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On the rate of Poisson convergence

By A.D. BARBOURY}
Gonville and Caius College, Cambridge CB2 1T A

anp PETER HALL
Department of Statistics, The Faculties, Australian National University
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1. Introduction

Let X, ..., X,, be independent Bernoulli random variables, and let p, = P[X, = 1],
A=3r,p;,and W = 37, X,. Successively improved estimates of the total variation
distance between the distribution (W) of W and a Poisson distribution P, with mean
A have been obtained by Prohorov [5], Le Cam[4), Kerstan[3], Vervaat[8], Chen[2],
Serfling[7] and Romanowska [6]. Prohorov, Vervaat and Romanowska discussed only
the case of identically distributed X,’s, whereas Chen and Serfling were primarily
interested in more general, dependent sequences. Under the present hypotheses, the
following inequalities, here expressed in terms of the total variation distance

d(, ) = sup |u(4) - »(4)|,
Acz
were established respectively by Le Cam, Kerstan and Chen:
n
AL W), B) < X pis

AL (W), P) < 1-06A-1 3 p?, ifmaxp, < }; (1-1)
i=1 i

dLW),B) <A 3 gt |

=1
(Kerstan’s published estimate of 2d < 1-2A-13?  p%([3], p. 174, equation (1)) is a mis-
print for 2d < 2-1A-13 7, p2, the constant 2-1 appearing twice on p. 175 of his paper.)
Here, we use Chen’s[2] elegant adaptation of Stein’s method to improve the estimates
given in (1-1), and we complement these estimates with a reverse inequality expressed
in similar terms. Second order estimates, and the case of more general non-negative
integer valued X,’s, are also discussed.

In the latter case, it is natural to expect the distribution of W to be almost Poisson
only if the contribution to W from X,’s taking values other than 1 is in some sense
small. As observed by Serfling, the X,’s can be reduced to 0-1 random variables by
replacing all values greater than 1 by 0, at a cost in total variation distance of no more
than ¥7; P[X, > 2]. Thus close approximation to the Poisson is possible when the
chance of max; X, exceeding 1 is small. It is shown here that good Poisson approxi-
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mation can also be achieved in another natural situation, in which the expected
contribution to W from those X,’s greater than 1 is negligible compared to

n 3
{3 prx, - uf,
i=1
the standard deviation of the approximating Poisson distribution; upper and lower
distance estimates are derived to quantify this approximation.

2. Upper and lower bounds
Let x be any real valued function on the non-negative integers. Then, as in Chen[2],

Bz(W + 1) — Wa(W)} = él{p,Ex(W+ 1) B(X,2(W))}
- élp,E{x(WJr 1) — (W + 1)}

- élpgﬂ{x(ugw) —x(W;+1)}, (21)

where W; = W — X . The following theorem is derived from (2-1) by choosing a suitable
function z.

THEOREM 1. Under the hypotheses set out in the Introduction,

HL (W), B) < 11— T . (2:2)
Proof. For any A < Z, define x = x, 4 by =
2(0) = 0; z(m+1) = A-mledm! [P(A nU,)—Py(4d)P(U,)], m>0, (23)
where U,, = {0, 1, ..., m}. For this z,

Az(m+ 1) —ma(m) = I[me A]— P,(4),
and so, from (2-1),

n
|PLW e 4]~ B(4)| < 3, 9} Bla(W; +2) ~a(#+ 1) (2-4)
It is shown in the appendix to Barbour and Eagleson[1], that, uniformly in 4,
||| = sup|z(m)| < 1A (1-4A72), (2-5)
mz20
and
Az = sup |[a(m +1) —z(m)| < AH(1—e). (2:6)
mz20

The theorem follows immediately from (2-4) and (2-6). ]

Remark. Theorem 1 improves upon each of the estimates given in (1-1). For
0<A<1,setp, =A;9;,=0,2<j<n Then

dW,B) = A(1-e) = 241 -e) 3 7}
j=1
so that the inequality (2-2) is sharp in this case. Forintegral A > 1,setp; = 1,1 <j < A;
pj=0,/\ < j € n. Then
AL (W), P,) =1-Ae /Al = 1—-1/,/27A,
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as compared to the right hand side of (2-2) which takes the value 1 —e™4, both of which
tend to one as A — c0. Thus (2-2) also comes close to being sharp for large A. There is,
however, no reason to suppose that (2-2) could not be improved under added restric-
tions on the p.’s; for instance, Romanowska’s[6] inequality for all p,’s equal to p is
sharper than (2-2) when §(1-p)—% < 1—e

