
Mathematical Finance, Vol. 10, No.1 (January 2000),53-75

ON THE RATE OF CONVERGENCE OF DISCRETE-TIME

CONTINGENT CLAIMS

STEVE HESTON

Goldman Sachs & Co., New York

GUOFU ZHOU

Washington University, St. Louis

This paper characterizes the rate of convergence of discrete-time multinomial option

prices. We show that the rate of convergence depends on the smoothness of option payoff

functions, and is much lower than commonly believed because option payoff functions are

often of all-or-nothing type and are not continuously differentiable. To improve the accuracy,

we propose two simple methods, an adjustment of the discrete-time solution prior to maturity

and smoothing of the payoff function, which yield solutions that converge to their

continuous-time limit at the maximum possible rate enjoyed by smooth payoff functions. We

also propose an intuitive approach that systematically derives multinomial models by match-

ing the moments of a normal distribution. A highly accurate trinomial model also is provided

for interest rate derivatives. Numerical examples are carried out to show that the proposed

methods yield fast and accurate results.
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1. INTRODUCflON

Since the seminal work of Cox, Ross, and Rubinstein (1979), binomial models and

various discrete time generalizations have received wide attention from both finance

researchers and practitioners. These discrete models provide an easy way to understand

how uncertainties are resolved in a continuous-time asset pricing model, and how

contingent claims can be hedged or spanned by available assets. In fact, many

interesting insights on a continuous-time model, which might not be available other-

wise, can be understood by taking the limits of certain discrete-time models. Other than

as an excellent pedagogical tool, the discrete-time models also play an important role in

practice for valuing most contingent claims for which simple closed-form solutions of

continuous-time models are usually not available. Because of the importance and

usefulness of discrete-time models, there has been extensive research in extending

them, examples of which include Hull and White (1988), Boyle, Evnine, and Gibbs

(1989), Madan, Milne, and Shefrin (1989), and Rubinstein (1994). Broadie and Detem-
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pIe (1996, 1998) provide some of the latest developments on American options and

discrete-time approximations in general.

Although theoretical proofs of convergence of discrete-time models to their continu-

ous-time analogues are given by He (1990) and Amin and Khanna (1994), among many

others, the rate of convergence, which appears to be one of the central properties of a

discrete-time model, has received little attention. The rate or order of convergence

measures the (asymptotic) speed/accuracy trade-off of a numerical method. Almost

any method can give fast inaccurate results, and, given enough computational time,

many methods can give arbitrarily accurate results. Given competing discrete-time

models, the order can help to rank which of the models is a preferred one. Moreover,

there are at least three important reasons in practice to know the correct rate of

convergence. First, discrete-time models with higher rates of convergence are required

to compute many contingent claim prices on a real-time basis. Second, extrapolation is

a useful technique for increasing the accuracy of a discrete-time solution in practice,

but it is no longer useful if the rate of convergence is unknown or if it is not a fixed

constant. Third, insights on the rate of convergence can potentially lead to lower

hedging costs for derivatives because highly accurate solutions are obtained by using

the minimum number of periods or transactions.

This paper characterizes the rate of convergence of discrete-time models to their

continuous-time limit. First, we provide a theoretical proof that the widely used

binomial model cannot converge to its limit as fast as one might believe from available

theorems of the finite difference method (see Ames 1992). As the binomial method is a

special case of the standard finite difference method and the latter usually converges at

the l/n rate, it seems obvious that the n-period binomial solution should converge to

its limit, the Black-Scholes formula value, at a rate of l/n. Furthermore, asymptotic

expansions of the error can be written as a constant function of l/n plus higher order

terms, and the standard Richardson extrapolation can be used to obtain solutions with

higher convergence rate. But this is true and can be shown only under the condition

that the payoff function of the contingent claim is smooth.

In finance, however, the payoff functions are often of all-or-nothing type, and hence

are not continuously differentiable. This implies that the usual theorems in a standard

numerical analysis book (such as Ames 1992) are not applicable to interesting option

pricing problems in finance. We give an example that shows the rate of convergence of

the binomial model cannot be faster than 1/ In at the nodes near expiration. However,

this does not claim that the binomial solution at current node cannot converge at the

l/n rate. It simply states that it cannot do so uniformly on the binomial tree. We also

provide a theorem that shows the binomial model can achieve at least the 1/ In rate.

Hence, it is theoretically possible, and indeed we show in numerical examples, that the

convergence rate of the binomial model fluctuates between 1/ In and l/n across the

nodes of the binomial tree. Although at the current node the solution may still have

the l/n rate of convergence, the nonsmoothness of the payoff functions can have an

impact sufficient to cause the well-known oscillatory pattern of the binomial prices at

the current node, making invalid the standard Richardson extrapolation.

Intuitively, as the payoff function is not continuously differentiable, the binomial

model carries at its start a larger error. This error mayor may not offset in the

backward deduction process. As a result, it sometimes has an overall error no better

than 1/ In at some nodes of the binokial tree which mayor may not carry to the

current node. To overcome the problem caused by the nonsmoothness of the payoff

functions, we propose both a smoothing approach and an adjustment approach such
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that the resulting solution achieves its maximum possible convergence r;ate, l/n, across

all the nodes of the binomial tree. I

Section 2 provides both theoretical proofs and numerical examples! to illustrate the

ideas and their potential practical applications. In Section 3, we extend the analysis to

discrete-time multinomial approximations to continuous-time models. We show that

various high-order multinomial methods, such as the trinomial and pentanomial mod-

els, can be motivated and obtained by matching higher order moments of the discrete-

time model to those of a continuous-time one. Like the binomial case, it is important to

emphasize that the multinomial models achieve their higher rate of convergence only if

the payoff functions are smooth enough. For example, contrary to popular belief, the

trinomial model cannot always have a faster rate of convergence than the binomial

model in option pricing due to the nonsmoothness of the payoff function. In Section 4,

we show how the proposed approaches can be applied to American options to obtain

fast and accurate results. Additionally, we propose a simple algorithm to locate the

optimal exercise boundary for an American option. This algorithm has a rate of

convergence of 1/ In , which does not appear to be recognized in the literature. In

Section 5, we provide a new and highly accurate trinomial model for interest rate

derivatives. Conclusions are offered in the final section.

2. THE BINOMIAL MODEL

Although our approach is generally applicable, for pedagogical reasons we will focus

the discussion on valuing a standard call price when the stock price, S, follows a

geometric Brownian motion. In this simplified setting, the price of a contingent claim

with payoff g(S) at expiration time T, by Black and Scholes (1973), must satisfy the

familiar partial differential equation

1 2 2
(2.1) -u S Css+rSCs-rC+ct=O,

2

with (terminal) condition C(S, T) = g(S). Making a transformation of variables, x =

[logS-(r-tu2)t] and 7=T-t, then U(x,7)=e'(T-t)C(S,t) satisfies the standard

diffusion (heat) equation

1 2
(2.2) UT=2u Uxx,

with initial condition U(x,O) = g(exp[x + (r -tu 2)T]). In particular, if g(S) = max(S

-K, 0), the payoff of a standard call option on the stock with strike price K, then the
(terminal) condition becomes C(S, T) = max(S -K, 0) or U(x,O) = max(exp(x +

(r- tu2)T) -K,O).
To analyze the rate of convergence of the binomial model, it is easier to link it to the

finite difference method than otherwise. The classical explicit finite difference method

computes the value of U(x, 'T ) by replacing the derivatives in equation (2.2) by finite

difference approximations,

U(X,T+.l,.)-U(X,T)

11,.

