85 ± 0.03; see Figure 2. The deviation from the perfect
correlation of 1 arises solely from the uncertainties in the experimental measurements.
Thus, when comparing with the computations, this self-correlation value should be kept in
mind as an optimal outcome.
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are reported in the figure legend.

3. Results
3.1. Binding Free Energies (bFEs) from PMF Simulations

To establish a baseline computational result, we first discuss the bFE differences
associated with mutating to alanines selected residues in the Ab VRC01 bound to the gp120
antigen RSC3 [7,32]. We note that this set of mutations was simulated by Clark et al. [7],
who used free energy perturbation (FEP) to alchemically transform the mutating residues
in the MD simulations and obtained very good agreement with experiments. However, FEP
requires a stepwise path connecting two different configurations (mutated and unmutated),
but some paths are topologically very difficult to create, e.g., those for residue deletions or
insertions. Because our interest is in implementing a method that can be used for affinity
maturation (AM) simulations, which could, in principle, involve arbitrary, though possibly
rare, sequence changes, we opted to investigate the accuracy of reversible separation of the
Ab/Ag complex. Because AM can involve many mutational cycles [71], it is important to
keep the simulations to a reasonable time constraint. Our present requirement was to be
able to obtain a bFE value within 1–2 days, possibly using a computing cluster, on which
simulations corresponding to different windows could be run in parallel.

The results of the PMF simulations are summarized in Figures 3 and 4. From Figure 3,
we see that the overall correlation between simulation and experiment is rather modest,
at rp = 0.49 and RMSE = 2.09 kcal/mol. In particular, the discrepancies are larger than
those obtained by Clark et al. [7] using free energy perturbation (FEP) combined with
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replica exchange with solute tempering, which were rp = 0.71 and RMSE = 0.64 kcal/mol.
However, our results differ in quality depending on the type of mutation: for mutations
of polar and non-polar residues, the correlation and RMSE are better, as rp = 0.56 and
RMSE = 1.44 kcal/mol, whereas for charged residue mutations, the corresponding values
are rp = 0.66 and RMSE = 3.5 kcal/mol. It is noteworthy that, for charged residues, rp is
relatively high, and the RMSE is also much higher than average. This suggests that the
simulations generally reflect the direction of the free energy change, but overestimate the
magnitude, which can be explained by an incomplete conformational relaxation of the
mutated residue and its environment. Further, we note that the mutations were made to
alanines, which have non-polar side chains. On the basis of electrostatic considerations, we
would expect mutations from non-polar residues to require less structural relaxation, and
those involving charged residues to require more, which is consistent with the results in
Figure 3.
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Figure 3. Comparison between binding free energy (bFE) differences computed from PMF simulation
results and experiment. In (A), mutations corresponding to charged, polar, and nonpolar residues are
colored in blue, brown, and black, respectively, and the dotted line corresponds to y = x. In (B), the
mutation data are compared individually. Residues V3, Q27, Y28, S30, Y91, E96, and F97 are in the Ab
light chain, and the remaining ones are in the heavy chain. The filled and unfilled bars correspond to
experiment and simulation, respectively.
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Figure 4. Agreement between PMF simulation results and experiments improves with the number of
simulation repetitions. (A): Pearson correlation coefficient (rP); (B): root-mean-square error (RMSE).
The symbols correspond to simulation and experimental data, and lines correspond to least-squares
exponential fits. The error bars correspond to standard deviations, computed by bootstrapping (see
Section 2. Materials and Methods).

As mentioned in the introduction, large biomolecules such as proteins populate many
different conformations arranged hierarchically [72], the transitions between which tend
to be slow and rare [29]. For this reason, using multiple structures to predict molecular
properties is expected to improve accuracy, as observed by others [25–27,73]. This is true
even for MD simulations, in which routinely affordable simulations of large systems are
much shorter (10−7–10−6 s) than conformational changes (≥10−3 s). Therefore, in Figure 4
we examined the effect of the number of simulation replicates on the prediction accuracy.
Figure 4A shows that the correlation coefficients increase from about 0.3 ± 0.2 for one
sample to about 0.5 ± 0.1 for the maximum of seven samples. We note that with only three
samples, the Pearson correlation coefficient is already around 0.45 ± 0.15. However, the
statistical uncertainty in the correlation coefficient continues to decrease until seven samples
(0.5 ± 0.1), indicating the importance of additional simulations in increasing precision.
Correspondingly, the RMSE (shown in Figure 4B) decreases from about 2.75 kcal/mol to
about 2.09 kcal/mol. Thus, the trends suggest that including multiple simulation replicates
improves both accuracy and precision, as anticipated, although the rate of improvement is
somewhat modest.

Overall, we suggest that a ballpark number of five simulation replicates be performed.
Even with the seven PMF simulation replicates performed here, the uncertainties in the Pear-
son correlation and RMSE remain rather high. We caution, however, that our PMF method
does not use enhanced sampling methods such as replica exchange or tempering [7,74].
The use of these approaches could potentially reduce the number of samples required for
convergence, since they are designed specifically to accelerate exploration of configurational
space, and therefore, increase decorrelation within single simulation trajectories.