As a complement to Theorem 1, we prove the following result: note that

(1AA-Y) > A-Y(1—e?).
TrHEOREM 2. Under the hypotheses set out in the Introduction,

n
AL(W), Fy) > gz(1A /\'I)EIP?- (2-7)
Proof. Take z defined by
x(m) = (m—A)e~m=W0A .y > 0, (2-8)

in (2-1), where the constant & will be chosen later. Since, for P a Poisson variate with
mean A, E{Az(P + 1) — Pz(P)} = 0, Equation (2-1) yields the equation

E{{Ax(W + 1) — Wa(W)] - [Az(P + 1) — Px(P)]} = EJ]p?E{x(W; +2)—z(W;+ 1)},
from which it follows that
20(L(W), ) sup |Xa(ji+ 1) —jalj)] > SpiBa(W+2)~=(+ 1) (29
Our first task is to bound the supremum on the left in (2-9). Since
(d/dw) (we—"1P2) = (1 — 2w2/6A) e—"0A,
which takes only values in the interval [ — 2¢-%, 1], then

-2 < x(w+1)—2(w) < 1, (2-10)
and so
[Az(j + 1) —ja(5)| = [A{=(5+ 1) —2(j)}— (5 — A)2exp{— (j — A)%/6A}]
< Amax (1,22 + Ge?). (2-11)

Next we treat the series on the right hand side of (2-9). Now,
1— w021 — 2u2/6A) < 3w?/0A,
whence, writing U, = W,— A,
1—{z(W;+2)—x(W;+ 1)} < f

Therefore

5:12 (3w?/O0A)dw = (6A) -1 (3UF+9U,+ 7). (2-12)
1 - E{z(W, +2) — (W, + 1)} < (6A)72 (3A +17),
since E(U%) = Xs4:0;(1 —p;) +p% and E(U,) = —p,. Consequently,
Zj)p?E{x(W?H) —z(W;+ 1)} > jng{l —(6A)1 (32 +7)}. (2-13)
Combining (2-9), (2-11) and (2-13), we see that if 0 > ¢, AL (W), P,) > kI, 2},

where
k= {1—(6A)"1(3A+T)}/2A(2¢e ¥+ Ge-1)}. (2-14)

If A > 1 we take 6 = 21, which gives
Ak > (1-10/6)/2(2e1 +6e1) > 1/32,
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while if A < 1 we take § = 21/A, obtaining

k> (1-10/6))/2(2¢-2 +62e?) > 1/32.
Theorem 2 follows. |
3. Second-order estimates

For many choices of (p;)f-;, the bounds given in (2-2) and (2-7) can usefully be
replaced by an estimate of d(Z (W), P,) together with a bound on the error of the
estimate. This approach was considered by Prohorov[5], Kerstan[3] and Chen[2]: our
argument is similar to Chen’s, though the error estimate is improved. The method is to
take, for any 4 < Z+, the function z defined in (2-3), and then to approximate the
right hand side of (2:1) by ($7-,93) E{z(P + 2) — z(P + 1)}, where P, here and subse-
quently, denotes a Poisson variate with mean A. Let A(4) denote the error in this
approximation:

A(4) = P[WeA]-P,(d)- (élpg) Efa(P+2)—o(P+1))

= P[WeA]-P(A)+ %/\“Z(ji]lpf) E{I[PeA](P*— (2A+1)P+A%}. (3-1)
THEOREM 3. For any A < Z+, under the hypotheses set out in the Introduction,
A)] < A1 =) (1AL4AH S p+20 - B ol (32)
Proof. Taking in (2-1) the function 2 deﬁned_ in (2-3), it follows immediately that
IA4)] < 2271~ 5 phd(L W), By).

However, analogously to (2-1), for any B < 7+,
P[W; € B] - F\(B) = E{Az,, p(W;+1) - W)z, (W)}
= p;Ex) g(W;+1)+ kgjpl%E{x/\, (Wi +2) =z, s(Wp+1)},

where W), = W, — X,.. Thus it follows from (2-5) and (2-6) that
AZLW), P) < p;(1A1-42-3) + A7 (1 —e?) X 2}, (3-3)
ki
establishing (3-2). | ’

Remark. Since, by Schwarz’s inequality, A-Y(X7.;25)? < 37,2, equation (3-2)
implies that |A(4)] < 4(1—e?)(1—%e2)A-1T1,p3, which improves on Chen’s
estimate of (12 +484/2)A137_; 3.

