On the rate of channel polarization

Erdal Arkan
Department of Electrical-Electronics Engineering
Bilkent University
Ankara, TR-06800, Turkey
Email: arikan@ee.bilkent.edu.tr

Emre Telatar
Information Theory Laboratory
Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland
Email: emre.telatar@epfl.ch

Abstract

A bound is given on the rate of channel polarization. As a corollary, an earlier bound on the probability of error for polar coding is improved. Specifically, it is shown that, for any binary-input discrete memoryless channel W with symmetric capacity $I(W)$ and any rate $R<I(W)$, the polar-coding blockerror probability under successive cancellation decoding satisfies $P_{e}(N, R) \leq 2^{-N^{\beta}}$ for any $\beta<\frac{1}{2}$ when the block-length N is large enough.

I. Results

Channel polarization is a method introduced in [1] for constructing capacity-achieving codes on symmetric binaryinput memoryless channels. Both the construction and the probability of error analysis of polar codes, as these codes were called, are centered around a random process $\left\{Z_{n}: n \in\right.$ $\mathbb{N}\}$ which keeps track of the Bhattacharyya parameters of the channels that arise in the course of channel polarization. The aim here is to give an asymptotic convergence result on $\left\{Z_{n}\right\}$ in as simple a setting as possible. For further background on the problem, we refer to [1].

For the purposes here, the polarization process can be modeled as follows. Suppose $B_{i}, i=1,2, \ldots$, are i.i.d., $\{0,1\}$ valued random variables with

$$
P\left(B_{1}=0\right)=P\left(B_{1}=1\right)=\frac{1}{2}
$$

defined on a probability space (Ω, \mathcal{F}, P). Set $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ as the trivial σ-algebra and set $\mathcal{F}_{n}, n \geq 1$, to be the σ algebra generated by $\left(B_{1}, \ldots, B_{n}\right)$. We may assume that $\mathcal{F}=\bigcup_{n \geq 0} \mathcal{F}_{n}$.

Suppose further that a stochastic process $\left\{Z_{n}: n \in \mathbb{N}\right\}$ is defined on this probability space with the following properties:
(z.1) For each $n \in \mathbb{N}, Z_{n}$ takes values in the interval $[0,1]$ and is measurable with respect to \mathcal{F}_{n}. That is, Z_{0} is constant, and Z_{n} is a function of B_{1}, \ldots, B_{n}.
(z.2) For some constant q and for each $n \in \mathbb{N}$,

$$
\begin{array}{ll}
Z_{n+1}=Z_{n}^{2} & \text { when } B_{n+1}=1 \\
Z_{n+1} \leq q Z_{n} & \text { when } B_{n+1}=0
\end{array}
$$

(z.3) $\left\{Z_{n}\right\}$ converges a.s. to a $\{0,1\}$-valued random variable Z_{∞} with $P\left(Z_{\infty}=0\right)=I_{0}$ for some $I_{0} \in[0,1]$.
The main result of this note is that whenever $\left\{Z_{n}\right\}$ converges to zero, this converges is almost surely fast:

Theorem 1: For any $\beta<1 / 2$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(Z_{n}<2^{-2^{n \beta}}\right)=I_{0} \tag{1}
\end{equation*}
$$

Remark 1: The random process $\left\{Z_{n}: n \in \mathbb{N}\right\}$ considered in [1] satisfies the properties (z.1)-(z.3) with $q=2$ and $I_{0}=I(W)$ where $I(W)$ denotes the symmetric capacity of the underlying channel W. The framework in this note is held more general than in [1] in anticipation of the results here being applicable to more general channel polarization scenarios.

Remark 2: Clearly, the statement of the theorem remains valid if we replace $2^{-2^{n \beta}}$ with $\alpha^{-2^{n \beta}}$ for any $\alpha>1$.

Remark 3: As a corollary to Theorem 1, the result of [1] on the probability of block-error for polar coding under successive cancellation decoding is strengthened as follows.