3.2. Scoring Functions

Given the high computational expense and the modest result quality of the above
PMF simulations, it is instructive to consider whether scoring functions could provide a
similar level of accuracy, but at a significantly reduced computational cost. The results of
the 18 scoring functions considered here (see Materials and Methods) are summarized in
Figures 5 and 6. The data corresponding to the RSC3 and 93TH057 antigens are plotted
separately, shown as red and blue linear regression fits, respectively, with the overall
regression fit shown in black. Results in panels A and B of the figures correspond to model
structures generated using Modeller [41,56] and Rosetta [18], respectively.
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Figure 5. Correlations between the experimental and computed binding affinities using the
18 quick scoring functions. (A): the structures were generated using Modeller; (B): the structures
were generated using Rosetta. Data for the complexes with the RSC3 antigen are in red, data for
the complexes with the 93TH057 antigen are in blue, and the black lines correspond to the overall
correlations. The numbers in the legends are the Pearson correlation coefficients.

In the case of Modeller-generated structures, most of the scoring functions show a
systematic shift that depends on the antigen present in the protein-protein complex (the
red and blue data series in Figure 5A). If each of these two series are analyzed separately
(the red and blue regression lines), a weak positive correlation is generally observed, and in
some cases, a negative (anti-)correlation. Because of the antigen-dependent systematic shift
mentioned above, treating the two datasets as one (the black regression line) is misleading.
For example, the DOPE-HR scoring function shows a significant anticorrelation when the
two series are analyzed separately, but the overall correlation is positive. The opposite
is true for pyDock, with positive correlations observed for the two sets if considered
separately, but an anticorrelation observed if the data are merged. Only three scoring
functions do not show this problem with the Modeller structures: ATTRACT, FoldX, and
ZRANK2. In these scoring functions, the separated or merged correlations are similar and
consistent, but still low (Pearson coefficients of 0.3 or less).
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Figure 6. Convergence of the Pearson correlation coefficients between experimental and computed
binding affinities with the number of models used in the average for each scoring function. (A): the
structures were generated using Modeller; (B): the structures were generated using Rosetta. Data for
the complexes with the RSC3 antigen are in red, data for the complexes with the 93TH057 antigen are
in blue, and the black lines correspond to the overall correlations.

Considering the results of the same scoring functions applied to the structures generated
by Rosetta (Figure 5B), the antigen dependence is much reduced. The overall correlations
are also much more in line with the correlations of the two series analyzed separately. The
best performing scoring functions are ATTRACT (rp = 0.46), FoldX (rp = 0.60), RF_HA_SRS
(rp = 0.55), and ipot_aace167 (rp = 0.54). The implicit solvent models FACTS_TOT and
GBSW_TOT also perform well (overall rp of 0.60 and 0.51, respectively).

In Figure 6, in which panels A and B are the structures generated using Modeller and
Rosetta, respectively, we show the evolution of the correlation coefficients as a function
of the number of structures used to compute the average score of each protein-protein
complex, up to the maximum number 20. For the Modeller structures (Figure 6A), the red
and blue curves corresponding to the different antigens are generally similar, whereas the
black curve is very different; this discrepancy is due to the systematic antigen-dependent
shifts observed in Figure 5A. In Figure 6A, one of the best scoring functions is FoldX. In
the corresponding plot, all three curves (red, blue, and black) are similar, but the overall
correlation coefficient at 20 structures is low, at about 0.3. Despite the low final value, it
is noteworthy that the correlation coefficient improves significantly when more than one
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structure is considered, similar to what was found for the PMF simulations. Specifically, the
correlation coefficient increases monotonically with the number of structures considered. A
similar trend is observed for all of the scoring functions.

For the Rosetta-modeled structures (Figure 6B), as observed before in Figure 5B, the
systematic shift is less pronounced, which is reflected in smaller differences between
the three correlation curves. Further, the correlation coefficients are generally higher,
reaching 0.6 for several scoring functions. The increase in the correlation coefficient with
the number of structures is more pronounced for the best-performing scoring functions,
such as ATTRACT or FoldX. About 10 structures appear to be needed to reach 90% of
the correlation obtained with the 20-structure ensemble average, with plateaus not fully
reached even for the 20 structures. A factor that may play a role in the number of structures
needed to reach convergence is the diversity of the generated conformational ensemble. To
quantify the diversity of the structures used here, we computed the pairwise heavy-atom
RMSDs between the 20 models generated for each complex (see Figure S1). We found that
Modeller generally creates more similar structures, compared to Rosetta, which results in
lower RMSD values. Higher variability is observed for the complexes involving the RCS3
antigen, which is possibly due to the lower sequence similarity to the template (template
structure of the complex contains the 93TH057 antigen).

3.3. MM-GBSA with Optimized Coefficients

The final set of results is obtained from MM-GBSA implicit solvent models, in which
the contributions of the constituent energy terms are adjusted to maximize agreement
with the experiment. As described in the Materials and Methods section, the binding
energy is the sum of the electrostatic and van der Waals energies, a generalized Born
(GB) solvation energy and a nonpolar solvation contribution taken to be proportional to
the solvent accessible surface area (SASA) [69]. Because the energy terms in MM-GBSA
are grounded in physics, the weight of each term should be unity. However, in practice,
the weights can be tuned to improve fit to the experiment (Equation (2)). This fitting
procedure was performed using two GB implicit solvent models, FACTS and GBSW, for
structures generated by both Modeller and Rosetta, and the results are summarized in
Figure 7 and Table 2. First, we note from Figure 5 that, without fitting of the weights,
FACTS and GBSW behave similarly to the other scoring functions (see in Figure 5 the
plots labeled FACTS_TOT and GBSW_TOT). The correlation coefficients exhibit the same
antigen-dependent shifts as observed for the other scoring functions, the effect being less
pronounced for Rosetta-generated vs. Modeller-generated structures.