COROLLARY. Let 8(A) = — 3AE{(P:— (2A+ 1) P+ A%)-}.
Then

Id(g(W),P,\) _A—l(j%lpg) 3(/\)' < 22 Y(1—e ) (1A 1-4A‘!)j§1p?

n 2
+ 2‘/\-1(1 —e) 3 p?} .
i=1
Remark. Kerstan gives instead the upper bound

n n 2
0-65A—! ¥ p3+1-95 {A‘l ) P?} , if max p, < §,
j=1 J=1 1<§

sn

which is sometimes better than that of the Corollary, and sometimes worse.



Rate of Poisson convergence 477

The quantity §(A) is not in general very neatly expressible, except for moderately
small values of A: for example,

A1—3N)ed, 0<A<2-,2
8(/\)={ (1 A A2

4} — -
A2+2 4)e , 2—-4J2<A<3-43.

However, y2— (2A+1)y+A%? > —(A+}) for all y, and so

1 1
for all A. Furthermore, as A - 00, §(A) ~ 0-242.

The Corollary enables some further evaluation of the relative precision of the
bounds in Theorems 1 and 2 to be made, in the following sense. Suppose that
{Xm, 1 €7 <7 <o0}is a double array of Bernoulli random variables, independent
within rows, and set p;,, = P[X,, = 1], A,, = X, p;, and W, = I, X,.. Suppose also
that as » — oo, d(Z(W,), P, ) - 0, or, equivalently, that A;'(1—ea) 37 p}, - 0.
Then the error estimate given in the Corollary is of asymptotically smaller order as
n — co than AZ'8(A,) 37, 9%, so that

n
ULW,),B,) ~ A00) T Pl
as n - 00. Thus, for example, if also A,, — o,

Uy, = A, d(LW,), P )f{(1—en) 5 pl} > 0-242,
i=1

whereas Theorems 1 and 2 guarantee that 5 < u, < 1. Actually, the choice of 6 = 6-55
in (2-14) gives u,, > {, provided that A is sufficiently large, which is not too great a
deviation from 0-242. Similar comparisons when A, < 2—./2 yield

Uy ~ A’n(l - e_A")—l (1 - %An) e—/\"a

and so u, - 1 if A, - 0. Again, for small enough A, the choice of §(= 14-6) in (2-14)
improves the bound given by Theorem 2, but this time to «, > 5%.

4. Non-negative integer variates

Let (Y;)7-; be independent non-negative integer valued random variables, and let
p;=PY;=1}, ¢;=P[Y;>2 2], A=3],p; and V = 37,7, Define the zero-one
random variables (X,)7.; by

x ={infyj=00r1;
7 7 | 0 otherwise,
and set W = 37, X,. Note that the X,’s satisfy the conditions outlined in the Intro-
duction. Then, as observed by Serfling[7],

ALV, L) < 3 g,
]:
and so (2-2) and (2-7) yield the inequalities

3

AdZL(V),P) < A (1—-e}) ,lef + .21 25 (4-1)
j= j=
and
aZ(¥v), R) +i21 g; > 32(1 A /\“)EIP?- (4-2)

16 PSP g5
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If the ¥;’s have finite second moments, the Stein-Chen method can be applied to get
alternatives to (4-1) and (4-2). Let v; = EY;, x; = E(Y,(Y; - 1)), p; = E{Y;I[Y; > 2]} and
V=371V

TrEOREM 4. If (Y})}., satisfy the above hypotheses, and if v < oo,

UL(V),B) < vi(1—e) 5 vp,
i=1

+ 3 vl A 14 g A (1~ ) ]

FEUAL4H 5 pyafr(1-e) 3 k)] (43)
i=1 =1
<vit-en S+ 3, (4)

and
dZ(V),P) <A l-e?) % V&
i=1

+ 3 2201 A LA g AL =Nl + (1 12 3 g

HIRMA 142 T pd A A1 - e 5 ) (4-5)
< 2= E wepet B ) + (LA 142D £ e (+9)

Remark. Estimate (4-1) is clearly better than (4-5) if » = co. On the other hand, for
large A, (4-5) can improve upon (4-1), in circumstances where 2}‘=1qj is not small but
A—¥Y7 ,p; is: the latter condition is natural, in that it is simply requiring that the
expected contribution to ¥ from Y’snot taking the values 0 or 1 should be small when
compared to the spread At of P,. If the Y;’s take only the values 0, 1 and 2, estimate
(4-4) reduces to v=1(1—e*) {37, v+ 231, ¢,}, and estimate (4-6) to

A1 — e { 5 pi+2 3 gt +p‘)} +2(1a14x4) B g
i=1 im i=1

enabling comparison with (4-1) to be easily made.

