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1. Introduction

Let Xv ..., Xn be independent Bernoulli random variables, and let pt = P[Xt = 1 ] ,
A = S?=iP< a n d W = 2?=i-^i- Successively improved estimates of the total variation
distance between the distribution j£?( W) of W and a Poisson distribution Px with mean
A have been obtained by Prohorov[5], Le Cam [4], Kerstan[3], Vervaat[8], Chen [2],
Serfling[7] and Romanowska[6]. Prohorov, Vervaat and Romanowska discussed only
the case of identically distributed X/s, whereas Chen and Serfling were primarily
interested in more general, dependent sequences. Under the present hypotheses, the
following inequalities, here expressed in terms of the total variation distance

d(ji, v) = sup \/i(A) - v(A) |,
AcZ

were established respectively by Le Cam, Kerstan and Chen:

(1-1)

(Kerstan's published estimate of 2d ^ l-2A-1S"=il'i([3], p. 174, equation (1)) is a mis-
print for 2d ^ 2-lA~1S?=ii'i, * n e constant 2-1 appearing twice on p. 175 of his paper.)
Here, we use Chen's [2] elegant adaptation of Stein's method to improve the estimates
given in (1-1), and we complement these estimates with a reverse inequality expressed
in similar terms. Second order estimates, and the case of more general non-negative
integer valued Xt'B, are also discussed.

In the latter case, it is natural to expect the distribution of W to be almost Poisson
only if the contribution to W from Xt'B taking values other than 1 is in some sense
small. As observed by Serfling, the Xt's can be reduced to 0-1 random variables by
replacing all values greater than 1 by 0, at a cost in total variation distance of no more
than J$=1P[Xj > 2]. Thus close approximation to the Poisson is possible when the
chance of max^ Xi exceeding 1 is small. It is shown here that good Poisson approxi-

•f Present address: Institut fur Angewandte Mathematik der Univereitat Zurich, CH-8001
Zurich.

d(£f(W),Px) s? 1-05A-1 2 p\, if max ̂  < \;
t = l
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mation can also be achieved in another natural situation, in which the expected
contribution to W from those Xt'a greater than 1 is negligible compared to

the standard deviation of the approximating Poisson distribution; upper and lower
distance estimates are derived to quantify this approximation.

2. Upper and lower bounds

Let x be any real valued function on the non-negative integers. Then, as in Chen [2],

E{Ax(W + 1 ) - Wx(W)} = S {p,Ez{W+l)-E(Xtx(W))}

(2-1)

where Wt = W — Xt. The following theorem is derived from (2-1) by choosing a suitable
function x.

THEOREM 1. Under the hypotheses set out in the Introduction,

d(J?(W),PA) < A~i(l-e-*) S r f . (2-2)

Proof. For any A c.Z, define x = xx A by

l m>0, (2-3)

where Um = {0,1, ...,m}. For this x,

Ax(m+ 1) — mx{m) = I[meA] — Px(A),
and so, from (2-1),

\P[WeA]-Px(A)\ < iiP
2

jE\x(Wj + 2)-x(Wi+l)\. (2-4)

I t is shown in the appendix to Barbour and Eagleson[l], that, uniformly in A,

\\x\\ = sup \x(m)\ ^ 1 A (l-4A-i), (2-5)

and
Ax = sup|a;(TO + l)-a;(m)| «S A-x(l-e-A). (2-6)

The theorem follows immediately from (2-4) and (2-6). |

Remark. Theorem 1 improves upon each of the estimates given in (1*1). For
0 ^ A 3$ 1, s e t ^ = A; p} = 0, 2 ^ j ^ n. Then

d(W,Px) = A(l-e-*) = A- i ( l -

so that the inequality (2-2) is sharp in this case. For integral A ^ l , s e t ^ = 1,1 ^j ^ A;
pf = 0, A < j ^ n. Then

d(SC(W),PA) = l-A*e-*/A! a 1-1/JtorA,
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as compared to the right hand side of (2-2) which takes the value 1 — e~x, both of which
tend to one as A -> oo. Thus (2-2) also comes close to being sharp for large A. There is,
however, no reason to suppose that (2-2) could not be improved under added restric-
tions on the Pi's; for instance, Romanowska's [6] inequality for all ^ ' s equal to p is
sharper than (2-2) when £(1 -p)~i < 1 - e~x.

As a complement to Theorem 1, we prove the following result: note that

( I A A - 1 ) 5= A-^l-e-*) .

THEOREM 2. Under the hypotheses set ovX in the Introduction,

d(3>(W),Pi) > T?(i A A"1) 2 $• (2-7)
*=i

Proof. Take x defined by

x(m) = (m-A)e-<m-W«\ m > 0, (2-8)

in (2-1), where the constant 6 will be chosen later. Since, for P a Poisson variate with
mean A, E{Xx(P+ l)-Px{P)} = 0, Equation (2-1) yields the equation

E{[Xx( W +1) - Wx( W)] - [Ax(P + 1) - Px(P)]} =

from which it follows that

v \ ( j ) j j ) \ p l { ( j i} (2-9)

Our first task is to bound the supremum on the left in (2-9). Since

(d/dw) (we-™*!6*) = (1 -2wz/dA)e-wtlex,

which takes only values in the interval [ — 2e~~$, 1], then

-2e-t ^x(w+l)-x{w) < 1, (2-10)
and so

\Ax(j+l)-jx(j)\ = \A{x(j+l)-x(j)}-(j-Wexv{-U-Wm\
^ 1). (2-11)

Next we treat the series on the right hand side of (2-9). Now,

l _

whence, writing U, = W, — A,

\ {3w2/d\)dw=(dA)-1(3U2
j + 9Ui + 7). (2-12)

