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Abstract—A bound is given on the rate of channel polarization.
As a corollary, an earlier bound on the probability of error
for polar coding is improved. Specifically, it is shown that, for
any binary-input discrete memoryless channel W with symmetric
capacity /(W) and any rate R < I(1V), the polar-coding block-
error probability under successive cancellation decoding satisfies
P.(N,R) < 27N ? for any 3 < 1 when the block-length N is
large enough.

I. RESULTS

Channel polarization is a method introduced in [1] for
constructing capacity-achieving codes on symmetric binary-
input memoryless channels. Both the construction and the
probability of error analysis of polar codes, as these codes
were called, are centered around a random process {Z,, : n €
N} which keeps track of the Bhattacharyya parameters of the
channels that arise in the course of channel polarization. The
aim here is to give an asymptotic convergence result on {Z,}
in as simple a setting as possible. For further background on
the problem, we refer to [1].

For the purposes here, the polarization process can be
modeled as follows. Suppose B;,i = 1,2,..., arei.i.d., {0,1}-
valued random variables with

defined on a probability space (Q,F, P). Set Fo = {0,Q}
as the trivial o-algebra and set F,,, n > 1, to be the o-
algebra generated by (Bi,...,B,). We may assume that
F=U,>oFn-

Suppose further that a stochastic process {Z,, : n € N} is
defined on this probability space with the following properties:

(z.1) Foreachn € N, Z,, takes values in the interval [0, 1]
and is measurable with respect to F,,. That is, Zj is

constant, and Z,, is a function of By,..., B,.

(z.2) For some constant ¢ and for each n € N,
Zpt1 = Z,% when B, 11 =1,
Zn—i—l < an when Bn+1 = 0.

(z.3) {Z,} converges a.s. to a {0, 1}-valued random vari-

able Z, with P(Zs, = 0) = I, for some I € [0, 1].

The main result of this note is that whenever {Z,,} con-
verges to zero, this converges is almost surely fast:
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Theorem 1: For any 3 < 1/2,

Tim P(Zy < 2-2"") = I, (1)

Remark 1: The random process {Z,, : n € N} considered
in [1] satisfies the properties (z.1)—(z.3) with ¢ = 2 and
Iy = I(W) where I(W) denotes the symmetric capacity of
the underlying channel W. The framework in this note is
held more general than in [1] in anticipation of the results
here being applicable to more general channel polarization
scenarios.

Remark 2: Clearly, the statement of the theorem remains
valid if we replace 2-2"” with a—2"" for any o > 1.

Remark 3: As a corollary to Theorem 1, the result of [1] on
the probability of block-error for polar coding under successive
cancellation decoding is strengthened as follows.

Theorem 2: Let W be any B-DMC with I(W) > 0. Let
R < I(W)and g < % be fixed. Then, for N = 2™, n > 0,
the block error probability for polar coding under successive
cancellation decoding at block length N and rate R satisfies

P.(N,R)=0(2 "),

In comparison, the result in [1] was that for R < I(WW)

1

P.(N,R) = O(N%).

Remark 4: The polarization process {Z,} considered in
[1] satisfies the additional condition that Z,; > Z, when
B,,+1 = 0. Under this condition, Theorem 1 has the following
converse.

Theorem 3: If the condition (z.2) in the definition of {Z,, :
n € N} is replaced with the condition that

Zpir = 72

n

Zn+1 2 Zn

when B, 41 =1,
when B, 11 =0,

and if Zy > 0, then for any 8 > 1/2,

lim P(Z, <272"") =0. 2)

In the rest of this note, we prove Theorems 1 and 3. We

leave out the proof of Theorem 2 since it follows readily from
the existing results in [1].
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II. PROOF OF THEOREM 1
Lemma 1: Let A : R — R, A(x) = z + 1 denote adding
one, and D : R — R, D(z) = 2z denote doubling. Suppose a
sequence of numbers ag,aq,...,a, is defined by specifying
ag and the recursion

a;iy1 = fi(a;)
with f; € {A,D}. Suppose {0 <i<n—1:fi=D} =k
and ‘{O <i<n-—1:f;= A}‘ =n — k, i.e., during the first

n iterations of the recursion we encounter doubling £ times
and adding-one n — k times. Then

an < D(k) (A("_k)(ao)) = Qk(ao +n— k‘)

