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ON THE RATE OF CONVERGENCE
OF FINITE-DIFFERENCE APPROXIMATIONS
FOR BELLMAN EQUATIONS WITH CONSTANT COEFFICIENTS

HONGJIE DONG AND N. V. KRYLOV

ABSTRACT. Elliptic Bellman equations with coefficients independent of the variable
x are considered. Error bounds for certain types of finite-difference schemes are
obtained. These estimates are sharper than the earlier results in Krylov’s article of
1997.

§1. INTRODUCTION

Our main purpose in this paper is to present some new estimates for the rate of
convergence of finite-difference approximations in the problem of finding viscosity or
probabilistic solutions of degenerate elliptic Bellman equations. Historically, the first
estimates were obtained in [§] for the equations with “constant” coefficients. There, the
convergence rate of order h'/3, where h is the mesh size, was established in the case
where the “free” term is Lipschitz continuous and the finite-difference approximations
are monotone, translation invariant, and apart from that, almost arbitrary with the
order of consistency h. It was also shown in [8] that in the general framework the order
of accuracy cannot be better than h'/2. After that, in [9] the results were extended to
parabolic degenerate Bellman equations with variable coefficients. It was proved that if
the data are Holder 1/2 continuous in the time variable and Lipschitz continuous in the
space variables, then, again, the approximation error for quite arbitrary finite-difference
approximations admits an estimate of order of accuracy h'/? from one side and of order
of accuracy h'/?! from the other. Also in [9], some approximations similar to finite-
difference ones were suggested with the order of accuracy not less than h'/3; see, e.g.,
Theorem 5.7 in [9]. This theorem is close to Theorem 3.5 in [I], where in a particular
elliptic situation the error bound of order of accuracy h'/? was obtained on the account
of a special approximation. The authors of [I] and [2] did a very good job of surveying
the literature related to finite-difference approximations for the Hamilton—Jacobi and
Bellman equations; instead of copying their comments, we allow ourselves to refer the
interested reader to [I] and [2] for that information.

One of the purposes in the papers [9] and [10] (the latter is the basis for the former)
was not only to give the rates of convergence, but also prove the convergence itself. In
a subsequent paper, the second author intends to establish such convergence for general
approximation schemes in the case where the limit function is not a viscosity solution of
the corresponding Bellman equation.
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One of the main ideas in [8, [@] is that the original Bellman equation and the approx-
imate finite-difference one should play symmetric roles. Another idea is to “shake” the
coefficients if they depend on x in both the approximate finite-difference equation and
the Bellman equation. Both ideas were also used in the elliptic case in [I] 2], and better
results than those in [8] 9] were obtained for special finite-difference schemes. One of the
main results of [2] is that the order of approximation is not less than h'/5.

In this paper we also investigate what happens if instead of general consistent finite-
difference approximations as in [8,[9], where we were partly aimed at proving mere conver-
gence, we take those that better suit finding solutions numerically. In our view, the first
natural step in this direction is to investigate equations with “constant” coefficients. We
use the standard symmetric approximation for the second-order derivatives and two ap-
proximations for the first derivative: the monotone one, which depends on the sign of the
coefficient of the derivative, and the symmetric one such as [u(x + h) —u(z — h)]/(2h).
We also assume better regularity, namely, the C1'!-regularity of the free terms, and prove
that, with monotone approximation of the first-order term, the error bound is of order
of accuracy h (Theorem Z8]) and not better (Example B.2]).

Our methods are very different from those in [I], 2], which are based on the theory of
viscosity solutions, and it would be very interesting to understand whether our results
can be obtained on the basis of that theory. In Example the proof of the sharpness
of Theorem [2.§]is based on the fact that the first-order coefficient is not zero. We do not
know anything about sharpness if it is identically zero; probably yet other methods are
needed to clarify the situation.

By assuming more structure on the equation and using the symmetric approximation
of the first derivatives we obtain the error bound of order of accuracy h? (Theorem 2.17))
and show that it is sharp (Example B3]).

As far as we understand, our results are stronger than those in [Il [2]; however, they
are only proved for equations with constant “coefficients”. It should also be noted that
our Theorem [29] may look like Theorem 3.5 in [I]. Yet the latter treats a different kind
of approximations, such as Theorem 5.7 in [9].

All our main results (mentioned above) are stated in §21 We discuss them in §3
contains general auxiliary results, part of which shows that the second-order differences
of generally not very smooth functions interact with mollification much like the second-
order derivatives do. The proof of Theorem 2.8 is given in §5land Theorems and 2.17]
are proved in the final §6

To conclude the Introduction, we set up some notation: R? is a d-dimensional Eu-

clidean space with a fixed standard orthonormal basis ey, s, ..., eq; z = (z!,22,... %)
is a typical point in R? and (x,%) = 'y’ is the inner product for z,y € R? (as usual, the
summation convention over repeated indices is enforced). For any | = (I,12,...,1%) € R?

and any differentiable function u on RY, we denote Dju = u,:l" and DPu = uyihs 117, ete.
In general, various constants are denoted by N, and the expression N = N(---) means
that the constant N in question depends only on what is listed in the parentheses.

