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ON THE RATE OF CONVERGENCE
OF FINITE-DIFFERENCE APPROXIMATIONS

FOR BELLMAN EQUATIONS WITH CONSTANT COEFFICIENTS

HONGJIE DONG AND N. V. KRYLOV

Abstract. Elliptic Bellman equations with coefficients independent of the variable
x are considered. Error bounds for certain types of finite-difference schemes are
obtained. These estimates are sharper than the earlier results in Krylov’s article of
1997.

§1. Introduction

Our main purpose in this paper is to present some new estimates for the rate of
convergence of finite-difference approximations in the problem of finding viscosity or
probabilistic solutions of degenerate elliptic Bellman equations. Historically, the first
estimates were obtained in [8] for the equations with “constant” coefficients. There, the
convergence rate of order h1/3, where h is the mesh size, was established in the case
where the “free” term is Lipschitz continuous and the finite-difference approximations
are monotone, translation invariant, and apart from that, almost arbitrary with the
order of consistency h. It was also shown in [8] that in the general framework the order
of accuracy cannot be better than h1/2. After that, in [9] the results were extended to
parabolic degenerate Bellman equations with variable coefficients. It was proved that if
the data are Hölder 1/2 continuous in the time variable and Lipschitz continuous in the
space variables, then, again, the approximation error for quite arbitrary finite-difference
approximations admits an estimate of order of accuracy h1/3 from one side and of order
of accuracy h1/21 from the other. Also in [9], some approximations similar to finite-
difference ones were suggested with the order of accuracy not less than h1/3; see, e.g.,
Theorem 5.7 in [9]. This theorem is close to Theorem 3.5 in [1], where in a particular
elliptic situation the error bound of order of accuracy h1/2 was obtained on the account
of a special approximation. The authors of [1] and [2] did a very good job of surveying
the literature related to finite-difference approximations for the Hamilton–Jacobi and
Bellman equations; instead of copying their comments, we allow ourselves to refer the
interested reader to [1] and [2] for that information.

One of the purposes in the papers [9] and [10] (the latter is the basis for the former)
was not only to give the rates of convergence, but also prove the convergence itself. In
a subsequent paper, the second author intends to establish such convergence for general
approximation schemes in the case where the limit function is not a viscosity solution of
the corresponding Bellman equation.
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One of the main ideas in [8, 9] is that the original Bellman equation and the approx-
imate finite-difference one should play symmetric roles. Another idea is to “shake” the
coefficients if they depend on x in both the approximate finite-difference equation and
the Bellman equation. Both ideas were also used in the elliptic case in [1, 2], and better
results than those in [8, 9] were obtained for special finite-difference schemes. One of the
main results of [2] is that the order of approximation is not less than h1/5.

In this paper we also investigate what happens if instead of general consistent finite-
difference approximations as in [8, 9], where we were partly aimed at proving mere conver-
gence, we take those that better suit finding solutions numerically. In our view, the first
natural step in this direction is to investigate equations with “constant” coefficients. We
use the standard symmetric approximation for the second-order derivatives and two ap-
proximations for the first derivative: the monotone one, which depends on the sign of the
coefficient of the derivative, and the symmetric one such as [u(x + h) − u(x − h)]/(2h).
We also assume better regularity, namely, the C1,1-regularity of the free terms, and prove
that, with monotone approximation of the first-order term, the error bound is of order
of accuracy h (Theorem 2.8) and not better (Example 3.2).

Our methods are very different from those in [1, 2], which are based on the theory of
viscosity solutions, and it would be very interesting to understand whether our results
can be obtained on the basis of that theory. In Example 3.2 the proof of the sharpness
of Theorem 2.8 is based on the fact that the first-order coefficient is not zero. We do not
know anything about sharpness if it is identically zero; probably yet other methods are
needed to clarify the situation.

By assuming more structure on the equation and using the symmetric approximation
of the first derivatives we obtain the error bound of order of accuracy h2 (Theorem 2.11)
and show that it is sharp (Example 3.5).

As far as we understand, our results are stronger than those in [1, 2]; however, they
are only proved for equations with constant “coefficients”. It should also be noted that
our Theorem 2.9 may look like Theorem 3.5 in [1]. Yet the latter treats a different kind
of approximations, such as Theorem 5.7 in [9].

All our main results (mentioned above) are stated in §2. We discuss them in §3. §4
contains general auxiliary results, part of which shows that the second-order differences
of generally not very smooth functions interact with mollification much like the second-
order derivatives do. The proof of Theorem 2.8 is given in §5 and Theorems 2.9 and 2.11
are proved in the final §6.

To conclude the Introduction, we set up some notation: R
d is a d-dimensional Eu-

clidean space with a fixed standard orthonormal basis e1, e2, . . . , ed; x = (x1, x2, . . . , xd)
is a typical point in R

d and (x, y) = xiyi is the inner product for x, y ∈ R
d (as usual, the

summation convention over repeated indices is enforced). For any l = (l1, l2, . . . , ld) ∈ R
d

and any differentiable function u on R
d, we denote Dlu = uxi li and D2

l u = uxixj lilj , etc.
In general, various constants are denoted by N , and the expression N = N(· · · ) means
that the constant N in question depends only on what is listed in the parentheses.

§2. The setting and main results

Let A be a separable metric space (the set of all admissible controls), let d1, d ≥ 1
be integers, and let �1, . . . , �d1 be nonzero vectors in R

d. Let (Ω,F , P ) be a complete
probability space, and let {Ft; t ≥ 0} be an increasing filtration of σ-algebras Ft ⊂ F that
are complete with respect to F , P . We denote by A the set of all A-valued Ft-adapted
processes measurable with respect to the product of the Borel σ-algebra on (0,∞) and
F . Assume that a d1-dimensional Wiener process wt is defined on (Ω,F , P ) for t ≥ 0.
We suppose that wt is a Wiener process with respect to Ft.
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Suppose that on A we are given continuous real-valued functions σk(α), bk(α), k =
1, . . . , d1, and c(α). We introduce functions σ(α), a(α), and b(α), taking values in the
sets of (d × d1)- and (d × d)-matrices and in R

d, respectively, by

σik(α) = �i
kσk(α), σ(α) = (σik(α)), a = (1/2)σσ∗, b(α) = �rbr(α),

with no summation over k. Let f(α, x) be a real-valued function on A × R
d.

