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1. Introduction

A frequently encountered problem in optimization concerns finding a stationary point of a continuously

differentiable function f in Rm, the m-dimensional Euclidean space, over a closed convex set X in Wm. In

other words, it is desired to find a solution to the fixed point problem

x = Ix- Vf()]+,

where [-]+ denotes the orthogonal projection operator onto X, i.e., [x]+ = argminyEx 1X - YlI. In our

notation, all vectors are column vectors and Ilxll denotes the Euclidean norm of x, that is, Ilxll = /xx),

where (x, y) denotes the Euclidean inner product of x with y.

A well-known iterative method for solving the above problem is the gradient projection algorithm

proposed by Goldstein [Gol64] and by Levitin and Polyak [LeP65]. In this algorithm, each new iterate

is obtained by moving the previous iterate along the negative gradient direction, and then projecting the

resulting point back onto the feasible set X, that is,

; := [ 7- Vf(X)] + , (1.1)

where 7 is some appropriately chosen positive stepsize. This algorithm possesses nice numerical properties

and has been studied extensively (see [Ber76], [Ber72a], [CaM87], [Che84], [Dun84], [Dun87], [GaB82],

[GaB84], [Gol64], [Gol74], [LeP65]).

Recently, Bertsekas and Tsitsiklis [BeT89, Section 7.5] (also see [Tsi84], [TBA86]) proposed a partially

asynchronous implementation of the above algorithm, in which X is decomposed into the Cartesian product

of closed convex sets Xl, ...,Xn (n > 1) and the iteration (1.1) is distributed over n processors, with the

i-th processor being responsible for updating the block-component of x belonging to Xi. Each processor

carries its own estimate of the solution, communicates to the other processors by message passing, and may

act independently of the other processors. Such an "asynchronous" (or "chaotic") computing environment,

proposed by Chazan and Miranker [ChM69], offers several advantages over a synchronous (either sequential or

parallel) computing environment: for example, the synchronization penalty is low and the fast processors need

not wait for the slower ones. In addition, asynchronous computation brings forth interesting and challenging

questions about the convergence of algorithms. For a detailed discussion of asynchronous computation, see

[BeT89].

It is known, under a standard Lipschiz continuity condition on the gradient Vf, that if 7 is sufficiently

small, then every limit point of the iterates generated by the partially asynchronous gradient projection

algorithm is a stationary point [BeT89, Sec. 7.5]. However, little is known about the convergence or the rate

of convergence of the iterates. In fact, even in the sequential case (i.e., the original gradient projection

algorithm), very little is known about the rate of convergence. Rate of convergence analysis typically

requires the solution points to be isolated and the objective function f to be locally strongly convex (see

[LeP65], [Dun84], [Dun87]), which in general does not hold. Recently, Luo and Tseng [LuT90] (also see
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[LuT89], [TsL9Oa], [TsL9Ob] for related analyses) proposed a new approach to demonstrating the linear rate

of convergence of iterative optimization algorithms, based on bounding the distance to the solution set from

a point x near the solution set by the norm of the natural "residual" at x, namely

x- [x- Vf(x)]+ .

Such a local "error bound" does not hold in general, but can be shown to hold for a number of important

problem classes, including quadratic programs and strongly convex programs. In this paper, we adapt

the approach of Luo and Tseng to analyze the partially asynchronous gradient projection algorithm. In

particular, we show that the algorithm attains a linear rate of convergence, assuming only that (i) the

solution set is nonempty, (ii) f is bounded from below on X, (iii) Vf is Lipschitz continuous on X, (iv) the

isocost surfaces of the objective function, restricted to the solution set, are "properly separated" from each

other, and (v) the above error bound holds near the solution set. Thus, even in the sequential case, our rate

of convergence result appears to be a significant improvement over existing ones. [Assumptions (i) to (iv),

as we shall see, hold for most problems, so the key assumption is (v).]

This paper proceeds as follows: In Section 2 we describe the partially asychronous gradient projection

algorithm and state our main convergence result for this algorithm. In Section 3 we prove the main result

for the special case where the computations take place sequentially. In Section 4, we prove the main result,

building on the ideas developed in Section 3. In Section 5 we discuss possible extensions of our work.
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2. Algorithm Description and Convergence Results

We formally describe the partially asynchronous gradient projection algorithm below (also see [BeT89,

Sec. 7.5]). In this algorithm, X is decomposed into the Cartesian product of closed convex sets X1 ,...Xn

(n > 1), that is,

X = X1 x-- x Xn. (2.1)

According to the above product structure of X, let the elements x of X be decomposed into block-

components, so x = (x 1,x 2 ,...,xn), with xi E Xi. Let Vif(x) denote the partial derivative of f(x) with

respect to xi, and let [xi] + denote the orthogonal projection of xi onto Xi. Then, for a given fixed stepsize

> 0, the algorithm generates a sequence of iterates {x(1), x(2), ...} in X according to the formula:

i(t + 1) - { [xi(t)-YVif(Xi(t))] + , if t e T i;XZ@t + 1) = z, terie i = 1, ... , n, (2.2)
xi(t), otherwise,'"

where T' is some subset of {O, 1,2, ...} and xi(t) is the vector in X given by

= (xl(T1(t)), -*, xn(rn (t))) (2.3)

with each 1j(t) some nonnegative integer not exceeding t. [The initial iterate x(0) G X is assumed given.]