§2. THE SETTING AND MAIN RESULTS

Let A be a separable metric space (the set of all admissible controls), let d;,d > 1
be integers, and let ¢1,...,¢4, be nonzero vectors in R%. Let (£, F, P) be a complete
probability space, and let {F;;t > 0} be an increasing filtration of o-algebras F; C F that
are complete with respect to F, P. We denote by 2 the set of all A-valued F;-adapted
processes measurable with respect to the product of the Borel g-algebra on (0, 00) and
F. Assume that a di-dimensional Wiener process w; is defined on (Q, F, P) for ¢ > 0.
We suppose that w; is a Wiener process with respect to F;.
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Suppose that on A we are given continuous real-valued functions oy («), bi(a), k =
1,...,d1, and ¢(«). We introduce functions o(a), a(«), and b(«), taking values in the
sets of (d x dp)- and (d x d)-matrices and in R?, respectively, by

o*(a) = liop(a), o(a)=(c*(a)), a=(1/2)00", bla)="Lb.(a),
with no summation over k. Let f(a,z) be a real-valued function on A x RY,
For a number v € (0,1] and a function g given on a domain G' C R?, we set

g\x) —gly
Glomc = sup S =9GN0 suplg(a),
:l),yGG |.'I; - yl zeG

07,6 = |glo.c + [9lo.c

lg

and denote by C®7(G) the space of functions with finite norm | - |o . For any integer
n > 1, we let C*"(G) and C™7(G) be the spaces of n times continuously differentiable
functions g on G with finite norms |g|,,¢ and |g|n,~,G, respectively, where

n

e =Y lglic: [9ic = Digloc, |9lnme = [D"gloqc +lglnc.
1=0

If G = RY, we drop the symbol G in the notation of spaces and norms, so that, for
instance, C™7 := C™(R?) and | - |,

= ‘ : |n,'y,Rd‘

Assumption 2.1. For some numbers K > 1 and k > 0, for any o € A we have

dy
(2.1) D (] + low(@)* + [be(@)]) + [e(@)| + | (@, )11 < K, e(a) < -
k=1
Denote
Lu(x) = a7 (@) ugigs (€) + b (@)ug: (2),
(22) F(uij, uiyu, ) = sup{a” (a)uy; + b (a)u; + c(@)u+ f(a,x)}.

acA
Observe that if
a(a) = (1/2)|o(a)?,
then
(2.3) 0 (@)ttg10s = ar (@) D2,
so that L® may appear to have a very special form. The fact that, actually, L* is a more

or less general operator is explained in Remark [3.11
We are interested in the following Bellman equation:

(2.4) F(Ugigi (), ugi (), u(x),2) = 0.

One of the revelations of (2:4) is the following system characterizing an obstacle problem:
Au—u<0, u>g, Au—u=0on theset{u> g}

Indeed, the above system is equivalent to one equation:

sup {aAu—u+ (1 —a)g} =0.
a€l0,1]

Therefore, if |g|1,1 < oo, then all the results below are applicable.
We know (see, e.g., [3]) that under the above conditions there is a unique bounded
viscosity solution v of ([24), which coincides with the probabilistic one given by

(2.5) = sup E/ flag, zf(x)) exp (/ c(as) ds) dt,

acd
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where . .
i (z) =z +/ o () g, dw”® +/ bi (s )l ds.
0 0
Finding v is one of the optimization problems in the theory of controlled diffusion pro-
cesses.

By Assumption 2T we have

‘/000 fla, a3 (x)) exp (/Ot c(a) ds) dt‘ < /000 Ke *dt =k 'K.

Thus, |v]p < K/k.

We do not want to allow our controlled process to drift in some directions without
diffusion along the same directions. Therefore, we make the following assumption, which
is automatically satisfied if b = 0.

Assumption 2.2. Ifk € {l,...,d1}, a € A, and by(c) # 0, then supg |oy(5)| > 0.

In Theorems 2.8 and we use the following finite-difference approximations. For
every h > 0 and | € R?, we define the first-order and the second-order differences in the
direction ! with step size h:

Ay qu(w) = h™ (u(z + hl) — u(z)),
Ay ju(@) = h™ (u(z) — u(z — hl)),
Ailu(x) = h™2(u(z + hl) — 2u(z) + u(z — hi)).

Let B = B(RY) be the set of all bounded functions on R%. For every h > 0 and
every a € A, we introduce a bounded linear operator Ly : B — B as follows. Let
a* = (la| £ a)/2; we put

(2.6) Liu = ak(a)A,ZMku + bz(a)AiZku — b;(a)A;ﬁgku.

The finite-difference approximations of v which we have in mind will be introduced by
means of the equation

(2.7) Fplu)(z) = zgg{Lﬁu(x) + c(@)u(z) + fla,2)} =0, =€ R

Few straightforward properties of the above objects will be used.

Lemma 2.3. For any h > 0 and any o € A we have L§1 = 0. Furthermore, denote
pn = K(h=2+h™1). Then for any h > 0 and any o € A the operator u — Lyu+ pru is
monotone, by which we mean that if uy,us € B and u; < ug, then

Lyuy + prur < Lijus + ppus.

Next, we restate some results of [8] in the following three lemmas based on Lemma
23 The first one gives the existence and uniqueness of solutions of ([27)). The second
plays the role of the comparison principle for finite-difference schemes.

Lemma 2.4. For any h > 0 and any bounded function g(o,z) on A x RY there exists a
unique bounded solution of equation 7)) with g in place of f. Moreover, if we denote
by v, = vp(x) the solution of ([Z7), then

(2.8) [on]1 < k7L < Kt
Lemma 2.5. (i) If o(z) is a bounded function and

(2.9) Fyle](x) < (2)0, z€R%
then o(z) > (<) vp on RY.
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(ii) If g1(a, ), go(a, ), u1, and uy are bounded functions, C is a constant, and
sup{Lj[u1](z) + c(a@)ui(z) + g1 (o, @)} + C
(2.10) acd .
> Sug{Lh [uz] (@) + c(a)uz(x) + g2(a, )}
aE

for all x € RY, then

(2.11) up —ug < Kk suplgr (o, ) — go(a, )] + kTICT.