U(x+ Ilx, T) -2U(X,T) + U(X -Ilx, T)~ 2
= -(1" ~2

2 x
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where ~,. and ~x are small increments of the time and x variable, respectively.

Starting from the initial values (or terminal values of the payoff function), the solution

can be iteratively computed from

U( x, 7+ AT) = qU( X + Ax, 7) + (1
2q)U(x,'T) +qU(x-llx,'T),

where q = o-2Ll,./2Ll;. When Llx = o-F,. or q =

familiar binomial solution,l

!2, equation (2.4) gives rise to the

C(S,t-.l) =e-rd,[c(US,t) +C(dS,t)]/2

where A=A =A u=e(r-u'/2)!lt+u{t;: and d = e (r-U'/2)!lt-u{t;:

t T' , .

In an n-period binomial model, the time to maturity (from today t to maturity date
T) is divided into n subintervals, to = t < t1 < ...< tn = T. The length of all of the

subintervals is AT=ti+1-ti=(T-t)ln. The call price at each node of the standard

binomial tree, Sij=SeiU{s:;+j(r-u'/2)!lT, is computed recursively from the discounted

expected payoff relationship, equation (2.5). The binomial prices will be different from

the continuous-time solution of equation (2.2). This is because the differentials in

equation (2.2) are approximated by their finite difference analogues in the binomial

model. The approximation error is the so-called discretization error or truncation error ,

which is well known to be of order O(AT + A~) (assume the smoothness of the

continuous-time solution). For the n-period binomial model, this translates into an

order of Iln. In other words, apart from an error of magnitude of Iln, the

continuous-time solution also satisfies equation (2.3).

Because the truncation error is of order Iln, the local error for the solutions in
equation (2.5), which is obtained after multiplying equation (2.3) by AT = T In, is of the

order Iln2. As there are n steps in the binomial recursions, the local errors will be

accumulated n times. Hence, one may expect that the difference between the binomial
prices and the continuous-time solution should be of the order n X I1n2 = Iln, the

same order as the truncation error. Indeed, if the payoff function has continuous

derivatives up to the second order, we have the following proposition.

PROPOSITION 2.1. Let Cn and C be the binomial and continuous-time prices of a

European option with terminal payoff g(S). If g(S) is continuously differentiable up to the

second order, then

Cn = c + O(l/n)

Proof. For the n-period binomial model, Il~ = ullT = O(l/n). The smoothness

assumption on the payoff function ensures that C has bounded derivatives up to the

fourth order (with respect to S) inside its domain (e.g., see Friedman 1964). Hence, in

terms of this continuous-time solution, equation (2.5) can be written as

C(S,t-Ll -rdt[C(US,t) + C(dS,t)]/2 + O(1/n2),=e

1 Another version is Cox et aI.'s (1979) binomial model, C(S, I -L\,) = [pC(uS, I) + (1 -

p)C(dS, I)]/(1 + ,*), where u = eu[i; -1, d ." e- ,,[i; -1, ,* = e'[i; -1, and p = (, -d)/(u -d).

This is the explicit finite difference method applied to the log transform of equation (2.1). Although the
results hold for both versions, we provide here only for the first one, which appears to have simpler
notations.
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where dT and dx are small increments of the time and x variable, respectively.

Starting from the initial values (or terminal values of the payoff function), the solution

can be iteratively computed from

U(x, T+ ~T) = qU(X + ~X, T) + (1- 2q)U(x, T) + qU(X -~X, T),

where q = U2.:lT/2.:l~. When .:lx = U{i5:; or q = 1/2, equation (2.4) gives rise to the

familiar binomial solution,l

(2.5) C(S,t-l1) =e-rA,[C(uS,t) +C(dS,t)]12,

where 11 = 111 = I1T, u = e(r- u2 /2)A,+ uf5:; , and d = e(r- u2 /2)A,- uf5:; .

In an n-period binomial model, the time to maturity (from today t to maturity date
T) is divided into n subintervals, to = t < tl < ...< tn = T. The length of all of the

subintervals is I1T = ti+ 1 -ti = (T -t)ln. The call price at each node of the standard

binomial tree, Sij = Seiurs:; +j(r- u2 /2)AT, is computed recursively from the discounted

expected payoff relationship, equation (2.5). The binomial prices will be different from

the continuous-time solution of equation (2.2). This is because the differentials in

equation (2.2) are approximated by their finite difference analogues in the binomial

model. The approximation error is the so-called discretization error or truncation error ,

which is well known to be of order O(I1T + 11~) (assume the smoothness of the

continuous-time solution). For the n-period binomial model, this translates into an

order of Iln. In other words, apart from an error of magnitude of Iln, the

continuous-time solution also satisfies equation (2.3).

Because the truncation error is of order Iln, the local error for the solutions in
equation (2.5), which is obtained after multiplying equation (2.3) by I1T = T In, is of the

order Iln2. As there are n steps in the binomial recursions, the local errors will be

accumulated n times. Hence, one may expect that the difference between the binomial
prices and the continuous-time solution should be of the order n X I1n2 = Iln, the

same order as the truncation error. Indeed, if the payoff function has continuous

derivatives up to the second order, we have the following proposition.

PROPOSmON 2.1. Let Cn and C be the binomial and continuous-time prices of a

European option with terminal payoff g(S). If g(S) is continuously differentiable up to the

second order, then

Cn = c + O(l/n)

Proof For the n-period binomial model, il~ = (TIlT = O(l/n). The smoothness

assumption on the payoff function ensures that C has bounded derivatives up to the

fourth order (with respect to S) inside its domain (e.g" see Friedman 1964). Hence, in

terms of this continuous-time solution, equation (2.5) can be written as

C(S,t-llt) =e-r/l,[c(uS,t) +C(dS,t)]/2+0(1/n2)

1 Another version is Cox et al.'s (1979) binomial model, C(S, I -/l,) = [pC(uS, I) + (1 -

p)C(dS,/)]/(1 +r*), where u =eu~-I, d"=e-u~ -1, r* =er~-I, and p =(r-d)/(u -d),

This is the explicit finite difference method applied to the log transform of equation (2.1). Although the

results hold for both versions, we provide here only for the first one, which appears to have simpler

notations.
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where O(1/n2), the local error that results from multiplying the discretization error by

l/n, is bounded by co/n2 for some constant Co independent of the price nodes, Let
Sji = uidn-jS, V(j, i) = C(Sji' ti) -C(Sji' ti) be the error at each node, and Vi be the

maximum absolute error at each time ti' Then, from equations (2,5) and (2.7), we have

lJI i)I~IV(j+ i + 1)1/2 + IV(j i + 1)1/2 + cO/n2

<v
-I 1)+ coin n

Since ~ = 0, it follows that

-i)coln2 ~ coin = O(lln).

implying that f/i ~ f/i+ 1 + co/n2,

co/n2 ~ f/i+2 + 2co/n2 ~ Vn + (n

V(j,i)1 ~ Vi ~ v +
0

Although the above proof is well known in the numerical analysis literature, it is

instructive ~o provide it here to show how errors are transmitted over time. Proposition

2.1 suggests that, for smooth payoff functions, the rate of convergence is as fast as l/n.

Moreover, it is seen from the proof that the convergence is unifonn in the sense that

the solution has the same rate of convergence at all nodes of the binomial tree.