For a number γ ∈ (0, 1] and a function g given on a domain G ⊂ R
d, we set

[g]0,γ,G := sup
x,y∈G

|g(x) − g(y)|
|x − y|γ , |g|0,G := sup

x∈G
|g(x)|,

|g|0,γ,G := |g|0,G + [g]0,γ,G

and denote by C0,γ(G) the space of functions with finite norm | · |0,γ,G. For any integer
n ≥ 1, we let Cn(G) and Cn,γ(G) be the spaces of n times continuously differentiable
functions g on G with finite norms |g|n,G and |g|n,γ,G, respectively, where

|g|n,G :=
n∑

i=0

[g]i,G, [g]i,G := |Dig|0,G, |g|n,γ,G := [Dng]0,γ,G + |g|n,G.

If G = R
d, we drop the symbol G in the notation of spaces and norms, so that, for

instance, Cn,γ := Cn,γ(Rd) and | · |n,γ := | · |n,γ,Rd .

Assumption 2.1. For some numbers K ≥ 1 and κ > 0, for any α ∈ A we have

(2.1)
d1∑

k=1

(|�k| + |σk(α)|2 + |bk(α)|) + |c(α)| + |f(α, ·)|1,1 ≤ K, c(α) ≤ −κ.

Denote
Lαu(x) = aij(α)uxixj (x) + bi(α)uxi(x),

F (uij , ui, u, x) = sup
α∈A

{aij(α)uij + bi(α)ui + c(α)u + f(α, x)}.(2.2)

Observe that if
ak(α) := (1/2)|σk(α)|2,

then

(2.3) aij(α)uxixj = ak(α)D2
�k

u,

so that Lα may appear to have a very special form. The fact that, actually, Lα is a more
or less general operator is explained in Remark 3.1.

We are interested in the following Bellman equation:

(2.4) F (uxixj (x), uxi(x), u(x), x) = 0.

One of the revelations of (2.4) is the following system characterizing an obstacle problem:

∆u − u ≤ 0, u ≥ g, ∆u − u = 0 on the set {u > g}.
Indeed, the above system is equivalent to one equation:

sup
α∈[0,1]

{α∆u − u + (1 − α)g} = 0.

Therefore, if |g|1,1 < ∞, then all the results below are applicable.
We know (see, e.g., [3]) that under the above conditions there is a unique bounded

viscosity solution v of (2.4), which coincides with the probabilistic one given by

(2.5) v(x) = sup
α∈A

E

∫ ∞

0

f(αt, x
α
t (x)) exp

( ∫ t

0

c(αs) ds
)

dt,
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where

xα
t (x) = x +

∫ t

0

σk(αs)�k dwk
s +

∫ t

0

bk(αs)�k ds.

Finding v is one of the optimization problems in the theory of controlled diffusion pro-
cesses.

By Assumption 2.1, we have∣∣∣
∫ ∞

0

f(αt, x
α
t (x)) exp

( ∫ t

0

c(α) ds
)

dt
∣∣∣ ≤

∫ ∞

0

Ke−κt dt = κ−1K.

Thus, |v|0 ≤ K/κ.
We do not want to allow our controlled process to drift in some directions without

diffusion along the same directions. Therefore, we make the following assumption, which
is automatically satisfied if b ≡ 0.

Assumption 2.2. If k ∈ {1, . . . , d1}, α ∈ A, and bk(α) �= 0, then supβ |σk(β)| > 0.

In Theorems 2.8 and 2.9 we use the following finite-difference approximations. For
every h > 0 and l ∈ R

d, we define the first-order and the second-order differences in the
direction l with step size h:

∆+
h,lu(x) = h−1(u(x + hl) − u(x)),

∆−
h,lu(x) = h−1(u(x) − u(x − hl)),

∆2
h,lu(x) = h−2(u(x + hl) − 2u(x) + u(x − hl)).

Let B = B(Rd) be the set of all bounded functions on R
d. For every h > 0 and

every α ∈ A, we introduce a bounded linear operator Lα
h : B → B as follows. Let

a± = (|a| ± a)/2; we put

(2.6) Lα
hu = ak(α)∆2

h,�k
u + b+

k (α)∆+
h,�k

u − b−k (α)∆−
h,�k

u.

The finite-difference approximations of v which we have in mind will be introduced by
means of the equation

(2.7) Fh[u](x) := sup
α∈A

{Lα
hu(x) + c(α)u(x) + f(α, x)} = 0, x ∈ R

d.

Few straightforward properties of the above objects will be used.

Lemma 2.3. For any h > 0 and any α ∈ A we have Lα
h1 = 0. Furthermore, denote

ph = K(h−2 + h−1). Then for any h > 0 and any α ∈ A the operator u → Lα
hu + phu is

monotone, by which we mean that if u1, u2 ∈ B and u1 ≤ u2, then

Lα
hu1 + phu1 ≤ Lα

hu2 + phu2.

Next, we restate some results of [8] in the following three lemmas based on Lemma
2.3. The first one gives the existence and uniqueness of solutions of (2.7). The second
plays the role of the comparison principle for finite-difference schemes.

Lemma 2.4. For any h > 0 and any bounded function g(α, x) on A× R
d there exists a

unique bounded solution of equation (2.7) with g in place of f . Moreover, if we denote
by vh = vh(x) the solution of (2.7), then

(2.8) [vh]1 ≤ κ−1[f ]1 ≤ Kκ−1.

Lemma 2.5. (i) If ϕ(x) is a bounded function and

(2.9) Fh[ϕ](x) ≤ (≥) 0, x ∈ R
d,

then ϕ(x) ≥ (≤) vh on R
d.
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(ii) If g1(α, x), g2(α, x), u1, and u2 are bounded functions, C is a constant, and

(2.10)
sup
α∈A

{Lα
h [u1](x) + c(α)u1(x) + g1(α, x)} + C

≥ sup
α∈A

{Lα
h [u2](x) + c(α)u2(x) + g2(α, x)}

for all x ∈ R
d, then

(2.11) u1 − u2 ≤ κ−1 sup
α,x

[g1(α, x) − g2(α, x)]+ + κ−1C+.

Remark 2.6. Obviously, we have Fh(−κ−1K) ≥ 0 and Fh(κ−1K) ≤ 0. Therefore, |vh|0 ≤
κ−1K.

Lemma 2.7. The same estimate as in (2.8) is valid for v in place of vh, i.e.,

(2.12) [v]1 ≤ κ−1[f ]1 ≤ Kκ−1.

Here are two main results of this paper.

Theorem 2.8. There is a constant N depending only on d, d1, K, κ, �k, and ak(α) and
such that for any x ∈ R

d and any h > 0 we have

(2.13) |vh(x) − v(x)| ≤ Nh.

Theorem 2.9. Suppose that Assumption 2.1 is fulfilled with |f |0,1 in place of |f |1,1.
Then there is a constant N depending only on d, d1, K, κ, �k, and ak(α) and such that
for any x ∈ R

d and any h > 0 we have

(2.14) |vh(x) − v(x)| ≤ Nh1/2.