Remark 2.6. Obviously, we have F,(—x 1K) > 0 and Fj,(k 1K) < 0. Therefore, |vp|o <
KK,

Lemma 2.7. The same estimate as in (Z8)) is valid for v in place of vy, i.e.,

(2.12) [ <k MfL < Kr L

Here are two main results of this paper.

Theorem 2.8. There is a constant N depending only on d, d1, K, k, £, and ar(a) and
such that for any x € R? and any h > 0 we have

(2.13) |op(z) —v(z)| < Nh.

Theorem 2.9. Suppose that Assumption 211 is fulfilled with |flo1 in place of |f]11.
Then there is a constant N depending only on d, di, K, k, Uk, and ax(a) and such that
for any x € R? and any h > 0 we have

(2.14) lun (z) — v(z)| < NRY/2.

In the case where F' is smooth we have a better estimate. To state the result we need
an assumption stronger than Assumption 2.2] and we change our notation somewhat.

Assumption 2.10. We have |bp(a)| < Kap(a) for allao € A and k =1,...,d;.
This time we introduce the operators LY by a formula different from (2.6]):
(2.15) pu(z) = ap(Q)Af, 4, u(z) + bk(a)A;hlku(x — hey).

As above, Lemmas 23] 24 25l and 2.7 remain true but this time only if Kh < 2. Of
course, in Lemmas 2.4l and 2.7 and in Theorem [2.11] below, by v;, we mean a unique
bounded solution of ([2.7) with the new operators L.

Theorem 2.11. Let v € (0,1) be a number. Suppose there is a function ®(u;;,u;, u, )
on R%  where dy = d? + 2d + 1, such that
(1) @(uij, ws, u, x) = (w4, us, u, T);
(il) ®(wij, us,u,x) =0 on the surface
I = {(wij, ws, u, @) : F(uj, ui,u,2) =0} C R%;

(iii) for each R € [0,00) we have ® € C*>7(GR), where Gg = Ur x RY,

(2.16) Ur = {(uij,ui,u) R Y " fui + D fus| + [u] < R}, dy = do — d;
ij i
(iv) for each R € [0, 00) there is a constant p(R) > 0 such that for any (u;j, u;, u, ) €
I'NGgr and any unit A € R? we have

(2.17) Dy, (Wi, wi, u, 2)ANFAT > p(R).

Then there is a constant N such that

|v —vplo < Nh?

forall0 < h <2/K.
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Remark 2.12. Similar results for the Bellman equations with “inf” in place of “sup” can
be obtained by replacing v with —u, with the use of the relation sup{—---} = —inf{--- }.

§3. DISCUSSION AND EXAMPLES

Remark 3.1. One may think that considering the operators L® written in the form
ax(a) D} + bi(a)Dy, is a severe restriction. However, it turns out that if a finite subset
B c Z¢ such that Span B = R¢ is fixed, and if an operator Lu = ¢ u,ip; + b*u,: admits
a monotone finite-difference approximation

Lyu(zx Z pr(y)u(x + hy),

yeB
then automatically
L= ZGZD? + Z by D;
leB leB
170 170

for some a; > 0 and b, € R.
To be more precise, assume that for any smooth u(x) we have

1 L =limL
(3.1) u(0) lim nu(0)
and Lpu(0) < 0 if u has a strict maximum at 0. The latter condition simply means that
0 € B, pn(0) <0, and pi(y) > 0 for y € B\ {0}.

The term b'u,: admits the above representation because Span B = R¢. Therefore, it
suffices to deal with a"u,i,;, assuming that a* Z 0, so that

a := Tracea > 0.
Let B ={0,l1,...,lmn}, where |lx| > 0, and observe that for v(z) = u(x) + u(—x) we

have
LhU th lk hlk + U( hlk)] + 2ph(0)u(0)
Furthermore,
0=1L1= 1}3?01[/;11 = 1}%1 [;ph(lk) +Ph(0)],
so that

Lh’l)(O) = iph(lk)[u(hlk) — QU(O) + U(*hlk” + 0(1)
k=1

as h | 0. It follows that

In particular, for u(z) = \x|2,
m
Z lk ‘lk| — 2a > 0.

Also, obviously, the terms h? ph(lk)ﬁh are bounded in h, and along a sequence h, | 0
they converge to some aj > 0. Thus, we see that

auy iwi(0)=a E alek

which proves the claim.
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Example 3.2. We show that the result of Theorem [Z.8is sharp even if A is a singleton,
so that F is linear. Let d = 1, Lu = L*u = Uy + u,, ¢ = —1, and f(a,x) = cosz. Then
v(xz) = Re(Bexp(ix)) is the solution of Lu —u + f =0 for
1
=5

To find the solution vy, of the equation Ljv, — vy, + cosz = 0, we represent vy, as the real
part of the solution of Lpu — u + exp(ix) = 0. The latter equation can be solved if we
try u(z) = Bexp(iz). It turns out that vy (x) = Re(fy exp(ix)), where

1 —cosh 1—eh\-1
Br= (142 o+ )
Not surprisingly, B, — (8 as h | 0. It follows that
. vp(0) —v(0) d 1 3
1 - o = e _ = —
Ao h 2 RePrlo Reom—ie = 500

whence |v(0) — v (0)] ~ 3h/50 as h | 0. Therefore, Theorem 2.8 is sharp.

Remark 3.3. In Example B2] the reason why we only have the first order of convergence
is that b # 0. Admittedly, we do not know anything about the sharpness of Theorem 2.8
if b=0.

Remark 3.4. In Theorem 211l we can take ® = F if F is smooth and the controlled
process is uniformly nondegenerate, that is, if there exists a constant § > 0 such that
(3.2) (a(@)X,A) > 8|A[? for any o € A and any X € R%.