Roughly speaking, T1 is the set of times at which xi is updated (by processor i); xi(t) is the solution

estimate known to processor i at time t; and rj(t) is the time at which the value of xj used by processor i

at time t is generated by processor j (so t- rj(t) is effectively the communication delay from processor j

to processor i at time t). A key feature of the algorithm is that the components are updated using values

which may be out-of-dated.

We make the standing assumption that the iterates are updated in a partially asynchronous manner:

Partial Asynchronism Assumption. There exists an integer B > 1 such that

(a) {t,t + 1,...,t + B-1} n T i 0, for all t > O and all i;

(b) 0 < t - rj(t) < B - 1, for all t E T i, all j and all i.

[Roughly speaking, the partial asynchronism assumption states that no processor waits an arbitrarily long

time to compute or to receive a message from another processor. The justification for this assumption is

discussed in Section 7 of [BeT89].]

We make the following standard (and reasonable) assumptions about f and X:

Assumption A.

(a) f is bounded from below on X.

(b) The solution set X* = { x I "m x = [x - Vf(x)]+ } is nonempty.
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(c) Vf is Lipschitz continuous on X, that is,

IlVf(y)- Vf(x)ll < Lily- xii, Vx E X, Vy E X, (2.4)

where L > 0 is the Lipschitz constant.

The following convergence result is due to Bertsekas and Tsitsiklis (see Proposition 5.3 in Sec. 7.5 of

[BeT89]):

Proposition 2.1. Under Assumption A, there exists a scalar y70 > 0 (depending on L, n and B only) such

that if 0 < -y < 70, then any limit point of the sequence {x(t)} generated by the partially asynchronous

gradient projection algorithm (2.2), (2.3) is an element of X*.

The above result is rather weak since it does not assert that {x(t)} has a limit point. To prove the

convergence of {x(t)}, we need to make, in addition to Assumption A, the following assumptions on f and

X.

Assumption B.

(a) There exists a scalar e > 0 such that

x e X*, y E X*, f #() 0 f/y), lI x- Yll > e-

(b) For every r there exist scalars 6 > 0 and r > 0 such that

+(x)< ,Illx - [x - Vf(X)1+II, (2.5)

for all x e X with f(x) < r7 and llx - [x - Vf(x)]+li < 6, where we let +(x) = minwEx. Ix - ill.

The main result of this paper is stated below. Its proof, which is quite involved, is given in Section 4.

Proposition 2.2. Under Assumptions A and B, there exists a scalar yi > 0, depending on L, n, B and x(O)

only, such that if 0 < y < 'l, then the sequence {x(t)} generated by the partially asynchronous gradient

projection algorithm (2.2)-(2.3) converges at least linearly to an element of X* with a B-step convergence

ratio of 1 - cy, where c > 0 is some scalar constant.

A few words about Assumption B is in order. Part (a) of Assumption B is a technical assumption which

states that the isocost surfaces of f, restricted to the solution set X*, are "properly separated" from each

other. This assumption clearly holds if X* is a finite set. More generally, it can be seen to hold if f takes

on only a finite number of values on X* or if the piecewise-smooth path connected components of X* are

properly separated from each other. [We say a set is piecewise-smooth path connected if any two points in

that set can be joined by a piecewise-smooth path lying entirely in that set.] Thus, it holds automatically
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when f is convex (since X* is then convex) or when X is polyhedral and f is quadratic (see Lemma 3.1 in

[TsL9Oa]).

Part (b) of Assumption B is closely related to the notion of a locally upper Lipschitzian multifunction

(see [Rob81], [Rob82]). More precisely, for any fixed scalar i/, let R be the residual function given by

R(x) = -=[x-Vf (x)]+ ,

restricted to the domain { x E X I f(x) < 71 }. Then Assumption B (b) effectively says that the inverse of

R, a multifunction, is locally upper Lipschitzian at the origin or, more precisely, there exist scalars 6 > 0

and , > 0 such that

R-1 (z) C R-1(0) + KjIlz12B,

for all z E Rm with lzlI < 6, where B denotes the unit Euclidean ball in Rm.

A simple example (e.g., X = ? and f(x) = Ix[A with A > 2 a fixed scalar) will show that Assumption

B (b) does not hold in general. On the other hand, it does hold for a number of important problem classes.