Furthermore, it is easy to show that the error also admits an asymptotic expansion in

terms of a constant function of l/n and higher order terms so that Richardson

extrapolation applies. Though shown above only for a geometric Brownian motion, the

proposition can be extended to allow a fairly general stochastic process for the

underlying asset. From the literature on finite difference methods, it seems that similar

theoretical results also hold for exotic options, such as the barrier options and other

path-dependent options. However, the conclusions may have to be dependent on the

specific type of options, and their rigorous proofs remain interesting problems to be

explored.
Proposition 2.1 provides the rate of convergence only for option prices with smooth

payoff functions. However, payoff functions that are of practical interest in finance are

often of the all-or-nothing type and are not continuously differentiable. In this case,

Proposition 2.1 is no longer applicable. Indeed, for nonsmooth payoff functions, the

errors at a time close to the maturity can be as large as the order of 1/ In .To

illustrate, consider a special case of the binomial model for the standard call option.
Let x = [log K- (r -tu 2XT -j).T)] (or S = K) be a node point at time T- j).T. Then,

at this node, the binomial price C(K, T -j).T) is, by equation (2.5),

K( ell,
D.T/2

C(K,T IlT) 12

t)K/vn + O(l/n)

On the other hand, the exact value at the same node is, by the Black-Scholes formula,

C(K,T Ll O(l/nK(T/(~1n

A comparison of (2.9) with (2.9') shows that 6(0, T -I1T) converges to C(O, T -I1T) at

the rate 1/ In .

The above example shows theoretically that the solution cannot converge faster than

the 1/ In rate, at least at some nodes of the binomial tree. The question is whether or

not this rate is achievable. In what follows, we show that, for the standard call option,

we have the following proposition.
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PROPOSmON 2.2. Let Cn and C be the binomial and continuous-time call prices of a

standard European call option with the terminal payoff max(S -K,O). Then,

(2.10) Cn = c + °(1/{fi

Proof Following Cox et al. (1979), the n-period binomial call price can be written as

(2.11) Cn =SP([a],n,pl) -Ke-rTp([a],n,P2)'

where P( ) is the right-tailed binomial distribution, [a] is the integer part of

In( K/S) -( r -(J"2/2) Tn 1

-+-
2 2.

J.
PI = -eu.(i/.;n -u2T/2n

2
P2= 2'

uIT;rn

Now, by using the normal distribution to approximate the binomial one, we get (e.g.,

see Johnson, Kotz, and Kemp 1992, p. 114)

(2.12)
P(np+ vnp(l-p)z,n,p) = N(z) + O(l/rn

where N(z) is the standard normal distribution function. Hence, it follows that

(2.13) P([a],n,p2 -N(b) +O(l/lii

where b=[ln(K/S)-(r-u2/2)'T]/uF. Now notice that a=npl+Vnpl(l-Pl)

(b- uF + 0(1/In)) and N(z + 0(1/In)) =N(z) + 0(1/In); we have

-N( b -~ + 0(-}=;)) + 0(-}=;),(2.14)
P([a),n,Pl) =

which implies

(2.15)

The first two terms on the right-hand side are equivalent to the continuous-time call

price given by the Black-Scholes formula. D

Proposition 2.2 states that the rate of convergence is at least as fast as 1/ In for the

standard European call option. Though the results are presented only for the call, it is

clear that the same conclusion holds for the standard European put option as well.

From the numerical analysis literature for general initial functions (e.g., Brenner,

Thomee, and Wahlbin 1975), Proposition 2.2 actually holds for all payoff functions that

are piecewise smooth with only a finite number of continuous jumps. However, it is not

clear from a theoretical standpoint whether the same conclusion should hold for the

barrier options and other path-dependent options. Nevertheless, numerical solutions in

practice tend to suggest that Propos.it{bn 2.2 is widely applicable, although the proof

may be quite complex. On the other hand, the 1/ In rate is the best possible rate of

uniform convergence for those piecewise smooth functions because a certain order of
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uniform convergence must imply a certain degree of the smoothness (see Brenner et al.

1975). In particular, 1/ In is the best possible uniform convergence rate for the

standard European call option. However, this does not necessarily imply that the

binomial solution at the current node cannot converge faster than the 1/ In rate.

Indeed, Broadie and Detemple (1996, 1998) and Leisen and Reimer (1996)2 seem to

provide convincing evidence that the binomial solution for the standard call option at

the current node can converge faster than l/ln to achieve the l/n rate. However, it is

not clear that this holds for general nonsmooth payoff functions. Even for the standard

call option, the error as shown earlier is of order 1/ In near expiration. By the proof of

Proposition 2.1, the error can potentially be transmitted over time, causing the accuracy

of the solution at early times to become less accurate. The l/n convergence rate as

suggested by Broadie and Detemple and Leisen and Reimer is striking in that it says

that the transmitted errors only cause the commonly observed oscillatory behavior of

the binomial price but do not affect the order of convergence at the current node.

Thus far, we have shown that the accuracy or rate of convergence of the binomial

method depends crucially on the smoothness of the payoff function. Smooth payoff

functions generally enjoy a much higher rate of convergence than nonsmooth payoff

functions. Unfortunately, most payoff functions of practical interest are not smooth.

The open question is whether it is possible to achieve the maximum possible rate, l/n,

for nonsmooth payoff functions such that there are no oscillatory behaviors. We

propose two approaches to this end.

Notice that the greater error for nonsmooth payoff functions is caused by less

accurate prices at the time prior to the end of the tree. Clearly, if we can have accurate

values there, the proof of Proposition 2.1 implies that solutions after that time should

be very accurate. This suggests using our first method, which replaces the binomial

prices prior to the end of the tree by the Black-Scholes values, and computing the rest

of binomial prices as usual. Intuitively, this is equivalent to replacing the discretization

over the last time step with an infinitely fine grid. As a result, the errors introduced by

the first-order discontinuities of the payoff function are reduced.3 Of course, it is

unnecessary to do so for the standard European call price, because one already has the

continuous-time solution and does not need it to obtain a discrete-time approximation.

However, the procedure is useful for American options and exotic options for which the

Black-Scholes is an excellent approximation prior to maturity. If the option price has

bounded continuous derivatives up to the fourth order, the Black-Scholes adjustment

clearly works and the proof is similar to that of Proposition 2.1. Unfortunately, the

bounded derivative condition is not easily shown for various contingent claims. Viola-

tion of this condition makes it very difficult for us to give a rigorous proof for its

validity, but our extensive numerical experiments uniformly convince us that the simple

adjustment approach works well in practice. Independently, Broadie and Detemple

(1996) also show the effectiveness of similar adjustments. But, as shown in Section 3,

the adjustments may not work for high-order discrete-time approximations, such as the

trinomial model.

Our second approach is to smooth the payoff function. As our earlier example for

the 1/ In rate convergence shows, the inaccuracy occurs at singular points of the

payoff function. Intuitively, if we can smooth the payoff function at these points, the

~ We are grateful to an associate editor and Mark Broadie for bringing our attention to these papers.

This also suggests that for a call or a put, the replacement may need only be done at the

at-the-money node. However, our calculations are based on replacement at all the nodes one step away

from maturity.
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binomial recursion might be more accurate. Indeed, let g(x) be the payoff function,

and G(x) is the smoothed one,

(2.16)

This is a rectangular smoothing of g(x). The smoothed function, G(x), can be easily

computed analytically for most payoff functions used in practice. Applying the binomial

model to G(x) instead of g(x) yields a rather surprising and interesting result: The

associated binomial prices converge now at the l/n rate to its continuous-time limit

and this convergence is uniform across the nodes of the binomial tree. A rather lengthy

and intricate proof of this is provided by Thomee and Wahlbin (1974), who in turn build

their work on many earlier ones. In comparison with the Black-Scholes adjustment, the

smoothing approach is more general and applicable to all European options on assets

whose prices are complex diffusion processes.