Indeed,

Fu,; (wij, ug, u, ©) AN = ltilrg ;[F(u” H NN u, u, ) — F(ugj, ui, u, )]
> .
> inf (a(a)X, A)

In Example B.8] we shall see that, sometimes, Theorem [Z.11] is still applicable even if
condition ([B.2]) is violated.

Example 3.5. We show that the result of Theorem [2.11] is sharp, and again even for
linear equations. Let d = 1; we take L%u = uy,, c(a) = —1, and f(a,z) = f(x) = cosz.
The corresponding linear second-order equation can be solved easily: v(z) = (1/2) cosx.
The solution vy, of the finite-difference equation can be found in the same way as in
Example It turns out that vy, (x) = B cos x, where

ﬁh=(1+211£?ﬁ)4.

We immediately get [v(0) — vp,(0)| ~ h%/48 as h | 0, which shows that Theorem 211l is
sharp indeed.

Remark 3.6. Example and Remark B.1] basically show that approximations of order
higher than h? cannot be obtained by using monotone schemes.

Before passing to the next example, we state and prove the following lemma, in which
assertion (i) is a very particular case of some results in [7].

Lemma 3.7. (i) Let f,g,u1,us be real numbers such that f > 0 and g > 0. Then the
set of conditions

(3.3) urug = f2 4+ g(ur +u), ui,uz >g
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s equivalent to

(3.4) (1w + agus — 2y/araz/ f2 + g% — g) =0,

where A ={a = (a1,a9) : @; > 0,1 + g = 1}.
(i) If f,g € CYY and f,g > 0, then \/f2 + g2 € C}L.
Proof. (i) Relation (B3] can be written as
U]U2:f2+92, vi207

inf
acA

where v; = u; — g. It is well known that the latter equation is equivalent to
iIelg(alvl + asvy — 2y /aras/ 2+ g%) =0,
[0

which is (34).

(ii) Statement (ii) is proved by approximating f and g with positive functions f,, g, €
C? and by obtaining uniform estimates of the C!*!-norm of \/f2 + g2. The latter is done
by straightforward differentiating, with the use of the well-known pointwise inequality

[ugi ()] < 23/u(z)/|tyizi|o, which is valid for nonnegative functions in C2.
The lemma is proved. O

Example 3.8. We give an example of using Theorem .11l which shows the advantage
of imposing condition (ZI7) only on I'NGi. For d = 2, consider the following equation,
which is similar to one in a series of Monge—Ampeére equations:

(3.5) (Vg1 — V) (V242 — ) = f2(2) + g(x)(Av — 2v).

We seek a solution of ([3.5) in the class of functions v € C1'! such that v, —v > g a.e.,
i=1,2, assuming that f,g € C"', f,g > 0.

Then Lemma 37 and our previous results (see, in particular, Remark [212) guarantee
that such a solution exists and is unique; furthermore, for any h > 0 the finite-difference
equation

(3.6) (A7 c,vn = 0n) (AR cyon —vn) = [2(2) + g(2) (AR o, on + AF o vn — 203)

has a unique solution vy in the class of bounded functions such that A%L’ e;Vh —Un 2 g,
i = 1,2. Theorem [Z.8 implies that

(3.7 |[v —wvplo < Nh
for any h > 0. Now assume that for some constants ~,e € (0,1) we have
frgec®, fPrg*>e.
We introduce
P (uij, wisu, ) = (w11 — u)(ug2 —u) — f2(x) = g(@) (ur + ugz — 2u).

Then, obviously, assumptions (i)—(iii) of Theorem 21Tl are satisfied. To check the re-
maining assumption (iv), observe that

Do, (i, iy, NN = (ugg — u — g)(AN)? 4 (ugg —u — g) (A2
As was mentioned above, on I' we have
Uy —u>g, g —u>g, (ugp —u)(uzg —u) = 7+ g(uin + ux — 2u),
(uzo —u—g)(uz2 —u—g) = f* +¢° > ¢.

Moreover, if (u;j,u;,u) € Ug, then |u; —u — g| < 2R + |glo, and the above relations
imply that

Uy —u—g>e/(2R+\glo), w2 —u—g>e/(2R+ |glo).
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It follows that
(38) q)ukr (uijv Ui, U, x))\k:)\r 2 |>‘|2€/(2R + ‘g|0)7

so that assumption (iv) of Theorem 211l is satisfied with u(R) = /(2R + |g|o), and this
theorem yields
|v —vplo < NA2.
We emphasize that (3.8) is false for very many (u;;,u;,u,x) outside of I' N Gg.

Remark 3.9. Example 3.12 in [7] treats equation with g = 0 for d > 2, and estimate (37
is asserted for f € C%!, f > 0. However, there is an arithmetical error in the argument
in that example, so that, actually, h in the corresponding version of ([B.7) in [7] should
be replaced with h'/2. Tt is still better than the typical h'/? of [7] and agrees well with
Theorem 2.9

§4. SOME AUXILIARY RESULTS

Let S denote the set of real-valued infinitely differentiable functions ¢(z) on R? that
tend to zero together with each derivative as |x| — oo faster than ||~ for any n > 0.
For ¢ € S, a bounded function u, and € > 0, we define the mollification of u by

u® = xu

where (. := e 4((z/e). Tt is well known that u(®) is a smooth function on R? and
that the differential (difference) operators commute with the operation of mollification.
Furthermore, the function u(®) is represented as the “sum” over y € R? of u(- — ey)¢(y).
In any Banach space the norm of a sum does not exceed the sum of the norms. This
proves the first inequality in (1) below.

