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Abstract—A bound is given on the rate of channel polarization.
As a corollary, an earlier bound on the probability of error
for polar coding is improved. Specifically, it is shown that, for
any binary-input discrete memoryless channel W with symmetric
capacity I(W ) and any rate R < I(W ), the polar-coding block-
error probability under successive cancellation decoding satisfies
Pe(N,R) ≤ 2−Nβ

for any β < 1
2

when the block-length N is
large enough.

I. RESULTS

Channel polarization is a method introduced in [1] for
constructing capacity-achieving codes on symmetric binary-
input memoryless channels. Both the construction and the
probability of error analysis of polar codes, as these codes
were called, are centered around a random process {Zn : n ∈
N} which keeps track of the Bhattacharyya parameters of the
channels that arise in the course of channel polarization. The
aim here is to give an asymptotic convergence result on {Zn}
in as simple a setting as possible. For further background on
the problem, we refer to [1].

For the purposes here, the polarization process can be
modeled as follows. Suppose Bi, i = 1, 2, . . ., are i.i.d., {0, 1}-
valued random variables with

P (B1 = 0) = P (B1 = 1) =
1
2

defined on a probability space (Ω,F , P ). Set F0 = {∅,Ω}
as the trivial σ-algebra and set Fn, n ≥ 1, to be the σ-
algebra generated by (B1, . . . , Bn). We may assume that
F =

⋃
n≥0 Fn.

Suppose further that a stochastic process {Zn : n ∈ N} is
defined on this probability space with the following properties:

(z.1) For each n ∈ N, Zn takes values in the interval [0, 1]
and is measurable with respect to Fn. That is, Z0 is
constant, and Zn is a function of B1, . . . , Bn.

(z.2) For some constant q and for each n ∈ N,

Zn+1 = Z2
n when Bn+1 = 1,

Zn+1 ≤ qZn when Bn+1 = 0.

(z.3) {Zn} converges a.s. to a {0, 1}-valued random vari-
able Z∞ with P (Z∞ = 0) = I0 for some I0 ∈ [0, 1].

The main result of this note is that whenever {Zn} con-
verges to zero, this converges is almost surely fast:

Theorem 1: For any β < 1/2,

lim
n→∞

P
(
Zn < 2−2nβ

)
= I0. (1)

Remark 1: The random process {Zn : n ∈ N} considered
in [1] satisfies the properties (z.1)–(z.3) with q = 2 and
I0 = I(W ) where I(W ) denotes the symmetric capacity of
the underlying channel W . The framework in this note is
held more general than in [1] in anticipation of the results
here being applicable to more general channel polarization
scenarios.

Remark 2: Clearly, the statement of the theorem remains
valid if we replace 2−2nβ with α−2nβ for any α > 1.

Remark 3: As a corollary to Theorem 1, the result of [1] on
the probability of block-error for polar coding under successive
cancellation decoding is strengthened as follows.

Theorem 2: Let W be any B-DMC with I(W ) > 0. Let
R < I(W ) and β < 1

2 be fixed. Then, for N = 2n, n ≥ 0,
the block error probability for polar coding under successive
cancellation decoding at block length N and rate R satisfies

Pe(N,R) = O
(
2−N

β)
.

In comparison, the result in [1] was that for R < I(W )

Pe(N,R) = O(N−
1
4 ).

Remark 4: The polarization process {Zn} considered in
[1] satisfies the additional condition that Zn+1 ≥ Zn when
Bn+1 = 0. Under this condition, Theorem 1 has the following
converse.

Theorem 3: If the condition (z.2) in the definition of {Zn :
n ∈ N} is replaced with the condition that

Zn+1 = Z2
n when Bn+1 = 1,

Zn+1 ≥ Zn when Bn+1 = 0,

and if Z0 > 0, then for any β > 1/2,

lim
n→∞

P
(
Zn < 2−2nβ

)
= 0. (2)

In the rest of this note, we prove Theorems 1 and 3. We
leave out the proof of Theorem 2 since it follows readily from
the existing results in [1].



II. PROOF OF THEOREM 1
Lemma 1: Let A : R → R, A(x) = x + 1 denote adding

one, and D : R→ R, D(x) = 2x denote doubling. Suppose a
sequence of numbers a0, a1, . . . , an is defined by specifying
a0 and the recursion

ai+1 = fi(ai)

with fi ∈ {A,D}. Suppose
∣∣{0 ≤ i ≤ n − 1 : fi = D}

∣∣ = k
and

∣∣{0 ≤ i ≤ n− 1 : fi = A}
∣∣ = n− k, i.e., during the first

n iterations of the recursion we encounter doubling k times
and adding-one n− k times. Then

an ≤ D(k)
(
A(n−k)(a0)

)
= 2k(a0 + n− k).