The coefficient optimization generally improves agreement with the experiment, espe-
cially for the structural ensemble generated by Modeller (compare Figure 7 with Figure 5).
The system dependence is less pronounced, and the correlation coefficients are comparable to
the best scoring functions (rp = 0.54 for the refit FACTS model applied to Rosetta structures).
It is noteworthy that the predictions from the refitted models are not qualitatively better for
Rosetta-generated structures than for Modeller-generated structures. In essence, the fitting
procedure is able to reduce the dependence on the type of structural modeling used.

An apparent advantage of the refitting procedure is that the resulting energies are
better comparable to the experimental values, with the RMSE values of 0.88–0.92 kcal/mol
(Table 2). However, it should be emphasized that the energy term coefficients in Table 2
are difficult to justify on physical grounds, with some of them, in particular those of
the GBSW model, taking on negative values. For example, examination of the energy
contribution coefficients in Table 2 shows that, for the Modeller structures scored with the
FACTS GB model, the van der Waals (vdW) term is attenuated by several-fold relative to
the electrostatic and GB terms, whereas for the Rosetta-generated model structures, the
vdW term is actually higher. Thus, although by using the fitting procedure we improve
agreement with the experiment, we also forgot the physicality of the model.
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Table 2. Fitted parameters (Equation (2)) and regression statistics for the four models generated
by the GBSW and FACTS implicit solvents on the Rosetta and Modeller structures. The statistical
uncertainty in the Pearson correlation coefficients is about 0.02, estimated from the leave-one-out
error. Energies are expressed in units of kcal/mol.

Rosetta Modeller

FACTS GBSW FACTS GBSW

a (Eelec) 0.0478 −0.0157 0.0225 −0.0111
b (Evdw) 0.0961 −0.0651 0.0036 −0.0687
c (EGB) 0.0541 −0.0131 0.0307 −0.0053

d (SASA) 0.1375 0.3614 0.2736 0.1618
e −3.65 −5.39 −4.77 −13.60

Pearson: 0.54 0.53 0.51 0.46
Slope: 0.29 0.28 0.26 0.21

Intercept: −7.17 −7.32 −7.52 −8.01
p-value: 5.63 × 10−5 9.48 × 10−5 1.85 × 10−4 8.79 × 10−4

RMSE: 0.87 0.88 0.89 0.92

4. Concluding Discussion

Efficient and accurate calculation of binding free energies (bFEs) between proteins is an
essential component of antibody (Ab) and antigen (Ag) design. In this study, we compared
several methods of computing bFEs in an effort to find an optimal compromise in speed and
accuracy to use in affinity maturation simulations, and in antibody and antigen design. The
methods considered the range from computationally expensive MD simulations to compute
potentials of mean force (PMFs), which required 1–2 days to obtain a single value, to empirical
methods that use fast but highly approximate scoring functions to produce values within
seconds to minutes. For the methods in the second category, the cost of modeling mutant
structures using sophisticated homology building tools [16,18] can be dominant.

Our results from the expensive all-atom PMF simulations have reasonable accuracy
when tested on a small set of alanine mutations [7]. However, we were able to obtain
results of similar accuracy using scoring functions. We note that results of higher accuracy
were reported using free energy perturbation (FEP) simulations for the same dataset [7,14],
which suggests that FEP may be the method of choice for relatively simple structural
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mutations that can be easily represented by the dual-topology alchemical paradigm. On
the other hand, the PMF method could be still preferable in cases that involve topological
changes to the protein backbone, such as deletions and insertions of one or more residues,
that are currently too complicated to incorporate into a dual-topology paradigm required
by modern alchemical algorithms. We caution that the present test set of simple alanine-
scanning mutations may not represent the accuracy of the method when it is applied to
such complicated mutations.

In addition to comparing different methods, we considered the effect of the number
of independent structures (for rapid scoring methods) or the number of independent sim-
ulation replicates (for PMF simulations) on the prediction accuracy. In broad agreement
with previous results from other groups [26,27], we observed an increase in accuracy with
the number of structures, but the rate of increase was dependent on the method used. Our
recommendation based on the present results is to use about ten structures for scoring
function methods, and about five simulation replicates for MD-based methods, but the
precise number will depend on the method details, such as the protocols for structure
modeling. In the case of limited experimental structures (as is the case of the single X-ray
template structure used here), additional structures could be generated using homology
modeling software, or from MD simulations. Alternatively, algorithms for incorporating
conformational flexibility via backbone and side-chain coordinate sampling can be em-
ployed [25,73,75–77]. However, even with additional sampling, it can be challenging to
adequately capture the conformational ensembles of antibody CDR regions, which can use
flexibility to achieve not only specificity, but also breadth [78]. Another limitation of the
present homology-model-based approach to computing binding affinity changes is that
the use of a small number of template structures prevents significant reorientation of the
bound antibody. Thus, the structure generation protocols used here may be inaccurate for
modeling maturation of antibodies that reorient upon maturation. Use of docking software
such as HADDOCK [79] as an additional structure refinement step may be beneficial in
such cases.