For example, it holds when Vf is strongly monotone and Lipschitz continuous (see [Pan87]). Alternatively,

it holds when X is polyhedral and f is either quadratic (see [Rob81], [TsL90a]) or of the form

f(x) = g(Ex) + (b,x),

for some k x m matrix E, some b E Rm and some strictly convex twice differentiable function g in Rk with

V2 g positive definite everywhere (see [LuT90]). It also holds when X = 3R" and f is the dual functional

associated with a certain strictly convex network flow problem (see [TsL90b]).
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3. Convergence Proof for the Sequential Case

As the proof of Proposition 2.2 is quite intricate, it is instructive to first examine a simpler case to

gain a feel for the main ideas used in the proof. In this section, we give a proof of Proposition 2.2 for the

special case of the algorithm (2.2)-(2.3) in which B = 1 (i.e., the original gradient projection algorithm). We

remark that, even for this special case, our convergence result (see Proposition 3.1) appears to be new since

it assumes neither convexity of f nor uniqueness of solution (compare with [BeT89, Sec. 3.5.3], [Dun81],

[Dun86], [LuT90, Sec. 4], [LeP65]).

For B = 1, the partially asynchronous gradient projection algorithm (2.2)-(2.3) reduces to the sequential

algorithm

x(t + 1) = [x(t) - 7Vf(x(t))]+ , t = 0, 1, ..., (3.1)

with x(0) e X given. To analyze the convergence of {x(t)} we need the following lemma, which follows from

the observation that, for any x and d in Rm , the function p(y) = I Ix - [x -yd+ I I is monotonically increasing

in 7 > 0 and the function p(7)/7 is monotonically decreasing in ' > 0 (see Lemma 1 in [GaB84]; also see

Lemma 2.2 in [CaM87]).

Lemma 3.1. For any x e X and any scalar y > 0,

min{1, 7}I1x - [x - Vf(x)]+ < lx - [Ix - YVf(x)]+ 11.

We now state and prove the main result of this section. The proof is patterned after one given in Section

3 of [TsL90a] and is based on using the locally upper Lipschitzian condition (2.5) to show that {x(t)} tends

toward X* [cf. (3.5)] and that, near X*, the difference in the f value of x(t + 1) and that of an element of

X* nearest to x(t) is at most of the order llx(t + 1) - x(t)112 [see (3.9)].

Proposition 3.1. Under Assumptions A and B, if 0 < 7 < 2/L, then the sequence {x(t)} generated by

the sequential gradient projection algorithm (3.1) converges at least linearly to an element of X* with a

convergence ratio of 1 - cy, where c > 0 is some scalar constant.

Proof. It is well-known, by using (2.4) and (3.1), that

1 L
f(x(t + 1))- f(x(t)) < -(- - )Pix(t + 1)-x(t)1[2 , Vt. (3.2)

(See, for example, [Gol64] or [LeP65].) Since 0 < 7 < 2/L and, by Assumption A (a), f is bounded from

below on X, then (3.2) implies

x(t) - x(t + 1) - 0, (3.3)

so (3.1) and Lemma 3.1 yields x(t)- [x(t) - Vf(x(t))] + --+ O. Since f(x(t)) < f(x(O)) for all t [cf. (3.2)],

this together with Assumption B (b) implies that there exist an index f and a scalar ic > 0 (depending on
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x(O)) such that, for all t > it, (2.5) holds with x = x(t), so

IIx(t) - x(t)l[ < tcllx(t) - [x(t) - Vf(x(t))]+l
1

< K max{ 1, -}llx(t) - [x(t) - 7Vf(x(t))]+ll

= ,max{1, -}Illx(t) - x(t + 1)11, (3.4)
7

where x(t) denotes an element of X* for which lix(t)- t(t)II = +(x(t)), the second inequality follows from
Lemma 3.1, and the equality follows from (3.1). Combining (3.3) with (3.4) gives

x(t) - t(t) -- 0, (3.5)

so x(t) - t(t + 1) - 0. Then, Assumption B (a) implies that x(t) eventually settles down at some isocost
surface of f, i.e., there exist an index t > t and a scalar v such that

f(x(t)) = v, Vt > i. (3.6)

We have from t(t) e X* and x(t) E X that (Vf(x(t)), x(t)- x(t)) > 0 and from the Mean Value
Theorem that f(x(t)) - f(x(t)) = (Vf(;(t)), t(t) - x(t)), for some m-vector +)(t) lying on the line segment
joining x(t) with x(t). Upon summing these two relations and using (3.6), we obtain

v5- f(x(t)) < (Vf(tA)) - Vf(W(t)), (t) - x(t))

< IVf( (t)) - Vf(x(t))llll() - x(t)II

< LIIt(t) - X(t)ll 2
,

where the last inequality follows from the Lipschitz condition (2.4) and lb(t)- i(t)ll < I1x(t)- x(t)ll. This

together with (3.5) yields

lim inf f(x(t)) > 0. (3.7)