Proof: Observe that the upper bound on an corresponds
to choosing

f0 = · · · fn−k−1 = A and fn−k = · · · = fn−1 = D.

We will show that any other choice of {fi} can be modified
to yield a higher value of an. To that end suppose {fi} is
not chosen as above. Then there exists j ∈ {1, . . . , n− 1} for
which fj−1 = D and fj = A. Define {f ′i} by swapping fj
and fj−1, i.e.,

f ′i =


A i = j − 1
D i = j

fi else

and let {a′i} denote the sequence that results from {f ′i}. Then

a′i = ai for i < j

a′j = aj−1 + 1
a′j+1 = 2a′j = 2aj−1 + 2

> 2aj−1 + 1 = aj+1.

Since the recursion from j + 1 onwards is identical for the
{fi} and {f ′i} sequences, and since both A and D are order
preserving, a′j+1 > aj+1 implies that a′n > an.

Lemma 2: For any ε > 0 there exists an m such that

P
(
Zn ≤ 1/q2 for all n ≥ m

)
> I0 − ε.

Proof: Let Ω0 = {ω : Zn(ω) → 0}. Recall that by (z.3)
P (Ω0) = I0. Since for non-negative sequences, “an → 0” is
the same as “for all k ≥ 1 there exists n0 such that for all
n ≥ n0, an < 1/k,” we have

Ω0 =
⋂
k≥1

⋃
n0≥1

An0,k

where An0,k :=
{
ω : for all n ≥ n0, Zn(ω) < 1/k

}
. Thus,

for any choice of k, Ω0 is included in
⋃
n0
An0,k, and for

k = q2,

I0 = P (Ω0) ≤ P

( ⋃
n0≥1

An0,q2

)
.

Since An0,q2 is increasing in n0, for any ε > 0 there is an m
so that

P
(
Am,q2

)
> P

( ⋃
n0≥1

An0,q2

)
− ε ≥ I0 − ε.

Lemma 3: For any ε > 0 there is an n0 such that whenever
n ≥ n0

P
(
logq Zn ≤ −n/10

)
> I0 − ε.

Proof: Define Sn =
∑n
i=1Bi. Define Gm,n,α as the event

Sn − Sm ≥ α(n−m)

i.e., the event that the slice {Bi : i = m+ 1, . . . , n} contains
more than an α fraction of ones. Note that for any α < 1/2,
whenever n−m is large, this event has probability close to 1;
formally, for any α < 1/2 and ε > 0 there is n0 = n0(ε, α)
such that P (Gm,n,α) > 1 − ε whenever n − m ≥ n0. Let
Am := {ω : Zn(ω) < 1/q2 for all n ≥ m}. Given ε > 0, find
m = m(ε) such that P (Am) > I0− ε/2. Such an m exists by
Lemma 2.

Note that for ω ∈ Am, and n ≥ m, we have

Zn+1 = Z2
n ≤ Zn/q2 when Bn+1 = 1,

Zn+1 ≤ qZn when Bn+1 = 0.

Considering logq Zn, we get

logq Zn+1 ≤ logq Zn − 2 when Bn+1 = 1,
logq Zn+1 ≤ logq Zn + 1 when Bn+1 = 0.

Consequently,

logq Zn ≤ logq Zm − 2(Sn − Sm) + (n−m− (Sn − Sm))
≤ −3(Sn − Sm) + (n−m).

Now find n0 ≥ 2m such that whenever n ≥ n0,
P (Gm,n,2/5) > 1 − ε/2. Then for any n ≥ n0, for ω ∈
Am ∩Gm,n,2/5 we have

logq Zn ≤ −(n−m)/5 ≤ −n/10.

Noting that P
(
Am ∩ Gm,n,2/5

)
> I0 − ε, the proof is

completed.

Proof of Theorem 1. Given β < 1/2, fix β′ ≥ 1/3 and β′ ∈
(β, 1/2). Choose n3(ε) such that with n2(ε) := 3 log2 n3(ε)
and n1(ε) := 20n2(ε), we have

(i) n1(ε) ≥ 40 and n1(ε) ≥ n0(ε/3) where n0 is as in
Lemma 3,

(ii) P (Gn1(ε),n1(ε)+n2(ε),β′) > 1− ε/3,
(iii) P (Gn1(ε)+n2(ε),n3(ε),β′) > 1− ε/3,
(iv) β′(n3(ε)− n1(ε)− n2(ε)) ≥ βn3(ε) + log2(logq(2)).