As a further step to improve accuracy, we considered empirically tunable binding
affinity methods, trained with some pre-existing binding data. In particular, we used an
energy decomposition formalism similar to that used in molecular mechanics-generalized
Born surface area (MM-GBSA) models to optimize the additive contributions of the different
energy terms to bFE, as carried out by others [70]. Although this approach yielded the best
agreement with the experimental binding free energy differences, as is to be expected in
view of the regression procedure, it suffers from the drawback of requiring a “training”
set, and is therefore not a priori predictive. In addition, because the energy contribution
coefficients were allowed to vary arbitrarily, so as to obtain an optimal fit, some of them
turned negative (see Table 2), clearly demonstrating unphysical behavior. Nevertheless,
such a semi-empirical approach may be justified if even a modest number of experimental
binding values can be obtained for model training. A further extension of the fitting
procedure could be to expand beyond linear regression to more complex machine learning
methods [80,81].

A final practical note is that, in view of the limited accuracy reported in our study, there
is a high probability that computational optimization using the binding affinity methods
described here will not lead to improved affinity for any particular antigen or antibody
sequence. However, highly optimized antibodies can still be discovered despite the rather
modest correlations provided the optimization strategy is used to create a large, preferably
diverse, sequence ensemble, rather than a small number of mutants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antib11030051/s1, Figure S1: Pairwise RMSDs between models.
For each mutated complex, the pairwise heavy-atom RMSDs between 20 generated models were
computed; the average, minimum, and maximum RMSD values are plotted (diamond, lower bar,
and upper bar, respectively). The points on the X-axis are ordered as in Table 1 (main text). Top:
structures were generated using Modeller; bottom: structures were generated using Rosetta.

https://www.mdpi.com/article/10.3390/antib11030051/s1
https://www.mdpi.com/article/10.3390/antib11030051/s1


Antibodies 2022, 11, 51 16 of 19

Author Contributions: S.C. and V.O. contributed to conceptualizing, performing, and validating the
research, to analyzing the results, and to writing and editing the manuscript. E.Y.L. contributed to
performing and validating the research, and to reviewing the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: Financial support for this project was provided by the Lawrence Livermore National
Laboratory under Grant 17-ERD-043, by the Bill & Melinda Gates Foundation and Flu Lab under
Grant Opportunity OPP1214161, and by the CHARMM Development Project. Work at the Lawrence
Livermore National Laboratory was performed under the auspices of the U.S. Department of Energy
under Contract DE-AC52-07NA27344.

Data Availability Statement: Data are contained within the article or supplementary materials.
The model generation and the evaluation of the scoring functions were performed via the python
program ppdx, which is freely available online at https://github.com/simonecnt/ppdx (accessed
on 28 July 2022). MD simulation trajectories from our study can be found as an online dataset at
https://zenodo.org/record/6879091 (accessed on 28 July 2022).

Acknowledgments: The authors are grateful to Martin Karplus, Arup Chakraborty, Kayla Sprenger,
and Aravinda Munasinghe for their stimulating discussions. Computer resources were provided
by the National Energy Resource Scientific Computing Center (NERSC), which is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by
the Lawrence Livermore Computing Center, and by the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. The
findings and conclusions contained within are those of the authors and do not necessarily reflect
positions or policies of the Bill & Melinda Gates Foundation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Siebenmorgen, T.; Zacharias, M. Computational prediction of protein-protein binding affinities. WIREs Comput. Mol. Sci. 2019, 10, e1448.

[CrossRef]
2. Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.M.; Mittal, J.; Feig, M. Optimization of the Additive CHARMM All-Atom Protein Force

Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. J. Chem. Theory Comput.
2012, 8, 3257–3273. [CrossRef]

3. Guvench, O.; Mallajosyula, S.S.; Raman, E.P.; Hatcher, E.; Vanommeslaeghe, K.; Foster, T.J.; Jamison, I.F.W., 2nd; MacKerell,
J.A.D., Jr. CHARMM Additive All-Atom Force Field for Carbohydrate Derivatives and Its Utility in Polysaccharide and
Carbohydrate–Protein Modeling. J. Chem. Theory Comput. 2011, 7, 3162–3180. [CrossRef] [PubMed]

4. Pearlman, D.A.; Case, D.A.; Caldwell, J.W.; Ross, W.S.; Cheatham, T.E., III; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P.
AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and
free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 1995, 91, 1–41.
[CrossRef]

5. Shivakumar, D.; Harder, E.; Damm, W.; Friesner, R.A.; Sherman, W. Improving the Prediction of Absolute Solvation Free Energies
Using the Next Generation OPLS Force Field. J. Chem. Theory Comput. 2012, 8, 2553–2558. [CrossRef]

6. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable
Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [CrossRef]

7. Clark, A.J.; Gindin, T.; Zhang, B.; Wang, L.; Abel, R.; Murret, C.S.; Xu, F.; Bao, A.; Lu, N.J.; Zhou, T.; et al. Free Energy Perturbation
Calculation of Relative Binding Free Energy between Broadly Neutralizing Antibodies and the gp120 Glycoprotein of HIV-1. J.
Mol. Biol. 2016, 429, 930–947. [CrossRef]

8. Anderson, J.A.; Lorenz, C.; Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics
processing units. J. Comput. Phys. 2008, 227, 5342–5359. [CrossRef]

9. Friedrichs, M.S.; Eastman, P.; Vaidyanathan, V.; Houston, M.; Legrand, S.; Beberg, A.L.; Ensign, D.L.; Bruns, C.M.; Pande, V.S.
Accelerating molecular dynamic simulation on graphics processing units. J. Comput. Chem. 2009, 30, 864–872. [CrossRef]

10. Harvey, M.; Giupponi, G.; De Fabritiis, G. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. J. Chem.
Theory Comput. 2009, 5, 1632–1639. [CrossRef]

11. Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations
with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542–1555. [CrossRef] [PubMed]