Since x(t + 1) is obtained by projecting x(t)- yVf(x(t)) onto X [cf. (3.1)] and t(t) E X, we have

(x(t) - YVf(x(t)) - x(t + 1), x(t + 1) - t(t)) > 0, Vt. (3.8)

Also, by the Mean Value Theorem, for each t > i there exists some ((t) lying on the line segment joining

x(t + 1) with t(t) such that

f(x(t + 1)) - f(i(t)) = (Vf(C(t)), x(t + 1)- -(t)),

which, when combined with (3.6) and (3.8) yields

f(x(t + 1)) - v = f(x(t + 1)) - f(x(t))

= (Vf(¢(t)), x(t + 1) - x(t))

7



< (Vf(((t)) - Vf(x(t)) + -(x(t) - x(t + 1)), X(t + 1) - (t))
7

(IlVf(((t))- Vf(x(t))ll + !Ix(t) - x(t + 1)1 IIlx(t + 1)- 011

( Lll((t)-x(t)jj+ -IIx(t)- x(t + 1)11 IIx(t + 1)- (t)[

< (Llx(t + 1) - x(t)ll + Lll(t) - x(t)ll + IIx(t) - x(t + 1)1) IIx(t + 1) -(t)[[

< (L +-)lIx(t + 1)-x(t)ll + LlIx(t)-X(t)l[[ (lIx(t + 1)-x(t)ll + il(t)-x(t)ll)

< ?lIx(t + 1) - x(t)112, (3.9)

where the the third inequality follows from the Lipschitz condition (2.4), the fourth inequality follows from

the fact that ((t) lies between x(t + 1) and t(t), and the last inequality follows from (3.4) with 77 being

some scalar constant depending on L, c and 7 only.

Using (3.2) to bound the right hand side of (3.9) gives

f(x(t + 1)) - i < 72 (f(X(t)) - f(x(t + 1))) Vt > t,

where '2 is some positive scalar depending on L, K and 7 only. Upon rearranging terms in the above relation,

we obtain
'72

f(x(t + 1)) - ~ < 772 (f(x(t)) - v), Vt > t.

On the other hand, we have from (3.7) and the fact f(x(t)) is monotonically decreasing with t [cf. (3.2)]

that f(x(t)) > v for all t, so the above relation implies that {f(z(t))} converges at least linearly to v. Since

[Ix(t + 1) - x(t)112 is of the order f(x(t))- f(x(t + 1)) [cf. (3.2)], this implies that {x(t)} converges at

least linearly. Since i(x(t)) - 0 [cf. (3.5)], then the point to which {x(t)} converges is in X*. That the

convergence ratio is of the form 1 - 7yc can be seen by explicitly writing out 72 as a function of 7. ·

We remark that we need not have assumed , to be fixed or small in the above analysis, so long as 7y

is chosen so that jJx(t)- x(t + 1)112 is of the order f(x(t))- f(x(t + 1)) [cf. (3.2)]. This is an important

generalization since, in practice, 7 is typically not fixed but determined by some line search rule, such as the

Armijo-like rule of Bertsekas [Ber76], and, in this case, the above condition often does hold.
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4. Convergence Proof for the General Case

In this section we extend the analysis in Section 3 to prove Proposition 2.2, the main result of this

paper. Our argument is very similar in idea to the proof of Proposition 3.1, but, owing to the presence of

asynchronism in computations, error quantities arise in many places and have to be carefully estimated. We

show that the errors caused by asynchronism are of second order in 7 and are negligible when y is small.

We assume throughout that Assumptions A and B hold. Let {x(t)} be a sequence of iterates generated

by the partially asynchronous gradient projection algorithm (2.2)-(2.3). For the moment, the only restriction

that we place on the stepsize y is that it be positive. We will, in the course of the proof, impose additional

upper bounds on y.

For each t > 0, let

si(t) = xi(t + 1) - xi(t), i = 1,..., n. (4.1)

(For notational simplicity, we have defined si(t) slightly differently from [BeT89, Sec. 7.5.4].) Then, by (2.2),

for every i there holds

Si(t) = 0, Vt V T, (4.2)

Si(t) = [xi(t) - Vif(Xi(t))] +- i(t), Vt E T i. (4.3)

For notational simplicity we will use E(7yk), for any integer k, to represent any continuous function

g (0, oo) - X with the property

lim g(7) = c

for some scalar c > 0 depending on L, n, B and x(0) only. We will implicitly assume that 7 is always taken

sufficiently small so that each g(7) encountered is positive.