Given n ≥ n3(ε) set n2 = 3 log2 n and n1 = 20n2.
Observe that (i)–(iv) are satisfied with (n1, n2, n) in place of
(n1(ε), n2(ε), n3(ε)). Let

G =
{

logq Zn1 ≤ −n1/10
}
∩Gn1,n1+n2,β′ ∩Gn1+n2,n,β′ .

Note that P (G) > I0 − ε. Observe that the process {logq Zi :
i ≥ n1} is upper bounded by the process {Li : i ≥ n1}
defined by Ln1 = logq Zn1 and for i ≥ n1

Li+1 = 2Li when Bi+1 = 1,
Li+1 = Li + 1 when Bi+1 = 0.

For ω ∈ G we have



(a) Ln1 ≤ −n1/10,
(b) during the evolution of Li from time n1 to n1+n2 there

are at least β′n2 doublings,
(c) during the evolution of Li from time n1 +n2 to n there

are at least β′(n− n1 − n2) doublings.
By Lemma 1 we obtain

Ln1+n2 ≤ 2β
′n2(Ln1 + n2)

≤ 2β
′n2(−n1/10 + n2)

≤ −2β
′n2n1/20

and

Ln ≤ 2β
′(n−n1−n2)

(
Ln1+n2 + (n− n1 − n2)

)
≤ 2β

′(n−n1−n2)
(
−2β

′n2n1/20 + n
)

≤ 2β
′(n−n1−n2)

(
−2n2/3n1/20 + n

)
≤ 2β

′(n−n1−n2)
(
−n(n1/20− 1)

)
≤ −n2β

′(n−n1−n2)

≤ −2β
′(n−n1−n2)

≤ −(logq(2))βn.

This implies that Zn ≤ 2−2βn on a set of probability at least
I0 − ε whenever n ≥ n3(ε), completing the proof.

III. PROOF OF THEOREM 3

Let {Zn : n ∈ N} be a process satisfying the hy-
pothesis of Theorem 3. Observe that the random process{

log2

(
− log2(Zn)

)
: n ∈ N

}
is upper bounded by the process

{Kn : n ∈ N} defined by K0 := log2(− log2(Z0)) and for
n ≥ 1

Kn := Kn−1 +Bn = K0 +
n∑
i=1

Bi.

So, we have

P
(
Zn ≤ 2−2βn

)
= P

(
log2

(
− log2(Zn)

)
≥ βn

)
≤ P (Kn ≥ βn)

= P

( n∑
i=1

Bi ≥ nβ −K0

)
.

For β > 1
2 , this last probability goes to zero as n increases by

the law of large numbers.

IV. CONCLUDING REMARKS

In an earlier version of this note [2], Theorem 1 was proved
using the following inequality due to Hajek [3] in place of
Lemma 2.

Lemma 4: Suppose {Zn : n ∈ N} satisfies the conditions
(z.1)-z(3) with (z.2) replaced with:

(z.2) For each n ∈ N,

Zn+1 = Z2
n when Bn+1 = 1,

Zn+1 = Z2
n − 2Zn when Bn+1 = 0.

Then E
[√

Zn(1− Zn)
]
≤ 1

2

(
3
4

)n/2
.

The present proof is more direct and simpler than the one
in [2].

In recent work, Korada et al. generalized the above rate
of channel polarization results as part of a study where they
considered more general forms of polar code constructions [4].
There {Bi : i = 1, 2, . . .} were taken as i.i.d., {0, 1, . . . , `−1}-
valued random variables with

P (B1 = i) =
1
`
, i = 0, . . . , `− 1,

for some ` ≥ 2. The random process {Zn : n ∈ N} was
defined with the properties (z.1) and (z.3) as in here, but with
(z.2) modified as:

(z.2) For each n ∈ N and i = 0, . . . , `− 1,

ZDin ≤ Zn+1 ≤ 2`−iZDin when Bn+1 = i

where {Di : 0 ≤ i ≤ ` − 1} are a set of positive
constants.

The following result was proved in [4].
Theorem 4: Let E := 1

`

∑`−1
i=0 log`Di. Then,

lim
n→∞

P (Zn < 2−`
nβ

) = I0 when β < E,

lim
n→∞

P (Zn < 2−`
nβ

) = 0 when β > E.

An open problem that remains is to obtain a more refined
bound on the rate of channel polarization. Specifically, it
would be of interest to find a function γ : N× [0, 1]→ [0, 1]
such that for any given R ∈ [0, 1]

lim
n→∞

P (Zn ≤ γ(n,R)) = R.
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