12. Wang, L.; Friesner, R.A.; Berne, B.J. Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with
Solute Tempering (REST2). J. Phys. Chem. B 2011, 115, 9431–9438. [CrossRef]

13. Vilseck, J.Z.; Armacost, K.A.; Hayes, R.L.; Goh, G.B.; Brooks, C.L. Predicting Binding Free Energies in a Large Combinatorial
Chemical Space Using Multisite λ Dynamics. J. Phys. Chem. Lett. 2018, 9, 3328–3332. [CrossRef] [PubMed]

https://github.com/simonecnt/ppdx
https://zenodo.org/record/6879091
http://doi.org/10.1002/wcms.1448
http://doi.org/10.1021/ct300400x
http://doi.org/10.1021/ct200328p
http://www.ncbi.nlm.nih.gov/pubmed/22125473
http://doi.org/10.1016/0010-4655(95)00041-D
http://doi.org/10.1021/ct300203w
http://doi.org/10.1021/ct700301q
http://doi.org/10.1016/j.jmb.2016.11.021
http://doi.org/10.1016/j.jcp.2008.01.047
http://doi.org/10.1002/jcc.21209
http://doi.org/10.1021/ct9000685
http://doi.org/10.1021/ct200909j
http://www.ncbi.nlm.nih.gov/pubmed/22582031
http://doi.org/10.1021/jp204407d
http://doi.org/10.1021/acs.jpclett.8b01284
http://www.ncbi.nlm.nih.gov/pubmed/29847134


Antibodies 2022, 11, 51 17 of 19

14. Clark, A.J.; Negron, C.; Hauser, K.; Sun, M.; Wang, L.; Abel, R.; Friesner, R.A. Relative Binding Affinity Prediction of Charge-
Changing Sequence Mutations with FEP in Protein–Protein Interfaces. J. Mol. Biol. 2019, 431, 1481–1493. [CrossRef]

15. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H. The Protein Data Bank. Nucl. Acids Res. 2000, 28,
235–242. [CrossRef] [PubMed]

16. Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.-Y.; Pieper, U.; Sali, A. Comparative Protein
Structure Modeling Using Modeller. Curr. Protoc. Bioinform. 2006, 15, 5.6.1–5.6.30. [CrossRef]

17. Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods
2015, 12, 7–8. [CrossRef] [PubMed]

18. Leaver-Fay, A.; Tyka, M.; Lewis, S.M.; Lange, O.F.; Thompson, J.; Jacak, R. Rosetta3: An Object-Oriented Software Suite for the
Simulation and Design of Macromolecules. Methods Enzymol. 2011, 487, 545–574. [PubMed]

19. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko,
A.; et al. Applying and improving AlphaFold at CASP14. Protein Struct. Funct. Bioinf. 2021, 89, 1711–1721. [CrossRef] [PubMed]

20. Weber, G. Energetics of Ligand Binding to Proteins. In Advances in Protein Chemistry; Anfinsen, C.B., Edsall, J.T., Richards, F.M.,
Eds.; Academic Press: Piscataway, NJ, USA, 1975; pp. 1–83.

21. McCammon, J.A.; Gelin, B.R.; Karplus, M. Dynamics of folded proteins. Nature 1977, 267, 585–590. [CrossRef] [PubMed]
22. Frauenfelder, H.; Sligar, S.G.; Wolynes, P.G. The energy landscapes and motions of proteins. Science 1991, 254, 1598–1603.

[CrossRef] [PubMed]
23. Shalloway, D. Macrostates of classical stochastic systems. J. Chem. Phys. 1996, 105, 9986–10007. [CrossRef]
24. Iben, I.E.T.; Braunstein, D.; Doster, W.; Frauenfelder, H.; Hong, M.K.; Johnson, J.B.; Luck, S.; Ormos, P.; Schulte, A.;

Steinbach, P.J.; et al. Glassy behavior of a protein. Phys. Rev. Lett. 1989, 62, 1916–1919. [CrossRef] [PubMed]
25. Totrov, M.; Abagyan, R. Flexible ligand docking to multiple receptor conformations: A practical alternative. Curr. Opin. Struct.

Biol. 2008, 18, 178–184. [CrossRef] [PubMed]
26. Barril, X.; Morley, S.D. Unveiling the Full Potential of Flexible Receptor Docking Using Multiple Crystallographic Structures. J.

Med. Chem. 2005, 48, 4432–4443. [CrossRef] [PubMed]
27. Xu, M.; Lill, M.A. Utilizing Experimental Data for Reducing Ensemble Size in Flexible-Protein Docking. J. Chem. Inf. Model. 2011,

52, 187–198. [CrossRef]
28. Gelin, B.R.; Karplus, M. Role of structural flexibility in conformational calculations. Application to acetylcholine and .beta.-

methylacetylcholine. J. Am. Chem. Soc. 1975, 97, 6996–7006. [CrossRef]
29. Luo, G.; Andricioaei, I.; Xie, X.S.; Karplus, M. Dynamic Distance Disorder in Proteins Is Caused by Trapping. J. Phys. Chem. B

2006, 110, 9363–9367. [CrossRef]
30. Meroz, Y.; Ovchinnikov, V.; Karplus, M. Coexisting origins of subdiffusion in internal dynamics of proteins. Phys. Rev. E 2017, 95,

062403. [CrossRef]
31. Conti, S.; Ovchinnikov, V.; Faris, J.G.; Chakraborty, A.K.; Karplus, M.; Sprenger, K.G. Multiscale affinity maturation simulations to

elicit broadly neutralizing antibodies against HIV. PLOS Comput. Biol. 2022, 18, e1009391. [CrossRef]
32. Zhou, T.; Georgiev, I.; Wu, X.; Yang, Z.-Y.; Dai, K.; Finzi, A.; Kwon, Y.D.; Scheid, J.F.; Shi, W.; Xu, L.; et al. Structural Basis for

Broad and Potent Neutralization of HIV-1 by Antibody VRC01. Science 2010, 329, 811–817. [CrossRef] [PubMed]
33. Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Mol. Biol. 2002, 9, 646–652.