To illustrate how the approaches work in actual computations, we provide in Table

2.1 a simple numerical example that computes the value of a European call option on a

stock whose price is 100. The strike is 100, the time to maturity is one year, the

volatility is 40%, and the continuously compounded annual interest is 6%. There are

three panels in the table. The first two columns of the first panel are the number of

periods (n) of the binomial model and the exact Black-Scholes price.4 The next three

columns are the error of the the binomial price, the ratio of the errors, and the error of

the extrapolated solution. The other two panels are the corresponding results obtained

by using the Black-Scholes adjustment and the smoothing procedure, respectively.

The error of the usual binomial model does not necessarily go down as n increases.

For example, the error, as measured by the difference between the binomial price and
the Black-Scholes (BS) price, is 0.0044 when n = 640, worse than an error of -0.0019

when n = 40. In contrast, the error decreases as n increases with either the BS

adjustment or the smoothing method. The BS adjustment is strikingly accurate. It
achieves penny accuracy when n = 40, corresponding roughly to weekly intervals of the

binomial price tree. This same accuracy will take about daily intervals for the standard

binomial method to achieve.

For the example under consideration, the smoothing procedure has roughly the same

magnitude of errors as the binomial method. This is a little surprising since theoreti-

cally it should converge at a much faster rate. There are two likely reasons. First, the

constant in the theoretical rate may be large for this particular example. Second, the

rate of convergence is not fixed for the standard binomial model. Intuitively, when

the stock price node lies exactly at the singular point (this happens for some particular

n's and strike levels), the singularity may not matter at all, and hence it will converge to

the solution at a higher rate, say l/n, which is the convergence rate of the smoothing

procedure. When the node is away from the singular point, the convergence is slowed

down, an observation consistent with our earlier theoretical example. In other words,

the binomial solution oscillates irregularly around its limit, a well-known pattern

observed by practitioners (e.g., Derman et al. 1995). Hence, as n varies, the binomial

4 A single Black-Scholes price accurate up to the reported digit can be computed by using any

symbolic software, such as Mathematica. But it is impractical to do so if a great number of such values

are needed as required by the first approach. A simple solution is to use Strecok's (1968) algorithm,

which is easily incorporated into any program, to compute Black-Scholes prices to the desired accuracy.



ON THE RATE OF CONVERGENCE OF DISCRETE-TIME CONTINGENT CLAIMS 61

TABLE 2.1

Binomial Model

Consider the valuation of a European call option on a stock whose price is 100. The

strike is 100, the time to maturity is one year, the volatility is 40%, and the

continuously compounded annual interest is 6%. The first two columns of the first

panel are the number of periods (n) of the binomial model and the Black-Scholes

(BS) price. The next three columns are the error of the binomial price, the ratio of

the errors, and the error of the extrapolated solution. The other two panels are the

corresponding results obtained by using the Black-Scholes adjustment and the

smoothing procedure, respectively.

Binomial ExtrapolatedExact Error ration

10

20

40

80

160

320

640

1280

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

-0.18552506

-0.05399578

-0.00191274

0.01410255

0.01496727

0.01034461

0.00446058

-0.00100635

3.43591784

28.22959146

-0.13563052

0.94222596

1.44686708

2.31911889

-4.43243516

0.07753350

0.05017031

0.03011785

0.01583199

0.00572194

-0.00142345

-0.00647328

ExtrapolatedExact BS Adjustment Error ration

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

10

20

40

80

160

320

640

l280

0.08592189

0.04385530

0.02210462

0.01102834

0.00545794

0.00269819

0.00136043

0.00070582

1.95921356

1.98398798

2.00434776

2.02060394

2.02281302

1.98333827

1.92745730

0.00178870

0.00035394

-0.00004795

-0.00011246

-0.00006155

0.00002267

0.00005120

Smoothing ExtrapolatedExact Error ration

10

20

40

80

160

320

640

1280

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

1.97585053

1.98736102

1.99350098

1.99662566

1.99812100

1.99933536

2.00082367

0.00606740

0.00159783

0.00041214

0.00010718

0.00002987

0.00000528

-0.00000327

solution may sometimes have roughly the same magnitude of errors as the smoothing

procedure.
However, a nice feature of the smoothing procedure is that it has steadily declining

errors, and its true advantage lie's in the accuracy of its extrapolated solution. Because

it has an order of convergence l/n, twice the solution minus the solution with half the

number of periods, 2C2n -Cn, should converge to the continuous-time solution at an
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even faster rate. Indeed, as the last column in Table 2.1 shows, the errors of the

extrapolated solutions based on the 40-, 20-, and 10-period solutions, are 0.0015 and

0.0061, within one penny of the exact solution. With n as small as 40, the smoothing

procedure is much more easily implemented, say in a spreadsheet program, than other

procedures. Strikingly, the table shows that the extrapolated solutions converge even

faster than those based on the Black-Scholes adjustment.

Information for assessing further the rate of convergence of the three numerical

methods is available from the ratios of the errors. For the standard binomial solution,
the ratios fluctuate greatly. For example, the ratio is 28.2396 when n = 40, but only

2.3191 when n = 640. Then, it becomes -4.4324 when n = 1280. In contrast, the ratios

from both the Black-Scholes adjustment and the smoothing procedure are quite stable.

If the rate of convergence is l/n and if the usual Richardson expansion holds, then the

ratios should be close to 2. Indeed, both the Black-Scholes adjustment and the

smoothing procedure work so well that the ratios are almost identical to 2 for all

the n's.

In summary, because of the high rate of convergence of both the Black-Scholes

adjustment and the smoothing procedure, it is not surprising that their extrapolated

solutions work exceptionally well. They are more accurate than the original solutions,

and the accuracy increases steadily as n increases. However, this is not the case for the

standard binomial method. Its extrapolated solutions fluctuate without a clear pattern,

and the accuracy is often worse than the original solutions. As noted earlier, the

binomial model does not have a uniform l/n rate of convergence. Its solution oscillates

irregularly between a rate of l/n and 1/ In at the nodes of the bionomial tree. This

seems the fundamental reason why extrapolation fails in the standard binomial model.

Unlike some papers in the literature, we compare the effectiveness of the methods

by analyzing their order of convergence, rather than solely their errors. We do this

because it is possible for a relatively inaccurate method to produce a value with a

relatively smaller error by coincidence for a particular lattice size. In contrast, the order

of convergence indicates the asymptotic speed of computation as increased accuracy is

demanded. For a method with linear convergence, the accuracy shrinks proportionally

to the time step. But the lattice computations increase with the square of the number

of time steps (in a single dimension). Consequently, it takes four times the computa-

tional work to double the accuracy. This problem is even worse in higher dimensions,

and makes methods with low order of convergence extremely slow for highly accurate

results. Therefore, the order of convergence provides an asymptotically valid way to

compare the relative speed and accuracy of numerical methods.

3. MULTINOMIAL MODELS

For a given step size A = AT, we define a multinomial approximation in terms of a

"probability vector" P = (PI' P2' ..., Pk) and a multinomial distribution vector h =

(hI,h2,...,hk),

k
(3.1) C( S, t -11 ) = e-rLl L PiC( Se(r-u2fZ)Ll+hiULll/2, t) .

i= I

,
A particular case of equation (3.1) is k = 2, PI = Pz = 1/2, and hI = -1 and hz = 1. In

this case, one can verify that equation (3.1) is exactly the binomial model as described

in equation (2.5).
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The P vector resembles the risk-neutral probabilities in standard discrete-time

models, but our setup here is more general. Any real vector P, some components of

which may be negative, can be used to define the approximation scheme as long as
E7~lPi = 1. The h vector represents the spacing of the multinomial nodes. Both P and

h are fixed constants chosen below to obtain potentially higher order accurate discrete-

time approximations to the continuous-time solution.