First we have the following result analogous to (3.2):

Lemma 4.1.

t+B-1 t-1

f(x(t+ B)) < f(x(t)) - e(-y(7- 1 ) E Is(r)112 + E)(1) Z IIs(r)112, Vt > 0. (4.4)
r=t r=t-B

Proof. For any i and any t E T i , since xi(t) + si(t) is the orthogonal projection of xi(t) - -yVif(xi(t)) onto

Xi [cf. (4.3)] and xi(t) E Xi, we have from a well-known property of orthogonal projections that

(Si(t),TVif(xi(t))) <-Iis,(t)112.

Combining this with (4.1)-(4.2) and using (2.4) and an argument analogous to that in [BeT89, pp. 529-530]

gives

fxt+1)-f(X(t + 1)) f(S(t)11
2

) < - 7ll( + L Ei Isi(t)IlIIs()Jll, Vt > 0.
7ly ~ i=1 T=t-B

9



By using the identity a b < a2 + b2, we can bound the right hand side of the above relation:

f(x(t + 1))- f(x(t)) < - 7 L IIs(t)l12 + L (vnlsi,(t)112 + (II2S(

1-Y IIs(t)ll + 2 (B lls(t)ll2 +V- E IIs(r-)112)

ly 7'~~~~~~=t-B

1 -7 L- - VLB -lls(t)112 + L§ 1 IIs(r)112.

ly7~ -Tr=t-B

Applying the above argument successively to t, t + 1, ..., t + B - 1 and we obtain

f(x(t + B)) - f(x(t)) < 1-7L-S 7 LB/-i I(r) +LBV/- 4+B-11-zL-zLB ~ lis(r)li ~ + LBV E IIs(r-)ll2. (4.5)
? r=t r=t-B

U

[We analyze the B-step decrease in f because, in the worst case, B time units can pass before any component

of x is iterated upon.]

By summing (4.4) over all t = 0, B, 2B, ..., we see that, for 7 sufficiently small so that the E(7-y1 ) term

dominates the ((1) term in (4.4), there holds

00

lim sup f(x(t)) < f(x(O)) - (7
- 1) IIs(r)ll2.

t-00o<:>

[In fact, it can be seen from (4.5) that it suffices to take y < L + 3LBx/n.] This implies that {f(x(t))} is

bounded [cf. Assumption A (a)] and

x(t)-x(t + 1) - 0 (4.6)

[cf. (4.1)], so, by using (2.4) and (4.3) and the partial asynchronism assumption, we can conclude that

x(t) - [x(t) - 7Vf(x(t))]+ --* O. (4.7)

(See [BeT89, pp. 530-531] for a more detailed argument.) Up to this point our analysis has followed closely

the proof of Proposition 5.1 in [BeT89, Sec. 7.5], but it starts to diverge from here on.

Eq. (4.7) and Lemma 3.1 imply x(t)- [x(t)- Vf(x(t))]+ -+ 0, and since {f(x(t))} is bounded, then,

by Assumption B (b), there exists a threshold t > 0 and a scalar ic > 0 (depending on x(0) only) such that

q(x(t)) < llx(t) - [x(t) - Vf(x(t))]+ll, Vt > .

For each t, let x(t) be an element of X* satisfying ljx(t)- x(t)I1 = q(x(t)). Then, we have from the above

relation and Lemma 3.1 that

IIx(t) - x(t)1 <_ Kmax{1, 1}IIx(t) - [x(t) - yVf(x(t))]+II, Vt > . (4.8)

10



Combining (4.7) with (4.8) gives

x(t)- t(t) - 0, (4.9)

so (4.6) yields t(t)- t(t + 1) -- 0. Then, Assumption B (a) implies that =(t) eventually settles down at

some isocost surface of f, so there exist an index t > t and a scalar v such that

f(i(t)) = V, Vt > t. (4.10)

Then, an argument identical to the proof of (3.7), with (3.5) and (3.6) replaced by (4.9) and (4.10) respec-

tively, gives

lim inf f(x(t)) > V. (4.11)

To prove our next main result (Lemma 4.4), we need the following two technical lemmas. The first

lemma says that jjx(t)-[x(t)- Vf(x(t))]+ [2 is upper bounded by t + B s(r)1 2 plus a smaller term.

The proof of this, trivial in the sequential case [compare with (3.1)], is complicated owing to the presence of

asynchronism in the computations.

Lemma 4.2. For all t > 0 there holds

t+B-1 t-1

IIx(t) - [x(t) - Vf(x(t))]+ 2 < 0(1) E Is(r)i2l + ((7) E Ils(r)i2. (4.12)
r=t r=t-B

Proof. Fix any t E {0, 1, ...}. For each index i E {1, ..., n} let t i be the smallest element of T~ that exceeds

t. Then [cf. (4.1), (4.2)]

Xi(t i) = Xi(t), (4.13)

and, by (4.3),

si(ti) = [xi(t i) - 7YVif(xi(ti))] - xi(ti). (4.14)