In the case where F is smooth we have a better estimate. To state the result we need
an assumption stronger than Assumption 2.2, and we change our notation somewhat.

Assumption 2.10. We have |bk(α)| ≤ Kak(α) for all α ∈ A and k = 1, . . . , d1.

This time we introduce the operators Lα
h by a formula different from (2.6):

(2.15) Lα
hu(x) = ak(α)∆2

h,�k
u(x) + bk(α)∆+

2h,�k
u(x − h�k).

As above, Lemmas 2.3, 2.4, 2.5, and 2.7 remain true but this time only if Kh ≤ 2. Of
course, in Lemmas 2.4 and 2.7 and in Theorem 2.11 below, by vh we mean a unique
bounded solution of (2.7) with the new operators Lα

h .

Theorem 2.11. Let γ ∈ (0, 1) be a number. Suppose there is a function Φ(uij , ui, u, x)
on R

d0 , where d0 = d2 + 2d + 1, such that
(i) Φ(uij , ui, u, x) = Φ(uji, ui, u, x);
(ii) Φ(uij , ui, u, x) = 0 on the surface

Γ := {(uij , ui, u, x) : F (uij , ui, u, x) = 0} ⊂ R
d0 ;

(iii) for each R ∈ [0,∞) we have Φ ∈ C2,γ(GR), where GR = UR × R
d,

(2.16) UR =
{
(uij , ui, u) ∈ R

d′
0 :

∑
ij

|uij | +
∑

i

|ui| + |u| ≤ R
}

, d′0 = d0 − d;

(iv) for each R ∈ [0,∞) there is a constant µ(R) > 0 such that for any (uij , ui, u, x) ∈
Γ ∩ GR and any unit λ ∈ R

d we have

(2.17) Φukr
(uij , ui, u, x)λkλr ≥ µ(R).

Then there is a constant N such that

|v − vh|0 ≤ Nh2

for all 0 < h ≤ 2/K.
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Remark 2.12. Similar results for the Bellman equations with “inf” in place of “sup” can
be obtained by replacing u with −u, with the use of the relation sup{− · · · } = − inf{· · · }.

§3. Discussion and examples

Remark 3.1. One may think that considering the operators Lα written in the form
ak(α)D2

�k
+ bk(α)D�k

is a severe restriction. However, it turns out that if a finite subset
B ⊂ Z

d such that SpanB = R
d is fixed, and if an operator Lu = aijuxixj + biuxi admits

a monotone finite-difference approximation

Lhu(x) =
∑
y∈B

ph(y)u(x + hy),

then automatically
L =

∑
l∈B
l �=0

alD
2
l +

∑
l∈B
l �=0

blDl

for some al ≥ 0 and bl ∈ R.
To be more precise, assume that for any smooth u(x) we have

(3.1) Lu(0) = lim
h↓0

Lhu(0)

and Lhu(0) < 0 if u has a strict maximum at 0. The latter condition simply means that
0 ∈ B, ph(0) < 0, and ph(y) ≥ 0 for y ∈ B \ {0}.

The term biuxi admits the above representation because SpanB = R
d. Therefore, it

suffices to deal with aijuxixj , assuming that aij �≡ 0, so that

ā := Trace a > 0.

Let B = {0, l1, . . . , lm}, where |lk| > 0, and observe that for v(x) = u(x) + u(−x) we
have

Lhv(0) =
m∑

k=1

ph(lk)[u(hlk) + u(−hlk)] + 2ph(0)u(0).

Furthermore,

0 = L1 = lim
h↓0

Lh1 = lim
h↓0

[ m∑
k=1

ph(lk) + ph(0)
]
,

so that

Lhv(0) =
m∑

k=1

ph(lk)[u(hlk) − 2u(0) + u(−hlk)] + o(1)

as h ↓ 0. It follows that

2aijuxixj (0) = lim
h↓0

m∑
k=1

h2ph(lk)∆2
h,lk

u(0).

In particular, for u(x) = |x|2,
1
p̄h

:=
m∑

k=1

h2ph(lk)|lk|2 → 2ā > 0.

Also, obviously, the terms h2ph(lk)p̄h are bounded in h, and along a sequence hn ↓ 0
they converge to some āk ≥ 0. Thus, we see that

aijuxixj (0) = ā

m∑
k=1

ākD2
lk

u(0),

which proves the claim.
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Example 3.2. We show that the result of Theorem 2.8 is sharp even if A is a singleton,
so that F is linear. Let d = 1, Lu = Lαu = uxx + ux, c = −1, and f(α, x) = cosx. Then
v(x) = Re(β exp(ix)) is the solution of Lu − u + f = 0 for

β =
1

2 − i
.

To find the solution vh of the equation Lhvh − vh +cos x = 0, we represent vh as the real
part of the solution of Lhu − u + exp(ix) = 0. The latter equation can be solved if we
try u(x) = β exp(ix). It turns out that vh(x) = Re(βh exp(ix)), where

βh =
(
1 + 2

1 − cos h

h2
+

1 − eih

h

)−1

.

Not surprisingly, βh → β as h ↓ 0. It follows that

lim
h↓0

vh(0) − v(0)
h

=
d

dh
Re βh

∣∣
h=0

= Re
1

2(2 − i)2
=

3
50

,

whence |v(0) − vh(0)| ∼ 3h/50 as h ↓ 0. Therefore, Theorem 2.8 is sharp.

Remark 3.3. In Example 3.2, the reason why we only have the first order of convergence
is that b �= 0. Admittedly, we do not know anything about the sharpness of Theorem 2.8
if b ≡ 0.

Remark 3.4. In Theorem 2.11 we can take Φ = F if F is smooth and the controlled
process is uniformly nondegenerate, that is, if there exists a constant δ > 0 such that

(3.2) (a(α)λ, λ) ≥ δ|λ|2 for any α ∈ A and any λ ∈ R
d.

Indeed,

Fuij
(uij , ui, u, x)λiλj = lim

t↓0

1
t
[F (uij + tλiλj , ui, u, x) − F (uij , ui, u, x)]

≥ inf
α∈A

(a(α)λ, λ).

In Example 3.8 we shall see that, sometimes, Theorem 2.11 is still applicable even if
condition (3.2) is violated.

Example 3.5. We show that the result of Theorem 2.11 is sharp, and again even for
linear equations. Let d = 1; we take Lαu = uxx, c(α) = −1, and f(α, x) = f(x) = cosx.
The corresponding linear second-order equation can be solved easily: v(x) = (1/2) cosx.
The solution vh of the finite-difference equation can be found in the same way as in
Example 3.2. It turns out that vh(x) = βh cos x, where

βh =
(
1 + 2

1 − cos h

h2

)−1

.