Lemma 4.1. Let vy € (0,1], n,m =0,1,2,..., u € C™7. Then
@D iy <l [ Kz, s < Nk Ol

Estimates [1)) are also true if we drop v and assume that v € C™.
Furthermore, if ¢ has unit integral and u € C%t, then

(4.2) lu—u®o < N(¢, d)elulo,
Finally, if ¢ is even and has unit integral, and u € CHt, then
(4.3) lu—u® o < N(¢,d)e?[uly,1.

The second inequality in ([&1]) follows from the first once we bring all derivatives up to
the order m to (.. To prove [@3) for u € C?, it suffices to observe that, by the symmetry
of ¢,

u® (z) — u(z) = / fu(z — ey) — u(e) — eytugs ()]C(y) dy,

Rd
where the integrand is dominated by N|y|?c?|ul; ;. After that, [3)) is carried over to
all u € CH! by using an obvious extra mollification. Estimate (2] is proved similarly
by using the inequality |u(x — ey) — u(z)| < ely|.

Lemma 4.2. Suppose u € C%', n€ S, e,h >0,1cR?, || =1. Introduce

)= [ ute=0) Dinto) dy.

Then for any r > 0 we have

(44)  I(n,x)= /Rd u(z —ey) A2 m(y) dy

T

— 5z | 0= lsDI(Din(: + sl), @) ds.
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Moreover,
(4.5) [1(n, )| < Ne(|AF, yulo + [u]o,1h? /%),
(4.6) |DFu® g < N(IAF yulo + [u]o,1h? /%),

where N = N(d,n,().

Proof. Formula (4] is an immediate consequence of the following result of application
of Taylor’s formula:
T

1
(4.7) Din(y) = Alm(y) = o3 | Dinly+s)(r = [s|) ds.

Next,
) = [l = e) = u(@) Dty dy

<cfuloa [ Il IDEnto)] dy = Nelulos.

Also, observe that changing variables shows that the operator A}% Jeoth is selfadjoint. It
can easily be checked that, for » = h/e, the result of application of the operator Ail
with respect to y to the function u(x — ey) is simply &2 (A%lu)(x —ey). Therefore,

| [ e = enatint s =] [ (aF ) vt do

< <287 ulo [ In(w)]dy = N<*IF o
R

Now (@) implies that
2( A2 L 3 2( A2 2
[1(n,x)] < Ne*|Aj, julo + Ns[u]07lr—2/ (r—[s])?ds = Ne*|Aj, julo + Nrelulo,:-

T

This proves (&F). To prove (&8), it suffices to note that D?u(®)(z) = e~2I(¢,x). The
lemma is proved. O

Remark 4.3. Applying ([H) to the estimation of I(D?n(- + sl),z), and using (£4) and
induction on m, one can prove easily that the following estimates are true for any m,n =
0,1,...,and € > h > 0:

[1(n, )| < Ne*(|AF yulo + (h/e)™e ™ ulo),
D 2ul g < Nem™ (A7 julo + (h/e)™e ™ [u]o.),
where N = N(d, m,n,n, ().
Lemma 4.4. Suppose u € C*', ¢ > h >0, and {(z) = (47) =2 exp(—|z|?/4). Then

(4.8) 0 —ulo < N(d) (32 187 . ulo + hfulo.).

Proof. Our particular ¢ is well related to the heat semigroup 7, namely, u(®) = T.ou.
For any ¢t > s > 0 we have

t
Tiu —Tou = / AT, udr,

where, by ([@6]) with n = 0 and +/r in place of ¢,

(4.9) ATyulo < N (D183 ulo + [uloa h3r=3/2).
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Consequently,
o+ N[U]0’1h28_1/2.

|Tiu — Tsulo < N(t—s) Z |A%’eiu

Furthermore, (£2)) implies that |Tsu — ulo < N4/s[u]o,1, so that
|Ttu — u‘o < Nt Z |A}21)eiu|0 + N[u]071h23_1/2 + N\/E[u}o’l.

K3
It only remains to take t = €2 and s = h2. The lemma is proved. ]
Remark 4.5. In fact, [@8) with N(¢) in place of N(d) is true for any even ¢ € S with

unit integral.
Indeed, let Pu = u(YD . Then for smooth u we have

0

S P = =127 [yt = i) dy

(4.10) = /d Gi(Y)ugizi(z — yvr) dy

R

=> D /d Giy)u(z — yv/r)dy,

- R

where v
v )
G0 ==1/2) [ =yt sesds

The expression on the right in (£I0) is estimated by the right-hand side of (£9) as

before, and we get the result by following the same lines as in the proof of the lemma.

The last auxiliary result we need is obtained by using (Z3]), the mean value theorem,
and straightforward inspection.

Lemma 4.6. For any v € C* and h > 0 we have
dl dl
|LSu — L%| < N(K) <h2 S IDjulo+hY |ngu|0>
k=1 k=1

if the LY are as in [2.6), and

dq dq
\L‘f{u — Lau| < N(K)hz(z ‘Dzlku‘o + Z D?ku|0>
k=1 k=1

if the Ly are as in (Z10).
§5. PROOF OF THEOREM 2.8

Due to Assumption 2.2] without losing generality we may assume that

sup ag(a) >0, k=1,...,d;.
acA
Next, let £ = Span{/y,...,%q,}, and let M be the orthogonal complement of £ in RY.
Then we can represent each point * € R? as (z/,2"), where 2/ € £ and 2" € M, and
since the operators L and L, only affect the variable 2/, we can regard z” as a parameter
appearing in f(a,x) and prove (2.I3]) for each particular value of this parameter.
Also, we note that

inf sup(a(a)l,l) > 0.
lll=1acA
lel
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Indeed, otherwise (cf. (Z3])) we can find a unit [ € £ such that

dy
sup Y ax(a) (k) =0,
a€cA =1

and for each k,

(lv lk)2 sup ak(a) = 07 (la lk) = 07
acA

which is impossible for a unit [ € L.
Taking all these into account and passing from R? to £ if necessary, we see that
without losing generality we may assume that the following is true.