Also, by part (a) of the partial asynchronism assumption, there holds t < t' < t + B - 1. Combining (4.13)

with (4.14) and we have

I sit)l - I I [xi(t) - 7Yvif(xW(teg)] + - xi(t) lI

> II[xi( ) - 7yVif(x(t))] + - xi(t)ll - 7IIVif( (t)) - Vif(xi(ti))II

> II[xi(t) - yvif(x(t))] +
- xi(t) ll- yLlx(t) - xi(ti)ll,

where the last inequality follows from the Lipschitz condition (2.4). By using the identity (a- 7 b)2 >

(1 - 7)a 2 - y(1 + y)b 2 , we obtain from the above relation that

ilisi(ti)ll2 > (1 - 7)l[xi(t) - 7Vif(x(t))] +- x,(t)112 - y(1 + 7 )L2ilx(t) - xi(ti)ll2 . (4.15)



Also, since t < ti < t + B - 1 so that [by part (b) of the partial asynchronism assumption] t - B + 1 <

rj (t i) < t + B- 1, we have from (4.1) that, for all j,

Ij(- xjO'r(t~))ll 2 < (i~_.+ IIsiO')1I)1
t+B-1 2lI I j - xj (r;( |2B < E IISi(r)112,

r=t-B+1
t+B-1< 2B I ISj(7)II2

where the second inequality follows from the identity (a, + ... + a2B)2 < 2B(al)2 + ... + 2B(a2B) 2 . Summing

the above relation over all j and using (2.3) yields

t+B-1

IIx(t) - x(ti)I2 < 2B E IIs(r)112.
r=t-B

Using the above to bound the right hand side of (4.15) then gives

t+B-1

lsi(ti)112 > (1- y)II[xd(t)- YVj(X(t))]+ -x,(t)11 2 - 2y(1 + )L 2 B Ils(r)112.
r=t-B

Since the choice of i was arbitrary, the above relation holds for all i E {1, ..., n}, which when summed

over all i and using the "obvious" inequality [cf. t < t i < t + B - 1]

t+B-1 n t+B-1 n

i Is(r)112 = I si(r)IV >11 ll>si(t)112,
T=t i=1 r= t i= l

then gives

t+B-1 t+B-1

I ISs(r)112 > (1 - 7)1I[x(t) - yVf(X(t))]+ - x(t)112 - 27(1 + Y)L2 Bn IlIs(r)112.
r=t r=t-B

Taking 7 < 1 and rearranging terms in the above relation proves (4.12).

We next have a technical lemma on the behaviour of f over X. Its proof is given in Section 6.

Lemma 4.3. For any x and xl,..., xn in Rm and any x E X, there holds

n

f(z) - f(:) < e( 7-
2)I[X - j112 + O(1) (lX- j2 + X lx- xiI2) (4.16)

where z = [Ix - yVf(x)]+ and z is the m-vector with components zi = [xi - YVif(xi)]i+.

By using (4.8) and (4.10) together with Lemmas 4.2 and 4.3, we can now upper bound f(x(t + B)) - v

in a manner analogous to (3.9).

Lemma 4.4. For all t > t there holds

t+B-1 t-1

f(x(t + B))- < o(0r-2) S IIS(r)112 + o(Y-1 ) 5 I1S(-)112. (4.17)
r=t r=t-B
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Proof. Fix any t > i. For each i, let t i denote the smallest element of T/ exceeding t. Then, by (2.2),

xi(t i + 1) = [xi(t)- yVif(xi(ti))] + , Vi, (4.18)

and, by part (a) of the partial asynchronism assumption,

t< t i < tt+B-1, Vi. (4.19)

Let us apply Lemma 4.3 with x = x(t), x i = xi(t i ) for all i, and x = x(t). This then gives

f~z) -f(~(t) < e 2'L e"1' IX
f(z) - f((t)) < e(- )r(t) + E(1) (x(t)-(t)11 2 + I IIx(t) - xi(ti)112

i=1

where z is the m-vector whose i-th component zi is xi(t' + 1) [cf. (4.18)] and for convenience we have let

r(t) = Ilx(t) - [x(t) - 7Vf(x(t))]+jI2. By applying (4.8) and (4.10) to the above relation, we obtain the

simpler bound
n

f(z)- ) < • (y- 2)r(t) + 3(1) Z IIx(t)- xi(ti)112

i=1

nv n

= e( 7-
2 )r(t) + ((1) I Ixj (t)- xj (rji(ti)) ll2 ,

i=1 j=l

where the equality follows from (2.3). Since (4.19) holds, then part (b) of the partial asynchronism assumption

implies t- B + 1 < rj(ti) < t + B - 1 for all i and all j, so the above relation together with (4.1) yields

n t+B-1

f(z)- < 3(Y-(7
2)r(t) + ((1) E E IIsj(r)112

j=l r=t-B+l

t+B-1

=- (7- 2)r(t) + 1(1) E IIs(r)112. (4.20)
r=t-B+l

Also, we have from (4.1), (4.19) and the definition of zi that

t+B-1

xi(t + B) - zi = xi(t + B) - xi(t i + 1) = si(r), Vi,

r=ti+l

so an argument similar to the proof of (4.4) yields

t-1

f(x(t + B)) < f(z) + O(1) >I IIs(r)112.
r=t-B

This combined with (4.20) and then using the definition of r(t) and (4.12) gives (4.17).