We immediately get |v(0) − vh(0)| ∼ h2/48 as h ↓ 0, which shows that Theorem 2.11 is
sharp indeed.

Remark 3.6. Example 3.5 and Remark 3.1 basically show that approximations of order
higher than h2 cannot be obtained by using monotone schemes.

Before passing to the next example, we state and prove the following lemma, in which
assertion (i) is a very particular case of some results in [7].

Lemma 3.7. (i) Let f, g, u1, u2 be real numbers such that f ≥ 0 and g ≥ 0. Then the
set of conditions

(3.3) u1u2 = f2 + g(u1 + u2), u1, u2 ≥ g
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is equivalent to

(3.4) inf
α∈A

(α1u1 + α2u2 − 2
√

α1α2

√
f2 + g2 − g) = 0,

where A = {α = (α1, α2) : αi ≥ 0, α1 + α2 = 1}.
(ii) If f, g ∈ C1,1 and f, g ≥ 0, then

√
f2 + g2 ∈ C1,1.

Proof. (i) Relation (3.3) can be written as

v1v2 = f2 + g2, vi ≥ 0,

where vi = ui − g. It is well known that the latter equation is equivalent to

inf
α∈A

(α1v1 + α2v2 − 2
√

α1α2

√
f2 + g2) = 0,

which is (3.4).
(ii) Statement (ii) is proved by approximating f and g with positive functions fn, gn ∈

C2 and by obtaining uniform estimates of the C1,1-norm of
√

f2
n + g2

n. The latter is done
by straightforward differentiating, with the use of the well-known pointwise inequality
|uxi(x)| ≤ 2

√
u(x)

√
|uxixi |0, which is valid for nonnegative functions in C2.

The lemma is proved. �

Example 3.8. We give an example of using Theorem 2.11, which shows the advantage
of imposing condition (2.17) only on Γ∩GR. For d = 2, consider the following equation,
which is similar to one in a series of Monge–Ampère equations:

(3.5) (vx1x1 − v)(vx2x2 − v) = f2(x) + g(x)(∆v − 2v).

We seek a solution of (3.5) in the class of functions v ∈ C1,1 such that vxixi − v ≥ g a.e.,
i = 1, 2, assuming that f, g ∈ C1,1, f, g ≥ 0.

Then Lemma 3.7 and our previous results (see, in particular, Remark 2.12) guarantee
that such a solution exists and is unique; furthermore, for any h > 0 the finite-difference
equation

(3.6) (∆2
h,e1

vh − vh)(∆2
h,e2

vh − vh) = f2(x) + g(x)(∆2
h,e1

vh + ∆2
h,e2

vh − 2vh)

has a unique solution vh in the class of bounded functions such that ∆2
h,ei

vh − vh ≥ g,
i = 1, 2. Theorem 2.8 implies that

(3.7) |v − vh|0 ≤ Nh

for any h > 0. Now assume that for some constants γ, ε ∈ (0, 1) we have

f, g ∈ C2,γ , f2 + g2 ≥ ε.

We introduce

Φ(uij , ui, u, x) = (u11 − u)(u22 − u) − f2(x) − g(x)(u11 + u22 − 2u).

Then, obviously, assumptions (i)–(iii) of Theorem 2.11 are satisfied. To check the re-
maining assumption (iv), observe that

Φukr
(uij , ui, u, x)λkλr = (u22 − u − g)(λ1)2 + (u11 − u − g)(λ2)2.

As was mentioned above, on Γ we have

u11 − u ≥ g, u22 − u ≥ g, (u22 − u)(u22 − u) = f2 + g(u11 + u22 − 2u),

(u22 − u − g)(u22 − u − g) = f2 + g2 ≥ ε.

Moreover, if (uij , ui, u) ∈ UR, then |uii − u − g| ≤ 2R + |g|0, and the above relations
imply that

u11 − u − g ≥ ε/(2R + |g|0), u22 − u − g ≥ ε/(2R + |g|0).
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It follows that

(3.8) Φukr
(uij , ui, u, x)λkλr ≥ |λ|2ε/(2R + |g|0),

so that assumption (iv) of Theorem 2.11 is satisfied with µ(R) = ε/(2R + |g|0), and this
theorem yields

|v − vh|0 ≤ Nh2.

We emphasize that (3.8) is false for very many (uij , ui, u, x) outside of Γ ∩ GR.

Remark 3.9. Example 3.12 in [7] treats equation with g ≡ 0 for d ≥ 2, and estimate (3.7)
is asserted for f ∈ C0,1, f ≥ 0. However, there is an arithmetical error in the argument
in that example, so that, actually, h in the corresponding version of (3.7) in [7] should
be replaced with h1/2. It is still better than the typical h1/3 of [7] and agrees well with
Theorem 2.9.

§4. Some auxiliary results

Let S denote the set of real-valued infinitely differentiable functions ζ(x) on R
d that

tend to zero together with each derivative as |x| → ∞ faster than |x|−n for any n ≥ 0.
For ζ ∈ S, a bounded function u, and ε > 0, we define the mollification of u by

u(ε) = ζε ∗ u

where ζε := ε−dζ(x/ε). It is well known that u(ε) is a smooth function on R
d, and

that the differential (difference) operators commute with the operation of mollification.
Furthermore, the function u(ε) is represented as the “sum” over y ∈ R

d of u(· − εy)ζ(y).
In any Banach space the norm of a sum does not exceed the sum of the norms. This
proves the first inequality in (4.1) below.

Lemma 4.1. Let γ ∈ (0, 1], n, m = 0, 1, 2, . . . , u ∈ Cn,γ . Then

(4.1) |u(ε)|n,γ ≤ |u|n,γ

∫
Rd

|ζ| dx, |u(ε)|n+m,γ ≤ N(d, n, k, ζ)ε−m|u|n,γ .

Estimates (4.1) are also true if we drop γ and assume that u ∈ Cn.
Furthermore, if ζ has unit integral and u ∈ C0,1, then

(4.2) |u − u(ε)|0 ≤ N(ζ, d)ε|u|0,1.

Finally, if ζ is even and has unit integral, and u ∈ C1,1, then

(4.3) |u − u(ε)|0 ≤ N(ζ, d)ε2|u|1,1.

The second inequality in (4.1) follows from the first once we bring all derivatives up to
the order m to ζε. To prove (4.3) for u ∈ C2, it suffices to observe that, by the symmetry
of ζ,

u(ε)(x) − u(x) =
∫

Rd

[u(x − εy) − u(x) − εyiuxi(x)]ζ(y) dy,

where the integrand is dominated by N |y|2ε2|u|1,1. After that, (4.3) is carried over to
all u ∈ C1,1 by using an obvious extra mollification. Estimate (4.2) is proved similarly
by using the inequality |u(x − εy) − u(x)| ≤ ε|y|.