Proof: Observe that the upper bound on a,, corresponds
to choosing

f0:"'fn7k71:A and fnfk:"':fn71:D~

We will show that any other choice of {f;} can be modified
to yield a higher value of a,. To that end suppose {f;} is
not chosen as above. Then there exists j € {1,...,n— 1} for
which f;_1 = D and f; = A. Define {f/} by swapping f;
and f;_,, ie.,

A i=j-1
fi={D i=j
fi else

and let {a}} denote the sequence that results from {f/}. Then

a;=a; fori<j

ay=a; 1 +1
ajyy = 2a; =2a;_1 +2
> 2aj_1 +1= Ajt1.

Since the recursion from j + 1 onwards is identical for the

{fi} and {f!} sequences, and since both A and D are order

preserving, a’;,, > a;;1 implies that a;, > a,. [ |
Lemma 2: For any e > 0 there exists an m such that

P(Zn < 1/q2 for all n > m) > Iy — e

Proof: Let Qy = {w : Z,(w) — 0}. Recall that by (z.3)
P(£) = Iy. Since for non-negative sequences, “a,, — 07 is
the same as “for all £ > 1 there exists ng such that for all
n > ng, a, < 1/k;” we have

=[] U A
k>1no>1

where A, = {w : for all n > ng, Z,(w) < 1/k}. Thus,
for any choice of k, {2 is included in Uno Apg i, and for

k=g
Iy = P(Q) < P< U Ano,q2>.
’I’LQZI
Since A, 42 is increasing in ng, for any € > 0 there is an m
so that
P(Ang) > P( U Ano,q2> —e>1I)—e n
’I’L()Zl
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Lemma 3: For any € > 0 there is an ng such that whenever
n>ng
P(log, Zn < —n/10) > Iy — €.

Proof: Define S,, = Z;”:l B;. Define Gy, o as the event
Sp — Sm > a(n—m)

i.e., the event that the slice {B; : i =m + 1,...,n} contains
more than an « fraction of ones. Note that for any o < 1/2,
whenever n —m is large, this event has probability close to 1;
formally, for any o < 1/2 and € > 0 there is ng = ng(e, a)
such that P(Gyyn,o) > 1 — € whenever n — m > ng. Let
A = {w: Z,(w) < 1/q? for all n > m}. Given € > 0, find
m = m(e) such that P(A,,) > Iy —€/2. Such an m exists by
Lemma 2.
Note that for w € A,,, and n > m, we have

Zpir =2} < Z )

n —

Zn+1 <qZ,

when B, +1 =1,
when B,,;; = 0.

Considering log, Z,, we get

logq Zpt1 < logq Ly — 2
logq Zpt1 < logq Zn+1

when B, ;1 =1,

when B,, 1 = 0.
Consequently,

log, Zn <log, Zm — 2(Sp — Sm) + (n —m — (S, — Sim))
< =3(Sp = Sm) + (n—m).
Now find ng > 2m such that whenever n > ng,

P(Gmnz2/5) > 1 —¢/2. Then for any n > ng, for w €
Apm N Goyny2/5 We have

log, Zp < —(n—m)/5 < —n/10.