By using the bounds (4.4), (4.11) and (4.17), we can now prove the linear convergence of {x(t)}. To

simplify the notation, let

a(t) = f(x(t)) - f,
t-1

3(t) = liE IIs(r)112,
r=t-B

13



for all t > i. Then, we have from (4.4), (4.11) and (4.17) respectively that, for any t > t,

a(t + B) < a(t)- -y'A1/3(t + B) + A2 3(t), (4.21)

0 < lim inf ca(r), (4.22)
T-+0O

a(t + B) < Y-
2A3/(t + B) + 7 - 1A/3(t), (4.23)

where A1 , A 2, A3 are positive scalars depending on L, n, B and x(0) only. [Of course, all of this come under

the implicit assumption that 7 is taken sufficiently small.] Notice that we are now explicitly writing out the

constant in the e(.) notation. For this part of the proof, the constant matters. Our goal will be to show,

by induction, that {a(t)} and, in particular, {13(t)} converge at least linearly (see Lemma 4.6). [Notice that

/3(t) > 0 but, in contrast to the sequential case, a(t) may be negative. This fortunately does not complicate

our proof to any significant degree.]

Fix any t > t + B. Applying (4.23) to bound the /(t + B) term in (4.21) and then rearranging terms

gives

(1 + 'yA/A 3 )a(t + B) < a(t) + (A1 + A2 )13(t).

Also, by substituting t - B for t in (4.21) and rearranging terms, we obtain 7-yA/3(t) < a(t - B) - a(t) +

A 2 L3(t - B), which when applied to bound the right hand side of the above relation yields

(1 + yAi/A 3)a(t + B) < a(t) + 7(1 + A 2/A 1 ) (a(t - B) - a(t) + A 2/3(t - B)).

After rearranging terms, we obtain

a(t + B) < 1 AA ((1 - yA 4 )a(t) + ,A 4 (a(t - B) + A2/(t - B))), (4.24)a~t+B) < + -yAl/A 3

where for convenience we let A4 = 1 + A 2 /A1. Also, for any k > 2, we have from repeated applications of

(4.21) that

k k-1

a(t + kB) < a(t) - -lAl E/l(t + IB) + A2 EZ (t + IB)

1=1 1=0

k-1

= a(t)- (-lA 1 - A2 ) EfZ(t + IB)- -'Al,3(t + kB) + A2 3(t).

1=1

By taking y < A1/A 2, we then obtain from the nonnegativity of 3(,r), for all r, that

ao(t + kB) < at(t) - (y-lA 1 - A2)/3(t + B) + A 2fJ(t).

By letting k -+ oo in the above relation, we obtain from (4.22) that

0 < a(t) - (?-1 Al - A2),3(t + B) + A 2/3(t),

14



which upon rearranging terms gives

f3(t + B) <A A (a(t)+ A2-T)). (4.25)

Fix any two scalars a > 0 and b > 0 satisfying

8A 3 A 4A 2b = Aia, (4.26)

with a and b taken sufficiently large so that

a(t) < a, a(i + B) < a, f(t) < b, f(ti + B) < b. (4.27)

Also let

-= . (4.28)
2A3 + 2A1

By using (4.24)-(4.28), we obtain the following main result of this section:

Lemma 4.6. There exists a scalar 71 > 0 (depending on Al up to A4 only) such that if 0 < 7 < 71, then,

for all r = 0, 1, 2, ..., there holds

ac(t + rB) < apr- l , (4.29)

i(i + rB) < bpr-, (4.30)

where

p = 1- 7c. (4.31)

Proof. The proof is by induction on r. By (4.27), both (4.29) and (4.30) hold for r = 0, 1. Suppose that

(4.29) and (4.30) hold for all r from 0 up to some k > 1. We show below that if 0 < 7 < 71, for some 71

depending on Al up to A 4 only, then (4.29) and (4.30) hold for r = k + 1. This would then complete the

induction on r and show that, if 0 < 7 < yl, then (4.29) and (4.30) hold for all r > 0. For convenience, we

denote t = i + kB in what follows.