[CrossRef]
34. Hill, T.L.; Gillis, J. An Introduction to Statistical Thermodynamics; Addison-Wesley Publishing Company, Inc.: Reading, MA, USA, 1960.
35. Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed.; Academic Press: San Diego, CA,

USA, 2001.
36. Wang, J.; Deng, Y.; Roux, B. Absolute Binding Free Energy Calculations Using Molecular Dynamics Simulations with Restraining

Potentials. Biophys. J. 2006, 91, 2798–2814. [CrossRef] [PubMed]
37. Gumbart, J.C.; Roux, B.; Chipot, C. Efficient Determination of Protein–Protein Standard Binding Free Energies from First

Principles. J. Chem. Theory Comput. 2013, 9, 3789–3798. [CrossRef]
38. Shirts, M.R. Best Practices in Free Energy Calculations for Drug Design. In Computational Drug Discovery and Design; Baron, R.,

Ed.; Springer: New York, NY, USA, 2012; pp. 425–467.
39. Ovchinnikov, V.; Conti, S.; Lau, E.Y.; Lightstone, F.C.; Karplus, M. Microsecond Molecular Dynamics Simulations of Proteins

Using a Quasi-Equilibrium Solvation Shell Model. J. Chem. Theory Comput. 2020, 16, 1866–1881. [CrossRef] [PubMed]
40. Impagliazzo, A.; Milder, F.; Kuipers, H.; Wagner, M.V.; Zhu, X.; Hoffman, R.M.; Van Meersbergen, R.; Huizingh, J.; Wanningen, P.;

Verspuij, J.; et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 2015, 349, 1301–1306.
[CrossRef]

41. Webb, B.; Sali, A. Comparative Protein Structure Modeling Using MODELLER. In Current Protocols in Bioinformatics; John Wiley &
Sons, Inc.: Hoboken, NJ, USA, 2002.

42. Brooks, B.R.; Brooks, C.L.; Mackerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B. CHARMM: The biomolecular simulation program.
J. Comput. Chem. 2009, 30, 1545–1614. [CrossRef]

43. Olsson, M.H.M.; Søndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent Treatment of Internal and Surface
Residues in Empirical pKa Predictions. J. Chem. Theory Comput. 2011, 7, 525–537. [CrossRef]

http://doi.org/10.1016/j.jmb.2019.02.003
http://doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235
http://doi.org/10.1002/0471250953.bi0506s15
http://doi.org/10.1038/nmeth.3213
http://www.ncbi.nlm.nih.gov/pubmed/25549265
http://www.ncbi.nlm.nih.gov/pubmed/21187238
http://doi.org/10.1002/prot.26257
http://www.ncbi.nlm.nih.gov/pubmed/34599769
http://doi.org/10.1038/267585a0
http://www.ncbi.nlm.nih.gov/pubmed/301613
http://doi.org/10.1126/science.1749933
http://www.ncbi.nlm.nih.gov/pubmed/1749933
http://doi.org/10.1063/1.472830
http://doi.org/10.1103/PhysRevLett.62.1916
http://www.ncbi.nlm.nih.gov/pubmed/10039803
http://doi.org/10.1016/j.sbi.2008.01.004
http://www.ncbi.nlm.nih.gov/pubmed/18302984
http://doi.org/10.1021/jm048972v
http://www.ncbi.nlm.nih.gov/pubmed/15974595
http://doi.org/10.1021/ci200428t
http://doi.org/10.1021/ja00857a009
http://doi.org/10.1021/jp057497p
http://doi.org/10.1103/PhysRevE.95.062403
http://doi.org/10.1371/journal.pcbi.1009391
http://doi.org/10.1126/science.1192819
http://www.ncbi.nlm.nih.gov/pubmed/20616231
http://doi.org/10.1038/nsb0902-646
http://doi.org/10.1529/biophysj.106.084301
http://www.ncbi.nlm.nih.gov/pubmed/16844742
http://doi.org/10.1021/ct400273t
http://doi.org/10.1021/acs.jctc.9b01072
http://www.ncbi.nlm.nih.gov/pubmed/32045240
http://doi.org/10.1126/science.aac7263
http://doi.org/10.1002/jcc.21287
http://doi.org/10.1021/ct100578z


Antibodies 2022, 11, 51 18 of 19

44. Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem.
Phys. 1995, 103, 8577–8593. [CrossRef]

45. Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.-P.; Simmonett, A.C.; Harrigan, M.P.;
Stern, C.D.; et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol.
2017, 13, e1005659. [CrossRef] [PubMed]

46. Ovchinnikov, V.; Nam, K.; Karplus, M. A Simple and Accurate Method To Calculate Free Energy Profiles and Reaction Rates from
Restrained Molecular Simulations of Diffusive Processes. J. Phys. Chem. B 2016, 120, 8457–8472. [CrossRef]

47. Boresch, S.; Tettinger, F.; Leitgeb, M.; Karplus, M. Absolute Binding Free Energies: A Quantitative Approach for Their Calculation.
J. Phys. Chem. B 2003, 107, 9535–9551. [CrossRef]

48. Song, Y.; DiMaio, F.; Wang, R.Y.-R.; Kim, D.; Miles, C.; Brunette, T.; Thompson, J.; Baker, D. High-Resolution Comparative
Modeling with RosettaCM. Structure 2013, 21, 1735–1742. [CrossRef] [PubMed]

49. Conti, S.; Ovchinnikov, V.; Karplus, M. ppdx: Automated modeling of protein-protein interaction descriptors for use with
machine learning. J. Comput. Chem. 2022, in press.