Lemma 4.2. Suppose u ∈ C0,1, η ∈ S, ε, h > 0, l ∈ R
d, |l| = 1. Introduce

I(η, x) :=
∫

Rd

u(x − εy)D2
l η(y) dy.

Then for any r > 0 we have

I(η, x) =
∫

Rd

u(x − εy)∆2
r,lη(y) dy − 1

6r2

∫ r

−r

(r − |s|)3I(D2
l η(· + sl), x) ds.(4.4)
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Moreover,

|I(η, x)| ≤ Nε2(|∆2
h,lu|0 + [u]0,1h

2/ε3),(4.5)

|D2
l u(ε)|0 ≤ N(|∆2

h,lu|0 + [u]0,1h
2/ε3),(4.6)

where N = N(d, η, ζ).

Proof. Formula (4.4) is an immediate consequence of the following result of application
of Taylor’s formula:

(4.7) D2
l η(y) = ∆2

r,lη(y) − 1
6r2

∫ r

−r

D4
l η(y + sl)(r − |s|)3 ds.

Next,

|I(η, x)| =
∣∣∣
∫

Rd

[u(x − εy) − u(x)]D2
l η(y) dy

∣∣∣
≤ ε[u]0,1

∫
Rd

|y| |D2
l η(y)| dy = Nε[u]0,1.

Also, observe that changing variables shows that the operator ∆2
h/ε,�k

is selfadjoint. It
can easily be checked that, for r = h/ε, the result of application of the operator ∆2

r,l

with respect to y to the function u(x − εy) is simply ε2(∆2
h,lu)(x − εy). Therefore,

∣∣∣
∫

Rd

u(x − εy)∆2
r,lη(y) dy

∣∣∣ = ε2
∣∣∣
∫

Rd

(∆2
h,lu)(x − εy)η(y) dy

∣∣∣
≤ ε2|∆2

h,lu|0
∫

Rd

|η(y)| dy = Nε2|∆2
h,lu|0.

Now (4.4) implies that

|I(η, x)| ≤ Nε2|∆2
h,lu|0 + Nε[u]0,1

1
r2

∫ r

−r

(r − |s|)3 ds = Nε2|∆2
h,lu|0 + Nr2ε[u]0,1.

This proves (4.5). To prove (4.6), it suffices to note that D2
l u(ε)(x) = ε−2I(ζ, x). The

lemma is proved. �

Remark 4.3. Applying (4.5) to the estimation of I(D2
l η(· + sl), x), and using (4.4) and

induction on m, one can prove easily that the following estimates are true for any m, n =
0, 1, . . . , and ε ≥ h > 0:

|I(η, x)| ≤ Nε2(|∆2
h,lu|0 + (h/ε)mε−1[u]0,1),

|Dn+2
l u(ε)|0 ≤ Nε−n(|∆2

h,lu|0 + (h/ε)mε−1[u]0,1),

where N = N(d, m, n, η, ζ).

Lemma 4.4. Suppose u ∈ C0,1, ε ≥ h > 0, and ζ(x) = (4π)−d/2 exp(−|x|2/4). Then

(4.8) |u(ε) − u|0 ≤ N(d)
(
ε2

∑
i

|∆2
h,ei

u|0 + h[u]0,1

)
.

Proof. Our particular ζ is well related to the heat semigroup Tt, namely, u(ε) = Tε2u.
For any t > s > 0 we have

Ttu − Tsu =
∫ t

s

∆Tru dr,

where, by (4.6) with n = 0 and
√

r in place of ε,

(4.9) |∆Tru|0 ≤ N
( ∑

i

|∆2
h,ei

u|0 + [u]0,1h
2r−3/2

)
.
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Consequently,

|Ttu − Tsu|0 ≤ N(t − s)
∑

i

|∆2
h,ei

u|0 + N [u]0,1h
2s−1/2.

Furthermore, (4.2) implies that |Tsu − u|0 ≤ N
√

s[u]0,1, so that

|Ttu − u|0 ≤ Nt
∑

i

|∆2
h,ei

u|0 + N [u]0,1h
2s−1/2 + N

√
s[u]0,1.

It only remains to take t = ε2 and s = h2. The lemma is proved. �

Remark 4.5. In fact, (4.8) with N(ζ) in place of N(d) is true for any even ζ ∈ S with
unit integral.

Indeed, let Ptu = u(
√

t). Then for smooth u we have
∂

∂r
Pru(x) = −(1/2)r−1/2

∫
Rd

ζ(y)yiuxi(x − y
√

r) dy

=
∫

Rd

ζi(y)uxixi(x − y
√

r) dy

=
∑

i

D2
ei

∫
Rd

ζi(y)u(x − y
√

r) dy,

(4.10)

where

ζi(y) = −(1/2)
∫ yi

−∞
ζ(y − yiei + sei)s ds.

The expression on the right in (4.10) is estimated by the right-hand side of (4.9) as
before, and we get the result by following the same lines as in the proof of the lemma.

The last auxiliary result we need is obtained by using (2.3), the mean value theorem,
and straightforward inspection.

Lemma 4.6. For any u ∈ C4 and h > 0 we have

|Lα
hu − Lαu| ≤ N(K)

(
h2

d1∑
k=1

|D4
�k

u|0 + h

d1∑
k=1

|D2
�k

u|0
)

if the Lα
h are as in (2.6), and

|Lα
hu − Lαu| ≤ N(K)h2

( d1∑
k=1

|D4
�k

u|0 +
d1∑

k=1

|D3
�k

u|0
)

if the Lα
h are as in (2.15).

§5. Proof of Theorem 2.8

Due to Assumption 2.2, without losing generality we may assume that

sup
α∈A

ak(α) > 0, k = 1, . . . , d1.

Next, let L = Span{�1, . . . , �d1}, and let M be the orthogonal complement of L in R
d.

Then we can represent each point x ∈ R
d as (x′, x′′), where x′ ∈ L and x′′ ∈ M, and

since the operators L and Lh only affect the variable x′, we can regard x′′ as a parameter
appearing in f(α, x) and prove (2.13) for each particular value of this parameter.

Also, we note that
inf
|l|=1
l∈L

sup
α∈A

(a(α)l, l) > 0.
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Indeed, otherwise (cf. (2.3)) we can find a unit l ∈ L such that

sup
α∈A

d1∑
k=1

ak(α)(l, lk)2 = 0,

and for each k,
(l, lk)2 sup

α∈A
ak(α) = 0, (l, lk) = 0,

which is impossible for a unit l ∈ L.
Taking all these into account and passing from R

d to L if necessary, we see that
without losing generality we may assume that the following is true.