First we show that

a(t + B) < apk. (4.32)

Since (4.29) and (4.30) hold for all r up to k, we obtain from (4.24) and by taking 7 < 1/A 4 that

1a~(t + B) < 1 + 7ALIA3 ((1- 7A4)ap k + 3A4 (ap + A2bp-))< 1 + (1 - 3A4 + 3yA4(1 + A2 b/a)(1 + 72c)) ap k -

-1 +1AlIA3

1 1 (1 + 722A 4 c + 7 A 4(1 + 72c)A 2 b/a) ap k - l
1 + yALIA3

-< 1 + A1 /A 3 (1 + 7 A 1/(2A 3)) ap k - 1

--- (1- +7 A 1 ) apk-l

<(1 2A7+12Ay)A apAk ,
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where the second inequality follows from taking 7 < 1/(2c) and using the bound p- 1 < 1 + 2cy [cf. (4.31)],

the third inequality follows from (4.26) and y < 1/(2c) and by taking y < Al/(8A3 A 4 c), and the last

inequality follows by taking -y < 1. The above relation together with (4.28) and (4.31) yields (4.32).

Next we show that

P,(t + B) < bpk. (4.33)

Since (4.29) and (4.30) hold for all r from 0 up to k, we have from (4.25) that

/3(t + B) < A 7 (apk- 1 + A 2bpk- l)
Al - 7A2

=7(a/b + A2) bpk-
A 1 - yA 2

By taking 7 sufficiently small so y(a/b + A2 ) < (A 1 - 7A 2 )(1 -7c), we obtain from (4.31) that (4.33) holds.

Since (4.32) and (4.33) hold, then (4.29) and (4.30) hold for r = k + 1.

Lemma 4.6 implies that {,3(t)} converges at least linearly with a B-step convergence ratio of 1 - 7c.

Since IIx(t) - x(t - B)112 < B,3(t) for all t [cf. (4.1) and definition of fl(t)], this shows that {z(t)} converges

at least linearly with a B-step convergence ratio of V/"-c, which is at most 1 - yc/2. Since Ob(x(t)) -- 0

[cf. (4.9)], it follows that the point to which {x(t)} converges is an element of X*.
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5. Extensions

For simplicity we have assumed that Vf is Lipschitz continuous everywhere on X [cf. (2.4)], but this

need not be so. More generally, it suffices that f tends to oo at any boundary point of its effective domain

and that Vf is Lipschitz continuous on each level set of f, intersected with X.

In [TsB86] (also see Section 7.6 of [BeT89]) is discussed a distributed asynchronous routing algorithm.

This algorithm is based on the idea of gradient projection and, by making suitable modifications to our

analysis, it is possible to show that, under conditions analogous to Assumptions A and B, this algorithm

also attains a linear rate of convergence.

A drawback of our main result (Proposition 2.2) is that convergence requires the algorithm to take

very small steps. Intuitively, if f is approximately separable with respect to the components xi (that is,

f(x) , >i fi(xi) for some functions fi), then the algorithm should be able to take much larger steps. This

notion can be made precise by incorporating the effect of second order quantities such as Of- (assuming

that f is twice differentiable) into the convergence analysis.
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6. Proof of Lemma 4.3

For each i, since zi is the orthogonal projection of xi - 7Vif(xi) onto the closed convex set Xi and [cf.

x E X and (2.1)] ii E Xi, we have

(zi - i, xi - 7Vif(xi) - Zi) > 0.

Also, by the Mean Value Theorem, there exists some C lying on the line segment joining z with x such that

f(z) - f(x) = (z - x, Vf(()), so the above relation yields

f(z) - f(t) = (Z - X, Vf(C))

< (zi - i, Vif(C) - Vif(xi ) + -(xi - zi))
i=1

• Eli:zi-iill (-xI+-llti-ZiII
:/=1 l

E lz-ill (LIC-xi+-il (6.1)\

i=1

where the third inequality follows from the Lipschitz condition (2.4). Now we bound the right hand side of

(6.1). Since ¢ is between z and x, we have lUI - xll < lz - ill + II - xll so that

I11- xill < Ii1- x11 + IIx- xill

< IIZ - xII + II1 - xll + IIx - x_ l (6.2)

Also, we have from the definition of z and i and the nonexpansive property of the projection operators [.]+,

i = 1,..., n, that

n

IIz- ll2 = Ilzi- Zill 2

i=1

i=l
- Z lif(l[x - V if(xi)It - [Xi - YVf(X)] 112

i=1

_ EY2L2i= 11 1 _ll
2
, (6.3)

i=1

where the last inquality follows from the Lipschitz condition (2.4).
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By bounding the right hand side of (6.1) using (6.2) and the triangle inequality, we have

n i

< (Ilz - ill + I - xll + Ilix - ll) Lll - xll + LlX - ill

< n(3(L + !) + 4)(lz - IlI2 + lii - x112) + n(3L2 + 4)1Ix -1 l2 + 3L2 lix - xll
7Y~~~~~~~~~~ ~~~~i=l

where the last inequality follows from expanding out the product in the line above and then using the bound

a . b < a2 + b2 on each term of the expansion. Using (6.3) to bound the liz -_ll
2 term in the above relation

and we obtain (4.16).
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