50. Pierce, B.; Weng, Z. ZRANK: Reranking protein docking predictions with an optimized energy function. Proteins: Struct. Funct.
Bioinform. 2007, 67, 1078–1086. [CrossRef] [PubMed]

51. Pierce, B.; Weng, Z. A combination of rescoring and refinement significantly improves protein docking performance. Proteins
Struct. Funct. Bioinform. 2008, 72, 270–279. [CrossRef]

52. Mintseris, J.; Pierce, B.; Wiehe, K.; Anderson, R.; Chen, R.; Weng, Z. Integrating statistical pair potentials into protein complex
prediction. Proteins Struct. Funct. Bioinform. 2007, 69, 511–520. [CrossRef] [PubMed]

53. Cheng, T.M.-K.; Blundell, T.L.; Fernandez-Recio, J. pyDock: Electrostatics and desolvation for effective scoring of rigid-body
protein-protein docking. Proteins Struct. Funct. Bioinform. 2007, 68, 503–515. [CrossRef] [PubMed]

54. Zacharias, M. ATTRACT: Protein-protein docking in CAPRI using a reduced protein model. Proteins: Struct. Funct. Bioinform.
2005, 60, 252–256. [CrossRef] [PubMed]

55. Andrusier, N.; Nussinov, R.; Wolfson, H.J. FireDock: Fast interaction refinement in molecular docking. Proteins: Struct. Funct.
Bioinform. 2007, 69, 139–159. [CrossRef] [PubMed]

56. Shen, M.Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006, 15, 2507–2524.
[CrossRef]

57. Rykunov, D.; Fiser, A. Effects of amino acid composition, finite size of proteins, and sparse statistics on distance-dependent
statistical pair potentials. Protein Struct. Funct. Bioinform. 2007, 67, 559–568. [CrossRef] [PubMed]

58. Rykunov, D.; Fiser, A. New statistical potential for quality assessment of protein models and a survey of energy functions. BMC
Bioinform. 2010, 11, 128. [CrossRef] [PubMed]

59. Anishchenko, I.; Kundrotas, P.J.; Vakser, I.A. Contact Potential for Structure Prediction of Proteins and Protein Complexes from
Potts Model. Biophys. J. 2018, 115, 809–821. [CrossRef]

60. Schymkowitz, J.; Borg, J.; Stricher, F.; Nys, R.; Rousseau, F.; Serrano, L. The FoldX web server: An online force field. Nucleic Acids
Res. 2005, 33, W382–W388. [CrossRef] [PubMed]

61. Guerois, R.; Nielsen, J.E.; Serrano, L. Predicting Changes in the Stability of Proteins and Protein Complexes: A Study of More
Than 1000 Mutations. J. Mol. Biol. 2002, 320, 369–387. [CrossRef]

62. Stranges, P.B.; Kuhlman, B. A comparison of successful and failed protein interface designs highlights the challenges of designing
buried hydrogen bonds. Protein Sci. 2012, 22, 74–82. [CrossRef]

63. Nivón, L.G.; Moretti, R.; Baker, D. A Pareto-Optimal Refinement Method for Protein Design Scaffolds. PLoS ONE 2013, 8, e59004.
[CrossRef]

64. Vangone, A.; Bonvin, A.M. Contacts-based prediction of binding affinity in protein-protein complexes. eLife 2015, 4, e07454.
[CrossRef]

65. Roux, B.; Simonson, T. Implicit solvent models. Biophys. Chem. 1999, 78, 1–20. [CrossRef]
66. Onufriev, A.V.; Case, D.A. Generalized Born Implicit Solvent Models for Biomolecules. Annu. Rev. Biophys. 2019, 48, 275–296.

[CrossRef] [PubMed]
67. Im, W.; Lee, M.S.; Brooks, C.L. Generalized born model with a simple smoothing function. J. Comput. Chem. 2003, 24, 1691–1702.

[CrossRef]
68. Haberthür, U.; Caflisch, A. FACTS: Fast analytical continuum treatment of solvation. J. Comput. Chem. 2008, 29, 701–715.

[CrossRef]
69. Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large-scale conformational changes with a modified

generalized born model. Protein Struct. Funct. Bioinform. 2004, 55, 383–394. [CrossRef] [PubMed]
70. Li, M.; Petukh, M.; Alexov, E.; Panchenko, A.R. Predicting the Impact of Missense Mutations on Protein–Protein Binding Affinity.