Theorem 2: Let W be any B-DMC with $I(W)>0$. Let $R<I(W)$ and $\beta<\frac{1}{2}$ be fixed. Then, for $N=2^{n}, n \geq 0$, the block error probability for polar coding under successive cancellation decoding at block length N and rate R satisfies

$$
P_{e}(N, R)=\mathcal{O}\left(2^{-N^{\beta}}\right)
$$

In comparison, the result in [1] was that for $R<I(W)$

$$
P_{e}(N, R)=\mathcal{O}\left(N^{-\frac{1}{4}}\right)
$$

Remark 4: The polarization process $\left\{Z_{n}\right\}$ considered in [1] satisfies the additional condition that $Z_{n+1} \geq Z_{n}$ when $B_{n+1}=0$. Under this condition, Theorem 1 has the following converse.

Theorem 3: If the condition (z.2) in the definition of $\left\{Z_{n}\right.$: $n \in \mathbb{N}\}$ is replaced with the condition that

$$
\begin{array}{ll}
Z_{n+1}=Z_{n}^{2} & \text { when } B_{n+1}=1 \\
Z_{n+1} \geq Z_{n} & \text { when } B_{n+1}=0
\end{array}
$$

and if $Z_{0}>0$, then for any $\beta>1 / 2$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(Z_{n}<2^{-2^{n \beta}}\right)=0 \tag{2}
\end{equation*}
$$

In the rest of this note, we prove Theorems 1 and 3 . We leave out the proof of Theorem 2 since it follows readily from the existing results in [1].

II. Proof of Theorem 1

Lemma 1: Let $A: \mathbb{R} \rightarrow \mathbb{R}, A(x)=x+1$ denote adding one, and $D: \mathbb{R} \rightarrow \mathbb{R}, D(x)=2 x$ denote doubling. Suppose a sequence of numbers $a_{0}, a_{1}, \ldots, a_{n}$ is defined by specifying a_{0} and the recursion

$$
a_{i+1}=f_{i}\left(a_{i}\right)
$$

with $f_{i} \in\{A, D\}$. Suppose $\left|\left\{0 \leq i \leq n-1: f_{i}=D\right\}\right|=k$ and $\left|\left\{0 \leq i \leq n-1: f_{i}=A\right\}\right|=n-k$, i.e., during the first n iterations of the recursion we encounter doubling k times and adding-one $n-k$ times. Then

$$
a_{n} \leq D^{(k)}\left(A^{(n-k)}\left(a_{0}\right)\right)=2^{k}\left(a_{0}+n-k\right)
$$

Proof: Observe that the upper bound on a_{n} corresponds to choosing

$$
f_{0}=\cdots f_{n-k-1}=A \quad \text { and } \quad f_{n-k}=\cdots=f_{n-1}=D
$$

We will show that any other choice of $\left\{f_{i}\right\}$ can be modified to yield a higher value of a_{n}. To that end suppose $\left\{f_{i}\right\}$ is not chosen as above. Then there exists $j \in\{1, \ldots, n-1\}$ for which $f_{j-1}=D$ and $f_{j}=A$. Define $\left\{f_{i}^{\prime}\right\}$ by swapping f_{j} and f_{j-1}, i.e.,

$$
f_{i}^{\prime}= \begin{cases}A & i=j-1 \\ D & i=j \\ f_{i} & \text { else }\end{cases}
$$

and let $\left\{a_{i}^{\prime}\right\}$ denote the sequence that results from $\left\{f_{i}^{\prime}\right\}$. Then

$$
\begin{aligned}
a_{i}^{\prime} & =a_{i} \quad \text { for } i<j \\
a_{j}^{\prime} & =a_{j-1}+1 \\
a_{j+1}^{\prime} & =2 a_{j}^{\prime}=2 a_{j-1}+2 \\
& >2 a_{j-1}+1=a_{j+1} .
\end{aligned}
$$

Since the recursion from $j+1$ onwards is identical for the $\left\{f_{i}\right\}$ and $\left\{f_{i}^{\prime}\right\}$ sequences, and since both A and D are order preserving, $a_{j+1}^{\prime}>a_{j+1}$ implies that $a_{n}^{\prime}>a_{n}$.