Estimate (4-4) is typically smaller than (4-6), because v=1(1 —e~) < A~}(1 —e~*)and,
usually, v137% 4,0, < (1A 1-4A73) T, u,. However, in view of (4-1), this does not
necessarily imply that it is better to use P, than P, to approximate the distribution of V.

Proof. Pick any A < Z+, set V; = V —Y,, define z as in (2-3) but with » for A, and
observe that

P[VeA]l-P(A) = X v;E{x(V+1)~«(V;+1)}

i=1

n
+jZ}1 E{Y)(x(V;+1)—-=(V))}
n
= 121 v;p; E{x(V; +2) —2(V;+ 1)}

+jf:1 v B{(2(V + 1) —2(V;+ 1)) I[Y; > 2]}

+ 3 B e+ 1) -=(V).
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The three terms are now estimated using (2-5) and (2-6), again with v for A, giving (4-3).
The proof of (4-5) is similar, starting from the equation

P[Ved]-Py4) =é}1ij{x(V+ 1) —a(V+ 1)}
+ 3 B+ 1) -a(V))}

- 3 B(%,-p) o+ 1)

It is also possible to adapt the proof of Theorem 2 so as to get lower bounds for
d(&Z(V),P) and d(Z(V), P,), to contrast with (4-2). The following Theorem establishes
such a result, without, however, retaining the elegance of (2-7) or (4-2).

TaEOREM 5. If the hypotheses of Theorem 4 are satisfied, and if, in addition, k; < o0,
1< j < n,then

AL(V), P)+ 3121+ 21e (1 Av) )1 x {2e‘§ i v+ % k;+5(1Av7Y)
i=1 i=1

X [(E}l v,pj)jgjl (#5— vj)+2 Z s ,(Vj 2)]} = 51 A v—l)jg1 v;p5 (4°7)
and
AL(V), P)+ 312t + 21 (1 A X)) x {2e—¥ T P+ T Ky
i=1 i=1
+@1/200Av 1)1 2 oy ad|( 2 93) 5 -
=1 = =
+2 3 oin-2)| > daan B2t @)
i=1 =1

Remark. If the Y;’s are in fact 0-1 random variables, the complicated additional term
on the left hand side of (4-7) is negative: it only becomes important when the ¥;’s

are too far from being 0-1 variates. Some such term has to be present, since, if each ¥;
is a Poisson variate, d(#(V), P,) = 0, whereas the right hand side of (4-7) is positive.

Proof. Take z as defined in (2-8), but with » for A, and deduce, from the proofs of
Theorems 2 and 4, that, for 6 > e,

2d(Z(V), ) v(2e~t + 6e1) > f: v, 0; B{w(V;+2) —2(V; + 1)}
+ z v E{(z(V + 1) ~2(V,+ 1)) I[Y; > 2]}+ z E{Y(x(V,+1)—2(V))}.
Thus, from the argument leading to (2-10), it follows that
9d(L(V), B) v(2e~} + Oe=1) + 26 ‘i vy + g:l %,

v,p,E{z(V +2)—z(V;+ 1)}

\%

TM: TM:

v,p,{l—(av)—l(3E(V VE+ 9BV, —v)+T)}, (4:9)

v

16-2
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where the last line is a consequence of (2-12). Evaluating the moments of ¥, — v enables
the right hand side of (4-9) to be estimated as no smaller than

5 (1= 007 @r+ 1} =300 £ v 5 (-0 + 2ty -2),
i=1 i=1 j=1

and the proof of (4:7) is concluded in the same way as the proof of Theorem 2, taking
6 = 21(1 Av)~1. The upper bound (4-8) is proved in a similar way. |

Some simplification of (4-7) and (4-8) can often be achieved. The next Corollary,
which follows directly from (4-7), illustrates the possibilities. The inequality obtained
reduces to (2:7) when the Y;’s are 0—1 random variables.

CoroLLaRrY. If, in addition to the conditions of Theorem 5, v; < 2 for all j,

ALV, P » 9 { 12 r 12 £ 1
R+ gggl (47 Som) Emf> g5 e it <

(4-10)
and
11y 9 vl r n yv1lp .
AL V), P)+—— 200 E,u,vj+ +Tj§1ijj)j§1Kj} —2§V,p, if v>1.
(4-11)
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