For illustration, our discussion will be focused on a one-dimensional case where the

stock price follows the lognormal distribution. To analyze the properties of the

multinomial approximation, it is convenient to make a change of variables,

U(z,t) =e-rtc(s,t

where z = (Iog(S) -(r -0- 2/2)! ) /0- .In probability terms, since S is lognormal, z is

the standardized Wiener process. The transformation simplifies both the price process

and the associated option pricing equation. In terms of the transformed option price,

the multinomial approximation has a simpler expression:

h;111

k
U( z, t) = E p;U( z

i= 1
t+ll)

The following proposition characterizes its accuracy.

PROPOSmON 3.1. If the multinomial model (p, h) matches the first q moments of a

no11nal distribution, that is ,

k
E p;h{ = 0, for all odd j ::; q

;=I

and

k
L p;h{ =

i= 1
for all even j ~q,

2i/2(j/2)!

and if the terminal payoff function is 2q times continuously differentiable, then the

multinomial approximation (3.3) has a local efTor of O(L\(q+ 1)/2), and the associated

discrete-time solution, <5, converges to the continuous-time solution, C, at a rate of
O(L\(q+ 1)/2-1 ); that is,

3.6) c = c + O(.l(q+l)/2

Proof Let U be the transformed continuous-time solution with the transformation

given by equation (3.2). As it is the case for the proof of Proposition 2.1, the

smoothness assumption on the payoff function guarantees that U is 2q + 2 times

differentiable and the derivatives are bounded in the time region of interest. To

demonstrate that the local error is of order L1(q+ 1)/2, it suffices to show

, k .

U(z,t-d)= r.PiU(z+hid1/2,t)+O(d(q+l)/2)

i= 1
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First, expanding the left-hand side into a Taylor series about (z, t), we get

[q/2]

U(z,t-d)=U(z,t)+ E dj

j=l

aj
atjU(z,t)/j! + O(Il(q+1J/2)

Now, let n denote the first term in the right-hand side of equation (3.7). We want to

show that n deviates from the right-hand side of equation (3.8) with an error at most

O(.:l(q+ 1)/2). Expanding n into a Taylor series about (z, t), we have

aj

azj

k q

ll=U(z,t)+ L LPih{tlj/2
i~lj=l

U(z,t)/j! + O(I1(q+l)/2)

Substituting the first q moment assumptions shows

[q/2]
n = U(Z,t) + E Ilj

j=l

aij

Vaz2jU(Z,t)/j!+O(b.(q+l)/2
(3.10)

Now, since U satisfies Uzz(z, t}/2 + U;(z, t} = 0, differentiating this equation once with

respect to t or twice with respect to z, we have U;t(z, t} = -tuzzt(z, t} and Uzzt(z, t} =

-tUzzzz(z, t}. Hence, U;t = -t X ( -t}Uzzzz = tUzzzz. More generally, differentiating

j times with respect to t and 2j times with respect to z, we get

(3.11)

aj 1 a2j
atJU(Z,t) = va;27U(Z,t)

Hence, substituting equation (3.11) into equation (3.10) yields the desired result on the

local error. To complete the proof, it remains to show the rate of convergence of the

discrete-time solution. This is easily done following the proof of Proposition 2.1. O

Table 3.1 shows the number of moments matched by various multinomial approxima-

tions. The first row of the table shows an asymmetric trinomial procedure suggested in

a multidimensional context by He (1990) and Amin (1991). The next two rows show the

binomial and trinomial procedures. It is interesting that the usual binomial model not

only matches the first two moments of a normal distribution, but a third one as well.

The last row shows a higher order pentanomial procedure that appears new in the

literature.5
The rate of convergence of the multinomial models, like the binomial one, depends

crucially on the smoothness of the payoff function. For payoff functions that are

smooth enough, high-order convergence is guaranteed by Proposition 3.1.6 However,

for those payoff functions that are not continuously differentiable, like the standard call

payoff function, the rate of convergence is the smaller of the approximate rate at the

boundary and the rate of the multinomial scheme's truncation error. For example, for
smooth payoff functions, the rate of convergence of the trinomial model is Ll2 = l/n2.

But it still has only a (uniform) rate of 1/ In for the standard call option on the

5 The pentanomial procedure uses step l1iz~s of :1: 4.94842fj;; , etc., because it is impossible to match

the desired moments of a normal distribution using step sizes of :1: fj;; , :1: 2fj;; , and :1: 3fj;; .
6 Proposition 3.1 implies the result of Proposition 2.1, but has a stronger assumption on the

smoothness.
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TABLE 3.1

Order of Multinomial Models

The table provides the order of the local error and the rate of convergence of

multinomial models when the payoff functions are smooth enough. The p vector and

h vector are given in the second and third columns. The step size is 11 , which is

proportional to l/n in an n-period multinomial model.

Local

errorMethod h Convergencep q

~ ii ~)
2 ' , 2

1 1 1

(3'3'3
2 0( 1l3/2) 0(111/2)Asymmetric

trinomial

Binomial (~,~} (-1,1} 3

Trinomial (~, ~, ~} ( -/3 ,0, /3} 5

Pentanomial (P1'P2'P3'P2'P1}* (-at' -a2'0,a2'aJt 7

(--

O(A2} 0(11)

0(6.3)

0(6.4)

O(~2)

O(~3)

.PI = 0.00261961, P2 = 0.181415, PJ = 0.636647.
t 01 = 4.94842, 02 = 1.64947.

binomial tree. With the smoothing method, the rate goes up to l/n. As shown by

Thomee and Wahlbin (1974), if a high-order smoother is used, the accuracy can be

improved up to the rate of the truncation error, 1/n2.

To illustrate, consider the European call option valued earlier by using binomial

methods. The first panel of Table 3.2 reports the numerical results by using the

standard trinomial method (the trinomial model in Table 3.1). Like Table 2.1, the five

columns of the first panel of Table 3.2 provide the number of periods, the exact

Black-Scholes price, the error of the trinomial price, the ratio of the errors, and the

error of the extrapolated solution. Since the 1/n2 rate of convergence is considered for

the trinomial model, the extrapolated solution is computed as (4C2n -Cn)/3, rather

than 2C2n -Cn as the case in the binomial model. Table 3.2 shows that the ratio varies

from 3.1644 to 6.4835, and to -0.4443 as n increases. There is no indication of fast
convergence at all. For example, when n = 1280, the trinomial price still has an error of

-0.0024, almost of the same magnitude as the binomial error (see Table 2.1). This

should not happen with smooth payoff functions, but occurs here due to the non-

smoothness of the call payoff function. Furthermore, the extrapolated solutions show

little improvement in reducing the error.