Assumption 5.1. There is a constant δ > 0 such that equation (2.4) is weakly δ-
nondegenerate; that is, for any unit l ∈ R

d we have

(5.1) sup
α∈A

(a(α)l, l) ≥ δ.

We shall see that under this assumption the constant N in (2.13) depends only on
d, d1, K, κ, δ, and �k. By the way, (5.1) is a condition on F (uij , ui, u, x) rather than on
its particular representation (2.2), because

sup
α∈A

(a(α)l, l) = lim
t→∞

t−1F (liljt, 0, 0, x).

Lemma 5.2. We have d1 ≥ d, and there exist vectors �k1 , . . . , �kd
such that they form a

basis in R
d and

(5.2) sup
α∈A

aki
(α) ≥ δ/(2d1K

2) =: δ1, i = 1, . . . , d.

Proof. Since R
d is spanned by �1, . . . , �d1 , we can find �k1 , . . . �kd

forming a basis in R
d. If

(5.2) is satisfied for all i = 1, . . . , d, we are done. If not, then there is no loss of generality
in assuming that (5.2) is violated for i = 1. By (2.3), inequality (5.1) can be rewritten
as

sup
α∈A

d1∑
k=1

ak(α)(l, �k)2 ≥ δ.

Let l1 be a unit in R
d perpendicular to �k2 , . . . , �kd

, and let α1 ∈ A be such that
d1∑

k=1

ak(α1)(l1, �k)2 ≥ δ/2.

Then we can find k̃1 satisfying

δ/(2d1) ≤ ak̃1
(α1)(l1, �k̃1

)2 ≤ K2ak̃1
(α1).

This and the fact that l1 ⊥ �k2 , . . . , �kd
imply that �k̃1

�∈ Span{�k2 , . . . , �kd
}. Hence,

�k̃1
, �k2 , . . . , �kd

is still a basis in R
d. We see that we can replace any �ki

for which (5.2) is
violated with a different element of {�1, . . . , �d1} for which (5.2) is satisfied and preserve
the linear independence of new vectors. The lemma is proved. �

By relabeling if needed, we may assume that

�ki
= �i, i = 1, . . . , d.

It turns out that a linear transformation allows us to further reduce the general situ-
ation to that with

(5.3) �i = ei, i = 1, . . . , d.
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Indeed, observe that if Q : R
d → R

d is a linear one-to-one transformation, then
v(Qx) = ṽ(x), where

ṽ(x) = sup
α∈A

E

∫ ∞

0

f̃(αt, x̃
α
t (x)) exp

( ∫ t

0

c(αs) ds

)
dt,

x̃α
t (x) = x +

∫ t

0

σk(αs)�̃k dwk
s +

∫ t

0

bk(αs)�̃k ds,

f̃(α, x) = f(α, Qx), �̃k = Q−1�k.

Consequently, the function ṽ is associated with the Bellman equation

sup
α∈A

[ak(α)D2
�̃k

u(x) + bk(α)D�̃k
u(x) + c(α)u(x) + f̃(α, x)] = 0.

Moreover, for the function ṽh(x) := vh(Qx) we have

∆±
h,�̃k

ṽh(x) = (∆±
h,�k

vh)(Qx), ∆2
h,�̃k

ṽh(x) = (∆2
h,�k

vh)(Qx),

so that

sup
α∈A

[
ak(α)∆2

h,�̃k
ṽh(x) + b+

k (α)∆+

h,�̃k
ṽh(x)

+ b−k (α)∆−
h,�̃k

ṽh(x) + c(α)ṽh(x) + f̃(α, x)
]

= 0.

Since |vh − v|0 = |ṽh − ṽ|0, it suffices to estimate |ṽh − ṽ|0, and since always there
exists Q such that �̃i = Q−1�i = ei, i = 1, . . . , d, we see that indeed assuming (5.3) does
not restrict generality. Actually, the chain rule and the fact that the ith column of Q
is exactly �k show that Assumption 2.1 is satisfied for our new equation with �̃k, f̃ , and
K̃ = K̃(K, �1, . . . , �d) in place of �k, f , and K, respectively. All other assumptions are
satisfied automatically.

Everywhere below in this section we assume that (5.3) is fulfilled. First, we prove that
v and vh possess some regularity.

Lemma 5.3. There is a constant N = N(d, K, κ, δ) such that for all h > 0, k = 1, . . . , d,
we have

(5.4) |∆2
h,�k

vh|0 ≤ N.

Moreover, vh(x) + N |x|2 is convex and, for any ζ ∈ S and any unit l ∈ R
d and ε > 0,

we have

(5.5) |D2
l v

(ε)
h |0 ≤ N(1 + h2/ε3),

where N = N(d, K, κ, δ, ζ).

Proof. To prove (5.4) we follow the same ideas as in [5]. First, observe that

sup
α∈A

{Lα
hvh + c(α)vh + f(α, x)} = 0

by the definition of vh. Let γ > 0 be a number, and let l be a unit vector in R
d. Taking

the symmetric second-order difference ∆2
γ,l of both sides and using the inequality

inf
α

∆2
γ,lϕ

α(x) ≤ ∆2
γ,l sup

α
ϕα(x),

we obtain
inf
α∈A

{Lα
h∆2

γ,lvh(x) + c(α)∆2
γ,lvh(x) + ∆2

γ,lf(α, x)}

≤ 0 = inf
α∈A

{Lα
h0 + c(α)0 + ∆2

γ,lf(α, x)} − inf
α∈A

∆2
γ,lf(α, x).

(5.6)
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Here

(5.7) |∆2
γ,lf(α, x)| ≤ K.

Indeed, if f ∈ C2, then, by Taylor’s formula applied to the function

y(γ) = f(x + γl) − 2f(x) + f(x − γl),

we have
y(γ) = (1/2)γ2[D2

l f(x + θγl) + D2
l f(x − θγl)],

where θ ∈ (0, 1). In this case (5.7) follows from Assumption 2.1. To get rid of the
extra smoothness assumption on f , we can use mollification, easily obtaining (5.7) in full
generality.

After that, coming back to (5.6) and using Lemma 2.5 and Remark 2.12, we conclude
that

(5.8) ∆2
γ,lvh(x) ≥ −κ−1| inf

α,x
∆2

γ,lf(α, x)| ≥ −κ−1K.