Assumption 5.1. There is a constant 6 > 0 such that equation ([Z4) is weakly 0-
nondegenerate; that is, for any unit | € R? we have

(5.1) sup (a(a)l,l) > 0.
acA

We shall see that under this assumption the constant N in (2I3) depends only on
d,di, K, K, §, and (. By the way, (G.0)) is a condition on F'(u;;, u;, u, ) rather than on
its particular representation (Z.2]), because

sup (a(a)l,l) = tlim t~LF(1'1t,0,0,2).

acA
Lemma 5.2. We have di > d, and there exist vectors {y, , ..., L, such that they form a
basis in R? and
(5.2) sup ag, (@) > 6/(2d1 K?) =: 6y, i=1,...,d.
a€cA
Proof. Since R is spanned by /1, ..., £y, , we can find , , . . . {4, forming a basis in R%. If

(B2) is satisfied for all i = 1,...,d, we are done. If not, then there is no loss of generality
in assuming that (52) is violated for ¢« = 1. By ([23)), inequality (5II) can be rewritten

as
dy

sup Zak(a)(l,ﬁk)2 > 0.
acA ™

Let I3 be a unit in R? perpendicular to l,, ..., ¢,, and let a; € A be such that
dy

S an(an) (b, 6)? = 5/2.

k=1
Then we can find k; satisfying
§/(2d1) < ag (1) (1, 43,)* < K2ag ().
This and the fact that Iy L fy,,..., 0, imply that {; ¢ Span{/ly,, ..., ¢, }. Hence,
i s lhyy - - -5 Uiy is still a basis in R?. We see that we can replace any ¢, for which (5.2) is

violated with a different element of {¢1,..., ¢4, } for which (B.2)) is satisfied and preserve
the linear independence of new vectors. The lemma is proved. O

By relabeling if needed, we may assume that
b, =4, i=1,...,d.

It turns out that a linear transformation allows us to further reduce the general situ-
ation to that with

(53) &:ei, Z:1,7d
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Indeed, observe that if Q@ : RY — RY is a linear one-to-one transformation, then
v(Qx) = v(x), where

o0

i(z) = sup B | Flaw, 30(x)) exp ( /O t c(as)ds) dt,

acA 0

t t
g () =x + / o ()l dw® + / bi(as)ly ds,
0 0

f(a, IE) = f(av Qx)a gk = Q_lglw
Consequently, the function v is associated with the Bellman equation

igg[ak(a)ngu(x) + bk (@) Dy, u(z) + c(a)u(x) + fla,z)] = 0.

Moreover, for the function o (x) := v, (Qx) we have

Aigkffh(fv) = (A, vn)(Qx), A7 7 0n(@) = (AF 4, 0n)(Qu),

so that
2~ + + 5
21612 [ak(a)Ahjkvh(x) +0b; (a)Ah’Zkvh(x)
+ b (@A, ; On(x) + e(a)n(z) + fla,2)] = 0.
Since |vp, — v|o = |Un — U0, it suffices to estimate |0, — ¥y, and since always there

exists Q such that £; = Q7 '¢; = e;, i =1,...,d, we see that indeed assuming (5.3]) does
not restrict generality. Actually, the chain rule and the fact that the ith column of Q
is exactly £ show that Assumption [2.1]is satisfied for our new equation with [k, f , and
K = K(K,{1,...,4y) in place of ¢}, f, and K, respectively. All other assumptions are
satisfied automatically.

Everywhere below in this section we assume that (5.3)) is fulfilled. First, we prove that
v and vy possess some regularity.

Lemma 5.3. There is a constant N = N(d, K, k,0) such that for allh >0, k=1,....d,

we have

(5.4) |A7 . vnlo < N.

Moreover, v, (x) + N|z|? is convex and, for any ¢ € S and any unit | € R% and ¢ > 0,
we have

(5.5) D30 o < N(1+h2/e),

where N = N(d, K, k,0,().
Proof. To prove (0.4) we follow the same ideas as in [5]. First, observe that

sup{Lyvn + c(@)vp + fla,z)} =0
acA

by the definition of v,. Let ¥ > 0 be a number, and let I be a unit vector in R?. Taking
the symmetric second-order difference A?y,l of both sides and using the inequality

igf Ai)lgoo‘(x) < Ag,z sup % (z),
[0
we obtain
igg{L%Ai,lvh(@ + c(a)Ai’lvh(x) + A?lf(a, x)}

(56) . a 2 . 2
S 0= égg{LhO + C(OZ)O + Ay,lf((X?x)} - igg A’y,lf(aa Z‘)
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Here

(5.7) AT 1 f (0, 2)| < K.

Indeed, if f € C?, then, by Taylor’s formula applied to the function
y(7) = flz+91) = 2f(z) + flz — 1),

we have

y(v) = (1/2)7°[D f(x + 671) + D f(x — 01)],
where 0 € (0,1). In this case (B7) follows from Assumption [ZI1 To get rid of the
extra smoothness assumption on f, we can use mollification, easily obtaining (5.1) in full

generality.

After that, coming back to (5.0) and using Lemma 28] and Remark 212 we conclude
that
(5.8) Agﬂvh(x) > kY 1an£ A§7lf(a,x)| > kK.