Lemma 2: For any $\epsilon>0$ there exists an m such that

$$
P\left(Z_{n} \leq 1 / q^{2} \text { for all } n \geq m\right)>I_{0}-\epsilon
$$

Proof: Let $\Omega_{0}=\left\{\omega: Z_{n}(\omega) \rightarrow 0\right\}$. Recall that by (z.3) $P\left(\Omega_{0}\right)=I_{0}$. Since for non-negative sequences, " $a_{n} \rightarrow 0$ " is the same as "for all $k \geq 1$ there exists n_{0} such that for all $n \geq n_{0}, a_{n}<1 / k$," we have

$$
\Omega_{0}=\bigcap_{k \geq 1} \bigcup_{n_{0} \geq 1} A_{n_{0}, k}
$$

where $A_{n_{0}, k}:=\left\{\omega\right.$: for all $\left.n \geq n_{0}, Z_{n}(\omega)<1 / k\right\}$. Thus, for any choice of k, Ω_{0} is included in $\bigcup_{n_{0}} A_{n_{0}, k}$, and for $k=q^{2}$,

$$
I_{0}=P\left(\Omega_{0}\right) \leq P\left(\bigcup_{n_{0} \geq 1} A_{n_{0}, q^{2}}\right)
$$

Since $A_{n_{0}, q^{2}}$ is increasing in n_{0}, for any $\epsilon>0$ there is an m so that

$$
P\left(A_{m, q^{2}}\right)>P\left(\bigcup_{n_{0} \geq 1} A_{n_{0}, q^{2}}\right)-\epsilon \geq I_{0}-\epsilon
$$

Lemma 3: For any $\epsilon>0$ there is an n_{0} such that whenever $n \geq n_{0}$

$$
P\left(\log _{q} Z_{n} \leq-n / 10\right)>I_{0}-\epsilon
$$

Proof: Define $S_{n}=\sum_{i=1}^{n} B_{i}$. Define $G_{m, n, \alpha}$ as the event

$$
S_{n}-S_{m} \geq \alpha(n-m)
$$

i.e., the event that the slice $\left\{B_{i}: i=m+1, \ldots, n\right\}$ contains more than an α fraction of ones. Note that for any $\alpha<1 / 2$, whenever $n-m$ is large, this event has probability close to 1 ; formally, for any $\alpha<1 / 2$ and $\epsilon>0$ there is $n_{0}=n_{0}(\epsilon, \alpha)$ such that $P\left(G_{m, n, \alpha}\right)>1-\epsilon$ whenever $n-m \geq n_{0}$. Let $A_{m}:=\left\{\omega: Z_{n}(\omega)<1 / q^{2}\right.$ for all $\left.n \geq m\right\}$. Given $\epsilon>0$, find $m=m(\epsilon)$ such that $P\left(A_{m}\right)>I_{0}-\epsilon / 2$. Such an m exists by Lemma 2.

Note that for $\omega \in A_{m}$, and $n \geq m$, we have

$$
\begin{array}{ll}
Z_{n+1}=Z_{n}^{2} \leq Z_{n} / q^{2} & \text { when } B_{n+1}=1 \\
Z_{n+1} \leq q Z_{n} & \text { when } B_{n+1}=0
\end{array}
$$