To derive an upper bound for ∆2
h,�k

vh, we note that

δ1∆2
h,�1vh ≤ sup

α∈A
{a1(α)∆2

h,�1vh}

≤ Fh[vh] + sup
α∈A

{
−

d1∑
k=2

ak(α)∆2
h,�k

vh − b+
k (α)∆+

h,�k
vh

− b−k (α)∆−
h,�k

vh − c(α)vh − f(α, x)
}

≤ N(d, k, κ),

where we have used (5.8) with γ = h, Lemma 2.4, Assumption 2.1, and the positiveness
of ak(α). The quantity δ1∆2

h,�i
vh for i = 2, . . . , d is estimated similarly, which finishes

the proof of (5.4).
The arbitrariness of γ and l in estimate (5.8) implies that vh(x)+κ−1K|x|2 is convex.

Therefore, if ζ ≥ 0, then uh := v
(ε)
h (x) + κ−1K|x|2 is also convex and smooth. In that

case, by (5.3), for any unit l ∈ R
d we have

−N ≤ D2
l v

(ε)
h (x) ≤ D2

l uh(x) ≤ N

d∑
k=1

D2
�k

uh(x) = N

d∑
k=1

D2
�k

v
(ε)
h (x) + N.

Now, to prove (5.5) for ζ ≥ 0, it only remains to use (4.6). The general case is reduced
to the above one by representing an arbitrary ζ as the difference of two nonnegative
elements of S. The lemma is proved. �

Lemma 5.4. There is a constant N = N(d, K, κ, δ) such that |v|1,1 ≤ N . Moreover, v
is a unique C1,1-function satisfying equation (2.4) almost everywhere in R

d.

Proof. Actually, the lemma is a very particular case of the results in [5]. However, a
direct reference may be harder to follow than a sequence of references to easier facts
presented in [5]. We prefer to give more details. First, assume that f(α, ·) ∈ C2.

For any T ∈ (0,∞), s ∈ [0, T ], and x ∈ R
d, we introduce

vT (s, x) = sup
α∈A

E

∫ T−s

0

f(αt, x
α
t (x)) exp

( ∫ t

0

c(αr) dr
)

dt.

By [5, Theorem 4.7.4] the generalized derivatives DsvT (s, x), DxvT (s, x), and D2
xvT (s, x)

are bounded in [0, T ] × R
d by a constant depending only on d, K, κ, and δ, times
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(1 + |x|m) exp(N(T − s)), where m = 0, and N measures the rate with which the mag-
nitudes of the derivatives of xα

t (x) with respect to x go to infinity as t → ∞. Since the
latter derivatives are constant, we have N = 0, and the generalized derivatives DsvT (s, x)
DxvT (s, x), and D2

xvT (s, x) are bounded in [0, T ] × R
d by a constant independent of T .

Since, obviously, |vT − v|0 → 0 as T → ∞, we have the same bounds on the derivatives
of v. Also we recall that for a function to be Lipschitz continuous is the same as to have
bounded generalized derivatives. This yields the first assertion of the lemma.

Next, by [5, Theorem 4.7.7] we have

DsvT (s, x) + F (vTxixj (s, x), vTxi(s, x), vT (s, x), x) = 0

a.e. in [0, T ] × R
d. Letting T → ∞ and using [5, Theorem 4.5.1], we get

Dsv(x) + F (vxixj (x), vxi(x), v(x), x) = 0

a.e. in [0, T ]×R
d for each T ∈ [0,∞). Since v is independent of s, we see that v satisfies

(2.4) a.e. in R
d.

We assumed above that f(α, ·) ∈ C2. However, in all estimates only the norm |f |1,1

is involved. Therefore, mollifying f with respect to x and passing to the limit, we easily
obtain the result in the general case.

If we have another function u in C1,1 (and even in a much wider class) satisfying
equation (2.4) a.e. in R

d, then, by [5, Theorem 5.3.14],

u(x) = sup
α∈A

E

[∫ T

0

f(αt, x
α
t (x)) exp

( ∫ t

0

c(αs) ds
)

dt

+ u(xα
T (x)) exp

( ∫ T

0

c(αs) ds
)]

for any T > 0. Letting T → ∞, we see that u = v. The lemma is proved. �

We combine Lemmas 4.1, 5.3, and 5.4 and the observation that

Dm+2
l u(ε) = ε−mD2

l (u ∗ η),

where η(x) = ε−d(Dm
l ζ)(x/ε), to get the following statement.

Corollary 5.5. For any nonnegative integer m and any ε, h > 0, we have

|Dv(ε)| ≤ N, |Dm+2v(ε)| ≤ Nε−m,

|Dv
(ε)
h | ≤ N, |Dm+2v

(ε)
h | ≤ Nε−m(1 + h2/ε3),

where N = N(d, d1, K, m, κ, δ, ζ).

Now we are ready to prove the theorem. By Lemma 5.4, if α ∈ A and ε > 0, then on
R

d we have the inequality

Lαv(ε) + c(α)v(ε) + f (ε)(α, x) ≤ 0.
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By Lemma 4.6, Corollary 5.5, and Lemma 4.1, for nonnegative symmetric ζ with unit
integral we obtain

sup
α∈A

{Lα
hv(ε) + c(α)v(ε) + f(α, x)}

≤ sup
α∈A

{Lαv(ε) + c(α)v(ε) + f(α, x)}

+ N(K)
[
h2

d1∑
k=1

|D4
�k

v(ε)|0 + h

d1∑
k=1

|D2
�k

v(ε)|0
]

≤ sup
α∈A

{Lαv(ε) + c(α)v(ε) + f(α, x)} + Nh2ε−2 + Nh

≤ sup
α∈A

{Lαv(ε) + c(α)v(ε) + f (ε)(α, x)} + N(h2ε−2 + h + ε2)

≤ N(h2ε−2 + h + ε2).

Lemma 2.5(ii) shows that

vh(x) ≤ v(ε)(x) + N(h2ε−2 + h + ε2) ≤ v(x) + N(h2ε−2 + h + ε2),

for any x ∈ R
d, where N depends only on κ, K, d, and δ. Letting ε = h1/2, we get the

required upper estimate for vh − v.
To estimate the same function from below, we use almost the same argument, but

start with the equation defining vh. Again we take a nonnegative symmetric ζ ∈ S with
unit integral. Observe that

(5.9) Lα
hvh(y) + c(α)vh(y) + f(α, y) ≤ 0 for any α ∈ A and y ∈ R

d.

If we multiply (5.9) by ζε(x − y) and integrate with respect to y, we obtain

(5.10) sup
α∈A

{Lα
hv

(ε)
h (x) + c(α)v(ε)

h (x) + f (ε)(α, x)} ≤ 0.