Although not reported in the table, the earlier BS adjustment and the smoothing

method do not appear here to achieve the potential 1/n2 rate of convergence of the

trinomial model! This is because, with these two procedures, either the solution or the

payoff function is still not smooth enough. Intuitively, the closer the time of the BS

adjustment to today, the more accurate the solution should be. In the special case

where the adjustment time is today, we get the exact BS price. Hence, the BS

adjustment with a step size larger than previously used may cause the trinomial model

to have 1/n2 rate of convergence. For simplicity, we apply the BS adjustment at time

[T{n7ili]/n, where [T{n7ili] is the integer part of T{n7ili .The time to maturity

7 For example, the errors from the BS adjustment are not much different from the binomial case, and

the ratio varies from -0.0067 to -30.3617, and to 0.0830 as n increases from 320 to 640, and to 1280.
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TABLE 3.2

Trinomial Model

Consider the valuation of a European call option on a stock whose price is 100. The

strike is 100, the time to maturity is one year, the volatility is 40%, and the

continuously compounded annual interest is 6%. In the table, the first two columns of

the first panel are the number of periods (n) of the trinomial model and the

Black-Scholes price. The next three columns are the error of the trinomial price,

the ratio of the error, and the error of the extrapolated solution. The second panel

reports the corresponding results obtained by using a large-step Black-Scholes (LBS)

adjustment.

10

20

40

80

160

320

640

1280

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

3.16439174

6.48345738

-1.30645215

0.78081594

1.57925997

5.54207021

-0.44427702

-0.01699769

0.00779179

0.01274357

0.00990112

0.00471447

-0.00054190

-0.00351528

ExtrapolatedExact

-0.19310730

-0.06102509

-0.00941243

0.00720457

0.00922698

0.00584260

0.00105423

-0.00237290

LBS adjustment Error ration

10

20

40

80

160

320

640

1280

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

18.47260446

-0.00438731

-0.00107186

-0.00021631

-0.00005450

-0.00001351

-0.00000340

-0.00000085

-0.00000021

4.09319744

4.95512945

3.96907669

4.03454030

3.97881976

3.99579080

3.98838098

0.00003330

0.00006887

-0.00000056

0.00000016

-0.00000002

0.00000000

0.00000000

from [T{ii7fOJ/n to T is only a fraction of T, and approaches zero as n increases

without bound. In other words, for large n, the time of the BS adjustment is still close

to maturity. Numerical results from this large-step BS adjustment (LBS adjustment) are

reported in the second panel of Table 3.2. Interestingly, with the LBS adjustment, the

solutions are highly accurate. For example, the binomial solution without adjustment
has an error -0.0024 for n = 1280, but the error of the LBS adjustment is only

-0.00000021. The rate of convergence of the LBS adjustment is clearly 1/n2 as the

ratios are close to 4. The high accuracy is also confirmed by the extrapolated solutions,
which are accurate up to the fifth digit with n as small as n = 40.

4. AMERICAN OPTIONS

Thus far our discussion has been focus.~d on European options. In fact, both the BS

adjustment and the smoothing procedure are also applicable to American options.

Consider the valuation of an American put option price with the same parameters as in

the European call option example. The results are reported in Table 4.1. As before, the
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TABLE 4.1

American Option

Consider the valuation of an American put option on a stock whose price is 100. The

strike is 100, the time to maturity is one year, the volatility is 40%, and the

continuously compounded annual interest is 6%. In the table, the first column of

the first panel is the number of periods (n) in the binomial model. The next four

columns are the usual binomial put price, its difference over time, the ratio of the

differences, and the extrapolated solution. The other two panels are the corresponding

results obtained by using the Black-Scholes (BS) adjustment and the smoothing

procedure, respectively.

Binomial Difference Extrapolatedn Difference ratio

10

20

40

80

160

320

640

1280

0.0428

0.0077

-0.0037

-0.0076

-0.0074

-0.0062

-0.0047

13.36070770

13.33326632

13.31796717

13.30644636

13.29911939

13.29415273

13.29092954

5.55797769

-2.03324744

0.49539499

1.02202811

1.20269808

1.31802574

Difference Extrapolated

13.27497441

13.31784106

13.32555369

13.32176043

13.31410339

13.30661139

13.30038206

13.29565580
-

BS adjustment Difference ration

10

20

40

80

160

320

640

1280

13.37783463

13.34536217

13.32367643

13.31117601

13.30399931

13.30007858

13.29803658

13.29694381

-0.03247246

-0.02168574

-0.01250042

-0.00717670

-0.00392073

-0.00204200

-0.00109277

13,31288971

13,30199070

13,29867559

13,29682261

13.29615786

13.29599458

13.29585104

1.49741103

1.73480059

1.74180560

1.83045198

1.92003938

1.86865232

Smoothing Difference ExtrapolatedDifference ration

10

20

40

80

160

320

640

1280

-0.11261697

-0.06195137

-0.03430790

-0.01859832

-0.00968624

-0.00560373

-0.00264434

13.31850681

13.30722105

13.30055661

13.29766787

13.29689370

13.29537249

13.29568753

1.81782869

1.80574632

1.84467703

1.92007598

1.72853621

2.11913684

first column is the number of periods (n). Since there is no exact solution for the

American put, the next four columns of the first panel report the standard binomial put

price, their differences, and the Tatios of the differences. The other two panels are the

corresponding results obtained by using the Black-Scholes adjustment and the smooth-

ing procedure, respectively.

6664

1263

9326

5704

9200

2933

2626
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Since the exact error cannot be computed as there are no available analytical

formulas for the American put price, the differences of the numerical solutions are

relied upon to indicate the speed of convergence. As n increases, the differences of the

binomial solutions oscillate somewhat, but are generally within penny accuracy. This is

also true for both the BS adjustment and the smoothing procedure. The differences

demonstrate that the numerical solutions converge fairly well to the continuous limit.

But this does not mean that all of the three procedures have the same rate of

convergence. Information on the rate of convergence is contained in the ratio of the

differences. As is known, if any of the procedures has a convergence rate of l/n, the

corresponding ratios should be close to 2. Indeed, the ratios from either the BS

adjustment or the smoothing procedure are fairly close to 2. In contrast, the ratios from

the binomial model oscillate irregularly between -2.0332 and 5.5580.

The numerical experiments suggest that both the BS adjustment and the smoothing

procedure appear to have a convergence rate of l/n even for American options. In

contrast, the rate of convergence of the standard binomial model, like its applications

to European options, oscillates irregularly. This is further confirmed by examining the

extrapolated solutions, which are given in the last column where it can be seen that

the differences of the extrapolated solutions based on either the BS adjustment or the

smoothing procedure shrink steadily. In contrast, the differences of the extrapolated

binomial solutions oscillate, making it difficult to determine their accuracy.

In comparison with other numerical approaches, our methods have known rates of

convergence that are useful for extrapolation, while the rates of convergence of other

approaches are mostly unknown (e.g., see Huang, Subrahmanyam, and Yu 1996).

Moreover, our methods are very simple to implement and easy to understand, and are

applicable to a general stock price process. In contrast, many existing approaches are

fairly complex and suitable only for specific problems.

Although there is extensive literature on valuing American options, little is available

on the computation of the critical price at which an option should be optimally

exercised. In what follows we apply both the BS adjustment and the smoothing

procedure to obtain the critical price. In contrast with the l/n rate of convergence for

the option price, it is striking that the critical price converges at a rate of only 1/ In .

We will illustrate this by computing the critical price of the previous put option

example.
Theoretically, it is well known that the critical price, S*, of an American put is the

root of

(4.1) j(S*)=P(S*)-(K-S*)=O,

where P(S*) is the American put option price when the stock price equals S*. As

f(S) > 0 when S > S* and f(S) < 0 when S < S*, we can use the standard bisection

method to find the root of the nonlinear function f(S). Since the exercise price is

bounded between the strike K and 2,K/(T2 + 2,) (Ingersoll 1987, p. 375), we only
need to search in the range [2,K/( (T 2 + 2, ), K ]. With the American put option price,

P(S), computed by either the BS adjustment or the smoothing procedure, the bisection

method can be easily implemented. Hence, the root of (4.1) provides us a numerical

approximation of the exact critical price.