Noting that P(Am N Gm7n72/5) > Iy — €, the proof is
completed. [ ]

Proof of Theorem 1. Given § < 1/2, fix ' > 1/3 and ' €
(6,1/2). Choose n3(e) such that with na(e) := 3log, ns(e)
and nq(€) := 20n2(€), we have

(i) n1(e) > 40 and n1(e) > no(e/3) where ng is as in

Lemma 3,

(1) P(Gny(e)ini(e)tna(e).) > 1 —€/3,

(i) P(Gry () 4na(e)nae),p) > 1 —€/3,

(i¥) 3 (nsle) — m1(6) ~ na(e)) = Bra(e) + logy(log,(2)).
Given n > ng(e) set ng = 3logom and ny = 20mns.
Observe that (i)—(iv) are satisfied with (n1,n2,n) in place of
(n1(€),na(€), ng(e)). Let

G = {Iqu Zny < —nl/l()} N Gm7n1+n27ﬁ’ N Gn1+n27n,ﬂ"

Note that P(G) > Iy — €. Observe that the process {log, Z; :
i > np} is upper bounded by the process {L; : i > ni}
defined by L, = logq Zp, and for ¢ > ny
Liy1=2L;
Liyaw=L;+1

when B, =1,
when B;1 = 0.

For w € G we have

1494



@ Ly, <-—ny1/10,
(b) during the evolution of L; from time n; to n; +no there
are at least 3'ny doublings,
(c) during the evolution of L; from time ny +no to n there
are at least 3'(n — n; — ns) doublings.
By Lemma 1 we obtain

<292 (L, + ny)
<292 (—ny /10 + ny)
—27"20, /20

Ln1+n2

and

L <2/3 n—mi— nz)

( 77,1+n2 TL —ny — nQ))
< 25 (n—mnq1— nz)(
(-

2920, /20 + n)
2"2/3p, /20 + n)
n(ny/20 — 1))

<25 n—mni— n2)
< 23 (n—ni— nz)(_

S _nQﬂ’(n—nl—ng)
< —9f'(n—n1—n)
< —(log,(2))"".

This implies that Z,, < 2-2"" on a set of probability at least
Iy — € whenever n > ng(€), completing the proof.

III. PROOF OF THEOREM 3

Let {Z, n € N} be a process satisfying the hy-
pothesis of Theorem 3. Observe that the random process
{log,(—1logy(Z,)) : n € N} is upper bounded by the process

{K, : n € N} defined by Ky := logy(—log,(Zp)) and for
n>1 /
K, =K, 1+ B, = Ko—f—ZBi.
i=1
So, we have
P(Z, <272"") = P(logy(—logy(Z,)) > Bn)
< P(K, > Bn)
= P(ZBZ» > nﬁ—Ko).
i=1
For 8 > %, this last probability goes to zero as n increases by

the law of large numbers.

IV. CONCLUDING REMARKS

In an earlier version of this note [2], Theorem 1 was proved
using the following inequality due to Hajek [3] in place of
Lemma 2.

Lemma 4: Suppose {Z,, : n € N} satisfies the conditions
(z.1)-z(3) with (z.2) replaced with:

(z.2) For eachn € N,

Zpir = 72

n

2
Zpt1 = Zn -

when B, 11 =1,

27, when B,,;; = 0.

Then E[\/Zn(l — Zn)] < 2(3)"*.
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The present proof is more direct and simpler than the one
in [2].

In recent work, Korada et al. generalized the above rate
of channel polarization results as part of a study where they
considered more general forms of polar code constructions [4].

There {B; : i = 1,2,...} were taken as i.i.d., {0,1,...,¢—1}-
valued random variables with
1
P(Bi=i)=75,  i=0...0-1
for some ¢ > 2. The random process {Z, : n € N} was

defined with the properties (z.1) and (z.3) as in here, but with
(z.2) modified as:

(z.2) ForeachneNandi=0,...

2y < Zypr <2027

7€ - 19
when B, 11 =1

where {D;
constants.

:0 <4< -1} are a set of positive

The following result was proved in [4].
Theorem 4: Let £ := 3 El Olog,D Then,

lim P(Z, <27y = I, when 3 < E,
lim P(Z, <277 =0 when 3> E.

An open problem that remains is to obtain a more refined
bound on the rate of channel polarization. Specifically, it
would be of interest to find a function v : N x [0,1] — [0, 1]
such that for any given R € [0, 1]

lim P(Z, <~(n,R))=R.
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