To derive an upper bound for A} , vy, we note that

51A%,21’Uh < sup{al(a)Aiglvh}
acA

< Fyplop] + sug{ Zak VA7 £y Vh — b+(0‘)A;zk”h
aE

— by (@)A, o0 — c(a)vp, — f(a, m)}

S N(d7 k7 K‘)v
where we have used (B.8) with v = h, Lemma 2.4] Assumption 21 and the positiveness
of ar(a). The quantity 51A%,& vp for i = 2,...,d is estimated similarly, which finishes

the proof of (54).
The arbitrariness of v and [ in estimate (5.8)) implies that v, (z) +x =1 K|z|? is convex.

Therefore, if ¢ > 0, then uy, := v;f)( ) + £k 1K|x|? is also convex and smooth. In that
case, by (B3, for any unit I € R? we have

d d
~N < D} (x) < DRup(z) < N D2 up(x) =N D} oy (z) + N.
k=1
Now, to prove (&3] for ¢ > 0, it only remains to use ([£8]). The general case is reduced
to the above one by representing an arbitrary ¢ as the difference of two nonnegative
elements of §. The lemma is proved. (Il

Lemma 5.4. There is a constant N = N(d, K, k,d) such that |vj11 < N. Moreover, v
is a unique CH'-function satisfying equation ([2.4) almost everywhere in R?,

Proof. Actually, the lemma is a very particular case of the results in [5]. However, a
direct reference may be harder to follow than a sequence of references to easier facts
presented in [5]. We prefer to give more details. First, assume that f(a,-) € C%.
For any T € (0,00), s € [0,T], and = € R%, we introduce
T—s t
vr(s,x) =sup E flas, i (x)) exp (/ c(a) dr) dt.
ac 0 0
By [5, Theorem 4.7.4] the generalized derivatives Dsvr(s,z), Dyvr(s, x), and D2vr(s, x)
are bounded in [0,7] x R? by a constant depending only on d, K, s, and §, times
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(I + |z|™) exp(N(T — s)), where m = 0, and N measures the rate with which the mag-
nitudes of the derivatives of z¥(x) with respect to = go to infinity as ¢ — oo. Since the
latter derivatives are constant, we have N = 0, and the generalized derivatives Dgvr (s, x)
Dyvr(s,z), and D2vr(s,z) are bounded in [0,7] x R? by a constant independent of 7.
Since, obviously, |vr — v|p — 0 as T — oo, we have the same bounds on the derivatives
of v. Also we recall that for a function to be Lipschitz continuous is the same as to have

bounded generalized derivatives. This yields the first assertion of the lemma.
Next, by [0, Theorem 4.7.7] we have

Dvr(s,2) + F(vpgigi (8, @), vpgi (s, 2),v7(s,z),2) =0
a.e. in [0,7] x R, Letting T'— oo and using [5, Theorem 4.5.1], we get
Dsv(z) + F(vgigi (x), v (x),v(x),2) =0

a.e. in [0, T] x RY for each T € [0, 00). Since v is independent of s, we see that v satisfies
Z4) a.e. in RY.

We assumed above that f(«,-) € C2. However, in all estimates only the norm |f]; 1
is involved. Therefore, mollifying f with respect to x and passing to the limit, we easily
obtain the result in the general case.

If we have another function u in C%! (and even in a much wider class) satisfying
equation (Z4) a.e. in R%, then, by [5, Theorem 5.3.14],

u(a ZEE(E[/ Flon, 2z )exp(/o (as)ds)dt
+ulege) e ([ (o) )]

for any 7' > 0. Letting T' — oo, we see that u = v. The lemma is proved. (Il

We combine Lemmas 1] 5.3 and [5.4] and the observation that
D" 2y(®) = e=m D (u ),
where n(z) = e~4(D"()(x/¢), to get the following statement.
Corollary 5.5. For any nonnegative integer m and any €,h > 0, we have

|DU(5)| <N, ‘Dm+2’l}(€)‘ < NE_m,
|DU}(IE)| <N, ‘Dm+2’l}}(l€)‘ < Nem™(1 + h2/e),

where N = N(d,dy, K, m,k,9,().

Now we are ready to prove the theorem. By Lemma 54l if « € A and € > 0, then on
R? we have the inequality

Lo 4 e(a)v® + fE(a,z) <0.
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By Lemma 6] Corollary 5.5 and Lemma [£.1] for nonnegative symmetric ¢ with unit
integral we obtain

sup{Liv® + c(a)v® + f(o,2)}
aEA

< sup{L*® + ¢(a)v® + f(a,z)}

acA
dq dy
#0002 31D 09+ 13 1D 0|
k=1 k=1
< sup{L©® + ¢(a)v'® + f(a,z)} + Nh?~2 + Nh
a€cA
< sug{Lo‘v(s) + c(@)v® + fE(a,2)} + N(h?e™2 + h + &%)
ae

< N(h?e™? + h+é%).
Lemma 25(ii) shows that
op(x) <0 () + N(h%e™2 + h+ %) < v(x) + N(h?e 2 + h +€2),

for any x € R%, where N depends only on x, K, d, and §. Letting ¢ = h'/2, we get the
required upper estimate for v, — v.

To estimate the same function from below, we use almost the same argument, but
start with the equation defining v,. Again we take a nonnegative symmetric ( € S with
unit integral. Observe that

(5.9) “on(y) + c(@)vn(y) + fla,y) <0 for any a € A and y € R%
If we multiply (59) by (.(x — y) and integrate with respect to y, we obtain
(5.10) Sup{Li’L‘v,(f) (x) + c(a)v,(f) (z) + fO(a, )} <0.

a€cA

By Lemma and Corollary 5.5 this yields
sup{Lav,(f) + c(a)v}(f) + fla,z)}
acA

< sup{ Loy + c(a)ol? + O (a,2)}
acA

dl dl

+N [hQ STDE v o+ 0y |D§kv,(f)|o} + Ne2
k=1 k=1

< N[h?e 2(1 + h%e %) + h(1 + h%e )] + N&2.