The numerical results are provided in Table 4.2. There are two convincing "pieces
of' evidence supporting the 1/ In rate. Fir~t, the price ratios are approaching ii = 1.41

as n increases. For example, when n = 160, the ratios are 1.431 and 1.363, already close

to ii .Second, the extrapolated solution, ( ii S2n -Sn) 1( ii -1), converges steadily.
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TABLE 4.2

Critical Price

Consider the valuation of the critical or exercise price for an American put option on a

stock. The strike price is 100, the time to maturity is one year, the volatility is 40%, and

the continuously compounded annual interest is 6%. In the table, the first column of

the first panel is the number of periods (n) in the binomial model with the

Black-Scholes (BS) adjustment prior to maturity. The next four columns are the

critical price, the difference of the computed critical prices, the ratio of the differ-

ences, and the extrapolated solution. The second panel provides the same results by

using the smoothing procedure.

BS Adjustment Difference ExtrapolatedDifference ratio

10

20

40

80

160

320

640

12RO

64.13948376

63.01636124

62.25847626

61.74383577

61.38429845

61.12979222

60.94894032

60.82004496

1.12312253

0.75788497

0.51464049

0.35953732

0.25450623

0.18085191

0.12889536

60.30490360

60.42878009

60.50138372

60.51629858

60.51535983

60.51232519

60.50886403

1.48191687

1.47264932

1.43139659

1.41268573

1.40726317

1.40309091

10

20

40

80

160

320

640

1280

0.99015123

0.65944077

0.48748350

0.33700952

,0.24730681

,0.17506599

,0.12642396

60.46008717

60.59905207

60.52671015

60.55297697

60.52223165

60.52157044

60.51257872

1.50150138

1.35274481

1.44649773

1.36271831

1.41264911

1.38475322

Indeed, the differences are smaller than a few pennies when n > 160, and are less than

one penny when n > 320. It is difficult to show theoretically why the rate of conver-

gence of the critical price is 1/ In .But a simple error analysis reveals that the accuracy

of the critical prices depends not only on the option price approximations, but also on

approximations to the first-order derivative. This may help clarify why there is a

difference in numerical accuracy between an American option price and the associated

critical price.

5. INTEREST RATE CON NGENT CLAIMS

The analysis on the rate of convergence also applies to interest rate contingent claims

and other derivatives. Instead of the Black-Scholes formula, an appropriate European

option pricing formula can be used for the adjustment prior to maturity. Alternatively,

especially in the absence of' a closed-form solution to the European option, the

smoothing technique can be used to improve the rate of convergence of existing

binomial and trinomial models for interest rate derivatives.
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Although both the adjustment and smoothing methods are straightforward to apply

to interest rate options, a major problem in valuing interest rate contingent claims is to

compute the price of a zero coupon bond. As the payoff function of such a bond is

smooth, neither the adjustment nor the smoothing method is needed in using existing

binomial and trinomial models to compute the bond price.

However, those existing binomial and trinomial models are applications of explicit

finite difference methods to the valuation equation of the interest rate derivatives (e.g.,

see Hull and White 1990), and their accuracy is limited to I:\ or l/n. In what follows,

we propose a new trinomial model that has 1/n2, a much faster rate of convergence.

Then we provide a numerical example to compare its accuracy with standard binomial

and trinomial models.

Suppose that the instantaneous interest rate, r(z, t), is a function of a Wiener

process z (in the risk-neutral probabilities) at time t. It is well known (Cox, Ingersoll,

and Ross 1985) that any interest rate contingent claim will be a function of z and t, and

its value, V(z, t), must satisfy a valuation equation. For a wide class of specifications,

examples of which include Vasicek (1977), Dothan (1978), Cox et al. (1985), Longstaff

(1989) (corrections in Beaglehole and Tenney 1992), and Black and Karasinski (1991),

this valuation equation can be transformed to the following partial differential equation

V;(z,t) = -i~z(z,t) +r(z,t)V(z,t),

with appropriate boundary conditions. To obtain the highly accurate trinomial method,

we differentiate this equation with respect to t to obtain

V;t(z,t) = -.:::.~zt(z,t) + [r(z,t)V(z,t)]t

2

Then, differentiating equation (5.1) twice with respect to z and substituting the result,
~zt = V;zz = -~zzz/2 + (rV)zz, into equation (5.2), we have a useful expression for V;t:

z,t) -~[r(z,t)V(z,t)]zz+ [r(z,t)V(z,t)]t
2

V;t = 4 ~z;

Now, by using a second-order Taylor series expansion, we can relate the value of Vat

time t -ho to those at t as follows:

.:l2
V(Z,t- .:l) = V(Z,t) -.:lV;(Z,t) + 2V;Az,t) + O(.:l3

The idea is to replace the derivatives of equation (5.4) by discrete approximations and

then solve for V(z, t -~). To do this, we denote by i/J(V) the left-hand side of the

following important finite difference approximation,

3~

d
z,t) + 4~zt(z,t) +O(d2=v:
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Making use of equations (5.1) and (5.3), and the finite difference operator 1/1, we obtain

from equation (5.4) a complete discrete approximation to the valuation function,

(5.6) V(z,t-j).)

112

2

= V(z,t) +
I/I(V)

Ll2

[4 l/J(rV

Solving equation (5.6) for V(z, t -Il), we obtain a trinomial model for the contingent

claim,

(5.7) V( z, t -Ll ) = Pl V( Z -vf3";l" , t) + P2V( Z, t) + P3V( Z + vf3";l" , t) + 0( Ll3) ,

ere

-r(z-l3X,t)d/2

Pl=6 1+r(z,t-Il)Il/2

2 1-r(z,t)Il/2

Pz= 31 +r(z,t-Il)Il/2'

1 -r( z + .;3""1;: , t )11/2

P3=6 1+;(z,t-6.)6./2

This trinomial model discounts the future values with weights PI' P2' and P3. The p's

are approximately the "risk neutral probabilities" as they are positive and their sum,

PI + P2 + P3' are approximately equal to (1 -rA). If the payoff function is smooth, such

as the payoff function of a zero-coupon bond, the trinomial model should converge to

the continuous-time solution at a rate 1/n2.

In contrast, existing binomial or trinomial methods for interest contingent claims

have a rate no better than l/n. This is because, applying the standard explicit finite
difference methods with Ax = lis: to equation (5.1), one has a trinomial model similar

to equation (2.4),

1 1
V(z,t- A) = -V(z -{j;: ,t) + -V(z + {j;: , t) -r(z, t)AV(z, t) + O(A2),

2 2

but the local error is 0(112) rather than 0(113). It is observed that replacing

r(z, t)I1V(z, t) by r(z, t -11)I1V(z, t -11) will not change the order of the local error. As

a result, one obtains a binomial model with the same theoretical accuracy,
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This is Heston's (1995) binomial model. However, the trinomial model (5.8) is not the

one often used. Motivated from analogues to the trinomial model for stock options,
Hull and White (1990) suggest the use of spacing .lx = {3""j;: in applications to term

structure models. With this spacing, it is easy to show that the trinomial model (5.8)

becomes,

'"

V(z,t -ll) = -V(z -{j; ,t

6
(5.10)

~ -r(z,t)l/lV(Z,t)

z + {t;: , t) + 0( Il:
6

This is the trinomial model used by Hull and White (1990) and others.