Considering $\log _{q} Z_{n}$, we get

$$
\begin{aligned}
\log _{q} Z_{n+1} & \leq \log _{q} Z_{n}-2 \\
\log _{q} Z_{n+1} & \leq \log _{q} Z_{n}+1
\end{aligned}
$$

$$
\text { when } B_{n+1}=1
$$

$$
\text { when } B_{n+1}=0
$$

Consequently,

$$
\begin{aligned}
\log _{q} Z_{n} & \leq \log _{q} Z_{m}-2\left(S_{n}-S_{m}\right)+\left(n-m-\left(S_{n}-S_{m}\right)\right) \\
& \leq-3\left(S_{n}-S_{m}\right)+(n-m)
\end{aligned}
$$

Now find $n_{0} \geq 2 m$ such that whenever $n \geq n_{0}$, $P\left(G_{m, n, 2 / 5}\right)>1-\epsilon / 2$. Then for any $n \geq n_{0}$, for $\omega \in$ $A_{m} \cap G_{m, n, 2 / 5}$ we have

$$
\log _{q} Z_{n} \leq-(n-m) / 5 \leq-n / 10
$$

Noting that $P\left(A_{m} \cap G_{m, n, 2 / 5}\right)>I_{0}-\epsilon$, the proof is completed.

Proof of Theorem 1. Given $\beta<1 / 2$, fix $\beta^{\prime} \geq 1 / 3$ and $\beta^{\prime} \in$ $(\beta, 1 / 2)$. Choose $n_{3}(\epsilon)$ such that with $n_{2}(\epsilon):=3 \log _{2} n_{3}(\epsilon)$ and $n_{1}(\epsilon):=20 n_{2}(\epsilon)$, we have
(i) $n_{1}(\epsilon) \geq 40$ and $n_{1}(\epsilon) \geq n_{0}(\epsilon / 3)$ where n_{0} is as in Lemma 3,
(ii) $P\left(G_{n_{1}(\epsilon), n_{1}(\epsilon)+n_{2}(\epsilon), \beta^{\prime}}\right)>1-\epsilon / 3$,
(iii) $P\left(G_{n_{1}(\epsilon)+n_{2}(\epsilon), n_{3}(\epsilon), \beta^{\prime}}\right)>1-\epsilon / 3$,
(iv) $\beta^{\prime}\left(n_{3}(\epsilon)-n_{1}(\epsilon)-n_{2}(\epsilon)\right) \geq \beta n_{3}(\epsilon)+\log _{2}\left(\log _{q}(2)\right)$.

Given $n \geq n_{3}(\epsilon)$ set $n_{2}=3 \log _{2} n$ and $n_{1}=20 n_{2}$. Observe that (i)-(iv) are satisfied with $\left(n_{1}, n_{2}, n\right)$ in place of $\left(n_{1}(\epsilon), n_{2}(\epsilon), n_{3}(\epsilon)\right)$. Let

$$
G=\left\{\log _{q} Z_{n_{1}} \leq-n_{1} / 10\right\} \cap G_{n_{1}, n_{1}+n_{2}, \beta^{\prime}} \cap G_{n_{1}+n_{2}, n, \beta^{\prime}}
$$

Note that $P(G)>I_{0}-\epsilon$. Observe that the process $\left\{\log _{q} Z_{i}\right.$: $\left.i \geq n_{1}\right\}$ is upper bounded by the process $\left\{L_{i}: i \geq n_{1}\right\}$ defined by $L_{n_{1}}=\log _{q} Z_{n_{1}}$ and for $i \geq n_{1}$

$$
\begin{array}{ll}
L_{i+1}=2 L_{i} & \text { when } B_{i+1}=1 \\
L_{i+1}=L_{i}+1 & \text { when } B_{i+1}=0
\end{array}
$$