J. Chem. Theory Comput. 2014, 10, 1770–1780. [CrossRef] [PubMed]
71. Murphy, K. Janeway’s Immunobiology, 8th ed.; Garland Science: New York, NY, USA, 2012.
72. Becker, O.M.; Karplus, M. The topology of multidimensional potential energy surfaces: Theory and application to peptide

structure and kinetics. J. Chem. Phys. 1997, 106, 1495–1517. [CrossRef]

http://doi.org/10.1063/1.470117
http://doi.org/10.1371/journal.pcbi.1005659
http://www.ncbi.nlm.nih.gov/pubmed/28746339
http://doi.org/10.1021/acs.jpcb.6b02139
http://doi.org/10.1021/jp0217839
http://doi.org/10.1016/j.str.2013.08.005
http://www.ncbi.nlm.nih.gov/pubmed/24035711
http://doi.org/10.1002/prot.21373
http://www.ncbi.nlm.nih.gov/pubmed/17373710
http://doi.org/10.1002/prot.21920
http://doi.org/10.1002/prot.21502
http://www.ncbi.nlm.nih.gov/pubmed/17623839
http://doi.org/10.1002/prot.21419
http://www.ncbi.nlm.nih.gov/pubmed/17444519
http://doi.org/10.1002/prot.20566
http://www.ncbi.nlm.nih.gov/pubmed/15981270
http://doi.org/10.1002/prot.21495
http://www.ncbi.nlm.nih.gov/pubmed/17598144
http://doi.org/10.1110/ps.062416606
http://doi.org/10.1002/prot.21279
http://www.ncbi.nlm.nih.gov/pubmed/17335003
http://doi.org/10.1186/1471-2105-11-128
http://www.ncbi.nlm.nih.gov/pubmed/20226048
http://doi.org/10.1016/j.bpj.2018.07.035
http://doi.org/10.1093/nar/gki387
http://www.ncbi.nlm.nih.gov/pubmed/15980494
http://doi.org/10.1016/S0022-2836(02)00442-4
http://doi.org/10.1002/pro.2187
http://doi.org/10.1371/journal.pone.0059004
http://doi.org/10.7554/eLife.07454
http://doi.org/10.1016/S0301-4622(98)00226-9
http://doi.org/10.1146/annurev-biophys-052118-115325
http://www.ncbi.nlm.nih.gov/pubmed/30857399
http://doi.org/10.1002/jcc.10321
http://doi.org/10.1002/jcc.20832
http://doi.org/10.1002/prot.20033
http://www.ncbi.nlm.nih.gov/pubmed/15048829
http://doi.org/10.1021/ct401022c
http://www.ncbi.nlm.nih.gov/pubmed/24803870
http://doi.org/10.1063/1.473299


Antibodies 2022, 11, 51 19 of 19

73. Gainza, P.; Roberts, K.E.; Georgiev, I.; Lilien, R.H.; Keedy, D.A.; Chen, C.Y. Chapter Five-osprey: Protein Design with Ensembles,
Flexibility, and Provable Algorithms. In Methods in Enzymology; Keating, A.E., Ed.; Academic Press: Piscataway, NJ, USA, 2013;
pp. 87–107.

74. Liu, P.; Kim, B.; Friesner, R.A.; Berne, B.J. Replica exchange with solute tempering: A method for sampling biological systems in
explicit water. Proc. Natl. Acad. Sci. USA 2005, 102, 13749–13754. [CrossRef] [PubMed]

75. Ollikainen, N.; De Jong, R.M.; Kortemme, T. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of
Protein-Ligand Specificity. PLOS Comput. Biol. 2015, 11, e1004335. [CrossRef] [PubMed]

76. Davey, J.A.; Chica, R.A. Improving the accuracy of protein stability predictions with multistate design using a variety of backbone
ensembles. Protein Struct. Funct. Bioinform. 2013, 82, 771–784. [CrossRef] [PubMed]

77. Marze, N.A.; Burman, S.S.R.; Sheffler, W.; Gray, J.J. Efficient flexible backbone protein-protein docking for challenging targets.
Bioinformatics 2018, 34, 3461–3469. [CrossRef]

78. Ovchinnikov, V.; Louveau, J.E.; Barton, J.P.; Karplus, M.; Chakraborty, A.K. Role of framework mutations and antibody flexibility
in the evolution of broadly neutralizing antibodies. eLife 2018, 7, e33038. [CrossRef]

79. Dominguez, C.; Boelens, R.; Bonvin, A.M.J.J. HADDOCK: A Protein−Protein Docking Approach Based on Biochemical or
Biophysical Information. J. Am. Chem. Soc. 2003, 125, 1731–1737. [CrossRef]

80. Mitchell, J.B.O. Machine learning methods in chemoinformatics. WIREs Comput. Mol. Sci. 2014, 4, 468–481. [CrossRef]
81. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]

http://doi.org/10.1073/pnas.0506346102
http://www.ncbi.nlm.nih.gov/pubmed/16172406
http://doi.org/10.1371/journal.pcbi.1004335
http://www.ncbi.nlm.nih.gov/pubmed/26397464
http://doi.org/10.1002/prot.24457
http://www.ncbi.nlm.nih.gov/pubmed/24174277
http://doi.org/10.1093/bioinformatics/bty355
http://doi.org/10.7554/eLife.33038
http://doi.org/10.1021/ja026939x
http://doi.org/10.1002/wcms.1183
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442

	Introduction 
	Materials and Methods 
	Experimental HIV Antibody–Antigen Binding Affinities 
	Binding Affinities from Potentials of Mean Force (PMF) Simulations 
	Rapid Scoring Functions 
	Implicit Models of Solvation 
	Comparison between Computed and Experimental Binding Affinities 
	An Upper Bound for the Pearson Correlation 

	Results 
	Binding Free Energies (bFEs) from PMF Simulations 
	Scoring Functions 
	MM-GBSA with Optimized Coefficients 

	Concluding Discussion 
	References