To illustrate the rate of convergence, we consider the valuation of a zero coupon

bond in the Cox et al. (1985) square-root model, where the instantaneous interest rate,

r(z, t) follows the diffusion process:

dr= K(O-r)dt+ uvrdz,(5

where K, f}, and (T are parameters of the model, and dz is the standard
Gaussian-Wiener process. Let K = 0.15, f} = 0.054, and (T = 0.18. These are not unrea-

sonable values for the parameters. Suppose the current rate is ro = 6%. We compute

the price of a zero-coupon bond with face value 1 and maturities of 5 and 30 years.
The results are provided in Table 5.1. The first column is n = 1/11, the number of

periods in discrete-time models. There are numerical prices. The first one is computed

by using the standard binomial model (5.8). The second is from the trinomial model

(5.10), and the third is from the new trinomial model (5.7). The second column of the

table is the analytical price given by Cox et al. (1985), and the rest of the columns are

the errors and ratios of the three discrete-time models. Consider the 5-year bond first;

the results are in the first panel of the table. Theoretically, the binomial and the

trinomial models should converge at the same rate, but the numerical results show that

the binomial model performs better despite the fact that it uses less information than

the trinomial model. Because the payoff function is smooth and the bond price is

infinitely differentiable, the ratios behave so nicely that they are almost exactly equal to

2. For the new trinomial model, it is remarkable that the accuracy is up to the fourth
digit with n as small as 20. In contrast, the same accuracy has to take n = 1280 to

achieve for the binomial model and the trinomial model. Again because of the

smoothness of the payoff function, the ratios are almost 4, confirming a theoretical

l/n2 rate of convergence. For the 30-year bond, the same observations hold as seen

from the results in the second panel of the table. However, as the maturity lengthens, a

larger n is required to obtain the same accuracy. It is easy to verify that the ratios are
almost 2 and 4 as n increases beyond n = 1280.

6. CONCLUSIONS

This paper analyzes the rate of convergence of discrete-time models to their continu-

ous-time analogues. We find that th~ rate of convergence depends on both the local

error of the discrete-time models and the smoothness of the payoff functions of a

specific derivative. As most option payoff functions are often of all-or-nothing type,
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their numerical approximations may not have the rate of convergence commonly

expected. In particular, we show that the rate of convergence of the standard binomial

model will not converge to the Black-Scholes formula value at the l/n rate at all

nodes of the binomial tree. Solutions to the nonsmoothness of the payoff functions are

proposed. In particular, a Black-Scholes adjustment and a smoothing procedure are

provided to make the binomial model converge uniformly at the l/n rate so that the

standard Richardson extrapolation can be used to obtain solutions with higher order of

accuracy.
The proposed procedures are useful not only in binomial models and multinomial

models, but also useful to any other discrete-time models that face the nonsmoothness

problem of the payoff functions. In particular, our studies point out the need to analyze

the impact of the nonsmoothness problem on various Monte Carlo schemes and the

theoretical rate of convergence of many simulation procedures which are of interest

both in theory and practice. Additionally, the nonsmoothness boundary conditions also

appear to affect the rate of convergence of numerical solutions to stochastic differential

equations which are widely used to value derivatives. These are interesting topics for

future research.

REFERENCES

AMES, W. A. (1992): Numerical Methods for Partial Differential Equations, 3rd ed. New York:

Academic Press.

AMIN, K. (1991): On the Computation of Continuous- Time Option Prices Using Discrete-

Time Models, I. Financial Quant. Anal. 26,477-496.

AMIN, K., and A. KHANNA (1994): Convergence of American Option Values from Discrete-

to Continuous- Time Financial Models, Math. Finance 4, 289- 304.

BEAGLEHOLE, D., and M. TENNEY (1992): Corrections and Additions to" A Nonlinear

General Equilibrium Model of the Term Structure of Interest Rates," I. Financial Econ.

32, 345- 353.

BLACK, F., and P. KARASINSKI (1991): Bond and Option Pricing when Short Rates Are

Lognormal, Financial Anal. I. (July-August), 52-59.

BOyLE, P. P., J. EVNINE, and S. GIBBS (1989): Valuation of Options on Several Underlying

Assets, Rev. Financial Stud. 2,241-250.

BRENNER, P., V. THoMEE, and L. WAHLBIN (1975): Besov Spaces and Applications to

Difference Methods for Initial Value Problems. New York: Springer-Verlag.

BROADIE, M., and J. DETEMPLE (1996): American Option Valuation: New Bounds, Approxi-

mations, and a Comparison of Existing Methods, Rev. Financial Stud. 9,1211-1250.

BROADIE, M., and J. DETEMPLE (1998): Recent Advances in Numerical Methods for Pricing

Derivative Securities; in Numerical Methods in Finance, L. C. G. Rogers and D. Talay, eds.

Cambridge: Cambridge University Press.

Cox, J. C., J. E. INGERSOLL, and S. Ross (1985): A Theory of the Term Structure of Interest

Rates, Econometrica 53, 385-407.

Cox, J. C., S. A. Ross, and M. RUBINSTEIN (1979): Option Pricing: A Simple Approach, I.

Financial Econ. 7,229-263.

DERMAN, E., I. KANI, D. ERGENER, and I. BARDHAN (1995): Enhanced Numerical Methods

for Options with Barriers, Financial Anal. I. (Nov-Dec), 65- 74.
'

DoTHAN, M. (1978): On the Term Structu.re of Interest Rates, I. Financial Econ. 7,229-264.

FRIEDMAN, A. (1964): Partial Differential Equation of Parabolic Type. Englewood Cliffs, NJ:

Prentice- Hall.



ON THE RATE OF CONVERGENCE OF DISCRETE-nME CONnNGENT CLAIMS 75

HE, H. (1990): Convergence from Discrete to Continuous Time Contingent Claims Prices,

Rev. Financial Stud. 3, 523-546.

HESTON, S. (1995): Discrete Versions of Continuous-Time Interest Rate Models, I. Fixed

Incomes, 86-88.

HUANG, J., M. SUBRAHMANYAM, and G. YU (1996): Pricing and Hedging American Options:

A Recursive Integration Method, Rev. Financial Stud. 9,277-300.

HULL, J., and A. WHITE (1988): The Use of Control Variate Technique in Option Pricing, I.

Financial Quant. Anal. 23,237-251.

HuLL, J., and A. WHITE (1990): Valuing Derivative Securities Using the Explicit Finite

Difference Method, I. Financial Quant. Anal. 25, 87-99.

INGERSOLL, J. E. (1987): Theory of Financial Decision Making. Totowa, NJ: Rowman and

Littlefield.

JOHNSON, N. L., S. KOTZ, and A. W. KEMP (1992): Univariate Discrete Distributions, 2nd ed.

New York: Wiley.

LEISEN, D., and M. REIMER (1996): Binomial Models for Option Valuation-Examining and

Improving Convergence, Appl. Math. Finance 3,319-346.

LoNGSTAFF, F. A. (1989): A Nonlinear General Equilibrium Model of the Term Structure of

Interest Rates, I. Financial Econ. 23, 195-224.

MADAN, D. B., F. MILNE, and H. SHEFRIN (1989): The Multinomial Option Pricing Model

and its Brownian and Poisson Limits, Rev. Financial Stud. 2,251-265.

RUBINSTEIN, M. (1994): Implied Binomial Trees, I. Finance 49, 771-818.

STRECOK, A. J. (1968): On the Calculation of the Inverse of the Error Function, Math.

Computation 22, 144-158.

THOMEE, V., and L. WAHLBIN (1974): Convergence Rates of Parabolic Difference Schemes

for Non-smooth Data, Math. Computation 28, 1-13.

V ASICEK, 0. (1977): An Equilibrium Characterization of the Term Structure, I. Financial

Econ. 5, 177-188.