For $\omega \in G$ we have
(a) $L_{n_{1}} \leq-n_{1} / 10$,
(b) during the evolution of L_{i} from time n_{1} to $n_{1}+n_{2}$ there are at least $\beta^{\prime} n_{2}$ doublings,
(c) during the evolution of L_{i} from time $n_{1}+n_{2}$ to n there are at least $\beta^{\prime}\left(n-n_{1}-n_{2}\right)$ doublings.
By Lemma 1 we obtain

$$
\begin{aligned}
L_{n_{1}+n_{2}} & \leq 2^{\beta^{\prime} n_{2}}\left(L_{n_{1}}+n_{2}\right) \\
& \leq 2^{\beta^{\prime} n_{2}}\left(-n_{1} / 10+n_{2}\right) \\
& \leq-2^{\beta^{\prime} n_{2}} n_{1} / 20
\end{aligned}
$$

and

$$
\begin{aligned}
L_{n} & \leq 2^{\beta^{\prime}\left(n-n_{1}-n_{2}\right)}\left(L_{n_{1}+n_{2}}+\left(n-n_{1}-n_{2}\right)\right) \\
& \leq 2^{\beta^{\prime}\left(n-n_{1}-n_{2}\right)}\left(-2^{\beta^{\prime} n_{2}} n_{1} / 20+n\right) \\
& \leq 2^{\beta^{\prime}\left(n-n_{1}-n_{2}\right)}\left(-2^{n_{2} / 3} n_{1} / 20+n\right) \\
& \leq 2^{\beta^{\prime}\left(n-n_{1}-n_{2}\right)}\left(-n\left(n_{1} / 20-1\right)\right) \\
& \leq-n 2^{\beta^{\prime}\left(n-n_{1}-n_{2}\right)} \\
& \leq-2^{\beta^{\prime}\left(n-n_{1}-n_{2}\right)} \\
& \leq-\left(\log _{q}(2)\right)^{\beta n} .
\end{aligned}
$$

This implies that $Z_{n} \leq 2^{-2^{\beta n}}$ on a set of probability at least $I_{0}-\epsilon$ whenever $n \geq n_{3}(\epsilon)$, completing the proof.

III. Proof of Theorem 3

Let $\left\{Z_{n}: n \in \mathbb{N}\right\}$ be a process satisfying the hypothesis of Theorem 3. Observe that the random process $\left\{\log _{2}\left(-\log _{2}\left(Z_{n}\right)\right): n \in \mathbb{N}\right\}$ is upper bounded by the process $\left\{K_{n}: n \in \mathbb{N}\right\}$ defined by $K_{0}:=\log _{2}\left(-\log _{2}\left(Z_{0}\right)\right)$ and for $n \geq 1$

$$
K_{n}:=K_{n-1}+B_{n}=K_{0}+\sum_{i=1}^{n} B_{i} .
$$

So, we have

$$
\begin{aligned}
P\left(Z_{n} \leq 2^{-2^{\beta n}}\right) & =P\left(\log _{2}\left(-\log _{2}\left(Z_{n}\right)\right) \geq \beta n\right) \\
& \leq P\left(K_{n} \geq \beta n\right) \\
& =P\left(\sum_{i=1}^{n} B_{i} \geq n \beta-K_{0}\right)
\end{aligned}
$$

For $\beta>\frac{1}{2}$, this last probability goes to zero as n increases by the law of large numbers.

IV. CONCLUDING REMARKS

In an earlier version of this note [2], Theorem 1 was proved using the following inequality due to Hajek [3] in place of Lemma 2.

Lemma 4: Suppose $\left\{Z_{n}: n \in \mathbb{N}\right\}$ satisfies the conditions (z.1)-z(3) with (z.2) replaced with:
(z.2) For each $n \in \mathbb{N}$,

$$
\begin{array}{ll}
Z_{n+1}=Z_{n}^{2} & \text { when } B_{n+1}=1 \\
Z_{n+1}=Z_{n}^{2}-2 Z_{n} & \text { when } B_{n+1}=0
\end{array}
$$

Then $E\left[\sqrt{Z_{n}\left(1-Z_{n}\right)}\right] \leq \frac{1}{2}\left(\frac{3}{4}\right)^{n / 2}$.