By Lemma 4.6 and Corollary 5.5, this yields

sup
α∈A

{Lαv
(ε)
h + c(α)v(ε)

h + f(α, x)}

≤ sup
α∈A

{Lα
hv

(ε)
h + c(α)v(ε)

h + f (ε)(α, x)}

+ N

[
h2

d1∑
k=1

|D4
�k

v
(ε)
h |0 + h

d1∑
k=1

|D2
�k

v
(ε)
h |0

]
+ Nε2

≤ N [h2ε−2(1 + h2ε−3) + h(1 + h2ε−3)] + Nε2.

Using this estimate and applying Itô’s formula to

v
(ε)
h (xα

t (x)) exp
( ∫ t

0

c(αs) ds

)
,

we easily see that, for any x ∈ R
d,

v(x) ≤ v
(ε)
h (x) + N [h2ε−2(1 + h2ε−3) + h(1 + h2ε−3)] + Nε2.

Relations (5.3) allow us to apply Remark 4.5, and

v(x) ≤ vh(x) + N [h2ε−2(1 + h2ε−3) + h(1 + h2ε−3)] + Nε2,

where N = N(κ, K, d, d1, δ). Putting ε = h1/2, we complete the proof of Theorem 2.8.
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§6. Proof of Theorems 2.9 and 2.11

Proof of Theorem 2.9. We use the idea of interpolation with respect to the smoothness
of f . To reflect the dependence of v and vh on f we write v = v[f ] and vh = vh[f ].
Notice that, obviously, for any constant c ≥ 0, we have v[cf ] = cv[f ] and vh[cf ] = cvh[f ].

We fix a nonnegative ζ ∈ S with unit integral and observe that |εf (ε)|1,1 ≤ N(ζ)|f |0,1.
Therefore, by Theorem 2.8,

|v[εf (ε)] − vh[εf (ε)]|0 ≤ Nh, |v[f (ε)] − vh[f (ε)]|0 ≤ Nh/ε.

Next, we have

|v[f (ε)] − v[f ]|0 ≤ κ−1|f (ε) − f |0 ≤ Nε,

|vh[f (ε)] − vh[f ]|0 ≤ κ−1|f (ε) − f |0 ≤ Nε,

so that
|v − vh|0 ≤ Nh/ε + Nε.

Now, it only remains to take ε = h1/2. The theorem is proved. �

Proof of Theorem 2.11. As was explained in Section 5, without loss of generality we may
suppose that Assumption 5.1 is satisfied and (5.3) is fulfilled.

Lemma 6.1. For ε ≥ 0, define

A(ε) = {α ∈ A : (a(α)λ, λ) ≥ ε|λ|2 for all λ ∈ R
d}.

Then for each R ∈ [0,∞) there is ε > 0 such that

sup
α∈A(ε)

[aij(α)uij + bi(α)ui + c(α)u + f(α, x)] = 0

whenever (uij , ui, u, x) ∈ Γ ∩ GR.

Proof. Take a point (uij , ui, u, x) ∈ Γ∩GR and observe that, as a function of (vij , vi, v) ∈
R

d′
0 , F (vij , vi, v, x) is a Lipschitz continuous convex function as the supremum of linear

functions, and F (vij , vi, v, x) is not constant in balls in R
d′
0 because c(α) ≤ −κ. Also,

F (vij , vi, s, x) → −∞ as s → −∞. Therefore,

Θx := {(vij , vi, v) ∈ R
d′
0 : F (vij , vi, v, x) < 0}

is a nonempty open convex set, and its boundary is

Γx := {(vij , vi, v) ∈ R
d′
0 : F (vij , vi, v, x) = 0}.

Next, observe that there is a sequence of αn ∈ A such that

aij(αn)uij + bi(αn)ui + c(αn)u + f(αn, x) → F (uij , ui, u, x) = 0,

and for all (vij , vi, v) ∈ R
d2 and all n we have

aij(αn)vij + bi(αn)vi + c(αn)v + f(αn, x) ≤ F (vij , vi, v, x).

It follows that, for a subsequence {n′} ⊂ {n}, the limit

(āij , b̄i, c̄, f̄(x)) := lim
n′→∞

(aij(αn′), bi(αn′), c(αn′), f(αn′ , x))

exists, and

āijuij + b̄iui + c̄u + f̄(x) = 0,

āijvij + b̄ivi + c̄v + f̄(x) < 0, (vij , vi, v) ∈ Θx.
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In other words, the equation āijvij + b̄ivi + c̄v + f̄(x) = 0 describes a tangent hyperplane
to Γx at (uij , ui, u). Furthermore, we have c̄ ≤ −κ, so that∑

ij

|āij |2 +
∑

i

|b̄i|2 + |c̄|2 ≥ κ2.

By assumption, for our smooth function Φ(vij , vi, v, x) we have Φ = 0 on Γx, and the
gradient of Φ with respect to (vij , vi, v) at (uij , ui, u) is not zero. It follows that Γx is
smooth near (uij , ui, u), and there is a constant β �= 0 such that

(āij , b̄i, c̄, f̄(x)) = β(Φuij
, Φui

, Φu, Φ)(uij , ui, u, x).

Since (āij) ≥ 0 and (Φuij
) > 0 (see (2.17)), we have β > 0. Moreover,

β =
c̄

Φu(uij , ui, u, x)
, β = |β| ≥ κ

[Φ]0,1,GR

:= ρ(R).

Consequently,
āijλiλj = βΦukr

(uij , ui, u, x)λkλr ≥ µ(R)ρ(R)|λ|2

for all λ ∈ R
d. Finally, it is obvious that µ(R)ρ(R)/2 can be taken as the ε we are looking

for. The lemma is proved. �

This lemma and Lemma 5.4 yield the following.

Corollary 6.2. There exists ε > 0 such that a.e. in R
d the function v satisfies the

equation

(6.1) sup
α∈A(ε)

{Lαu(x) + c(α)v(x) + f(α, x)} = 0.

Now we basically repeat the argument in [7, Remark 5.17], giving more detail. It is
well known (see, e.g., [11] or [6, Theorem 6.4.5]) that, since equation (6.1) is uniformly
nondegenerate, there exists γ ∈ (0, 1) and a unique u ∈ C2,γ satisfying (6.1) in R

d. By
the unique solvability of (6.1) in C1,1, we have u = v ∈ C2,γ .

It follows that v is a C2,γ-solution of

Φ(vxixj (x), vxi(x), v(x), x) = 0.

Finally, a classical result (see, e.g., [4, Theorem 3.13] or [6, Lemma 1.3.2]) implies that
v ∈ C4,γ , due to the smoothness of Φ. Hence, by Lemma 4.6,

|Lαv − Lα
hv| ≤ Nh2, |Fh[v]| ≤ Nh2,

and to finish the proof of Theorem 2.11, it only remains to apply Lemma 2.5. The
theorem is proved. �
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