Using this estimate and applying Itd’s formula to

i ipes [ danas)

we easily see that, for any z € R?,
v(z) < vl () + N[h2e 2(1 + h% ) + h(1 4+ h2%~3)] + Ne2.
Relations (B3] allow us to apply Remark [£5] and
v(x) < wp(x) + N[R2e72(1 4+ h%e73) + h(1 + h%e~3)] + N2,
where N = N(k, K,d,dy,9). Putting ¢ = h'/2, we complete the proof of Theorem [Z8l
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§6. PROOF OoF THEOREMS 2.9] AND 2.17]

Proof of Theorem [Z9. We use the idea of interpolation with respect to the smoothness
of f. To reflect the dependence of v and v, on f we write v = v[f] and v, = vp[f].
Notice that, obviously, for any constant ¢ > 0, we have vicf] = cv[f] and vy, [cf] = cur[f]-

We fix a nonnegative ¢ € S with unit integral and observe that [ f)|; 1 < N(¢)|f]o.1-
Therefore, by Theorem [2.8]

olef ) = vnlef o < Nby o[ fO] = o [f |0 < Nh/e.
Next, we have
O] —v[fllo < &7 F© = flo < Ne,
o[£ ] — vnlfllo < K7 = flo < Ne,

so that
|v — vplo < Nh/e + Ne.

Now, it only remains to take ¢ = h'/2. The theorem is proved. O

Proof of Theorem 211l As was explained in Section Bl without loss of generality we may
suppose that Assumption [5.1]is satisfied and (B3] is fulfilled.

Lemma 6.1. For e >0, define
Ale) = {a € A: (a(a)\\) > g|A]? for all X € R?}.
Then for each R € [0,00) there is € > 0 such that

sup [a" (@)us; + b'(a)u; + c(a)u+ f(a,z)] =0
acA(e)

whenever (u;j, u;,u,x) € TNGR.

Proof. Take a point (u;j,u;, u,z) € I'NGp and observe that, as a function of (v;;, v;,v) €
R%), F(vij,v;,v,x) is a Lipschitz continuous convex function as the supremum of linear
functions, and F'(v;j,v;,v,x) is not constant in balls in R because cla) < —k. Also,
F(vij,v;,8,¢) — —o0 as s — —oo. Therefore,

O = {(vij,vi,v) € R% F(vj,v;,v,2) < 0}
is a nonempty open convex set, and its boundary is
Ty = {(vij, vi,v) € R% . F(vij,v;,v,2) = 0}.
Next, observe that there is a sequence of a,, € A such that
a" (ap)uij + b (o) u; + clan)u + flam, ©) — F(uij,ui,u,x) =0,
and for all (v;;,v;,v) € R and all n we have
a (e )vij + b (o )vi + c(an)v + flan, z) < F(vij, vi,0, ).
It follows that, for a subsequence {n'} C {n}, the limit
(@”,0',& f(2)) := Tlim (a" (o), b"(an'), c(am), f(om, 7))
exists, and
au;; + bu; +eu+ f(z) =0,
dijvij + blv; + e + f(x) <0, (vij,vi,v) € O.
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In other words, the equation a* Vi + biv; +ev+ f(z) = 0 describes a tangent hyperplane
to 'y at (u;j,u;, u). Furthermore, we have ¢ < —x, so that

1P+ P+ e > w2
17 i

By assumption, for our smooth function ®(v;j;, v;, v, z) we have ® =0 on I';, and the
gradient of ® with respect to (v, v;,v) at (w5, u;, u) is not zero. It follows that I'y is
smooth near (u;j, u;,u), and there is a constant § # 0 such that

(aija 61‘7 c, f(x)) = /3((P'Ufij7 (I)uiﬂ Dy, q))(uij7 Uiy U, IE)
Since (a*) > 0 and (®,,,,) > 0 (see (ZIT)), we have § > 0. Moreover,

5 _

€ B=18> L = p(R).

D (wij, uiyu, x)’ [®lo.1.65
Consequently,
GINN = fy,, (uij, ui,u, )N = p(R)p(R)|?
for all A € R?. Finally, it is obvious that u(R)p(R)/2 can be taken as the e we are looking
for. The lemma is proved. |

This lemma and Lemma [5.4] yield the following.

Corollary 6.2. There exists ¢ > 0 such that a.e. in R? the function v satisfies the
equation
(6.1) sup {L%u(z) + c(a)v(z) + f(a,z)} = 0.

a€A(e)

Now we basically repeat the argument in [7, Remark 5.17], giving more detail. It is
well known (see, e.g., [1I] or [0 Theorem 6.4.5]) that, since equation (G.]) is uniformly
nondegenerate, there exists v € (0,1) and a unique u € C?7 satisfying (6.I)) in R?. By
the unique solvability of (G.I]) in C*!, we have u = v € C?7.

It follows that v is a C*7-solution of

D (vgigi (x),vpi(x),v(x),2) = 0.

Finally, a classical result (see, e.g., [4, Theorem 3.13] or [6, Lemma 1.3.2]) implies that
v € C*7, due to the smoothness of ®. Hence, by Lemma E.6]

|L% — L¢v| < Nh?,  |F[v]| < Nh?,

and to finish the proof of Theorem 21Tl it only remains to apply Lemma The
theorem is proved. O
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