J Uj+l
Therefore

r

\

J U

1 - E{x(Wj + 2) - x(W, +1)} < (0A)-i (3A + 7),

since E(JJ\) = 2 j+ i^ ( l -P})+p\ and E(U{) = -Pf. Consequently,

(2-13)

Combining (2-9), (2-11) and (213), we see that if d > e, d(SC{W),Px)

where

k = {1 - (0A)-1 (3A + 7)}/2A(2e-* + de-1)}. (2-14)

If A > 1 we take 6 = 21, which gives

A* 3s (1 - 10/<9)/2(2e-* + (9e-1) > 1/32,
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while if A < 1 we take 6 = 21/A, obtaining

k Z (l-lO/0A)/2(2e-l + 6\e-1) > 1/32.
Theorem 2 follows. |

3. Second-order estimates

For many choices of (jp4)"=1, the bounds given in (2-2) and (2-7) can usefully be
replaced by an estimate of d(£f(W),Px) together with a bound on the error of the
estimate. This approach was considered by Prohorov[5], Kerstan[3] and Chen [2]: our
argument is similar to Chen's, though the error estimate is improved. The method is to
take, for any A c J_+, the function x denned in (2-3), and then to approximate the
right hand side of (21) by (£?=1pf) E{x(P + 2) -x(P + 1)}, where P, here and subse-
quently, denotes a Poisson variate with mean A. Let A(A) denote the error in this
approximation:

p i ) { [ ] ( ( ) % (3-1)
i=i /

THEOREM 3. For any A £ Z+, under the hypotheses set out in the Introduction,

\A(A)\ < 2A-1(l-e-A)(lAl-4A-4) 2 ^ + 2{A-x(l-e-A) £ pff. (3-2)

Proof. Taking in (21) the function z defined in (2-3), it follows immediately that

However, analogously to (2-1), for any B £ Z+,

P[WteB\-Px{B) =

where Wik = W}-Xk. Thus it follows from (2-5) and (2-6) that

d{X(Wt),PA) < Pj(l A l-4A-i) + A-Hl -e-A) 2 pi (3-3)

establishing (3-2). |

Remark. Since, by Schwarz's inequality, A-^SJLiPi)2 < S"=i^?» equation (3-2)
implies that |A(^4)| < 4(1 — e-x)(l-\e-x)\-x^j=1p% which improves on Chen's
estimate of (12 + 48^/2) A - 1 ^ ^ .

COBOLLAKY. Let S(A) = - i A - ^ f t P 1 - (2A+ 1)P + A2)-}.
Then

\d{!?(W),Px)-A-4 S pi) *(A)| < 2A-i(l-e~*)(l A 1-4A-*) 2 p)

Remark. Kerstan gives instead the upper bound

0-65A-1 S p2
f + 1-95 (A- 1 S jp?]2, if max p. < | ,

which is sometimes better than that of the Corollary, and sometimes worse.
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The quantity <?(A) is not in general very neatly expressible, except for moderately
small values of A: for example,

However, y2 — (2A +1) y + A2 ^ - (A + \) for all y, and so

for all A. Furthermore, as A ->• oo, #(A) ~ 0-242.
The Corollary enables some further evaluation of the relative precision of the

bounds in Theorems 1 and 2 to be made, in the following sense. Suppose that
{Xin, 1 < i ^ n < oo} is a double array of Bernoulli random variables, independent
within rows, and set^yn = P[Xjn = 1], An = E"=i#y» a n d ^n = 2?=i^n- Suppose also
that as n^-ao, d(^(Wn),P^J -*• 0, or, equivalently, that A^x(l - e-A») £"=1pfn-> 0.
Then the error estimate given in the Corollary is of asymptotically smaller order as
n-+co than A7̂

15(An) S"=1p|n, so that

i=i
as « -> oo. Thus, for example, if also An -> oo,

| J -> 0-242,) |

whereas Theorems 1 and 2 guarantee that -£$ s% wn < 1. Actually, the choice of 6 = 6-55
in (2-14) gives un ^ YI, provided that A is sufficiently large, which is not too great a
deviation from 0-242. Similar comparisons when An ^ 2 — ̂ /2 yield

and so un -> 1 if An -> 0. Again, for small enough A, the choice of 6{ = 14-6) in (2-14)
improves the bound given by Theorem 2, but this time to un ^ g?.

4. Non-negative integer varieties

Let (J^)"=i be independent non-negative integer valued random variables, and let
p} = P[Yj = 1], qt = P[Yt > 2], A = SjLiPy and F = S" = 1 ^. Define the zero-one
random variables (Xj)?=1 by

(
x =

} |0 otherwise,
and set W = 2™=i^- Note that the X/s satisfy the conditions outlined in the Intro-
duction. Then, as observed by Serfling[7],

and so (2-2) and (2-7) yield the inequalities

yi yi
and

d(if( F), PA) + S ?,> A( l A A-i) £ ^ . (4-2)

16 PSP 95



478 A. D. BARBOUR A^D PETER HALL

If the Y/s have finite second moments, the Stein-Chen method can be applied to get
alternatives to (4-1) and (4-2). Let Vj = EYp K, = EfY^Yj-l)), /if = E^Ify > 2]} and

THEOREM 4. If (î )™=i satisfy the above hypotheses, and if v < oo,

d(J?(V),Pv) *Z v-Hl-e-') X viPi

+ £ vi[{2{lAl-'iv-i)qi}A{v~1(l-e-')fii}]
i = l

+ [{2(1 A l-4ir-*) £ N} A {ir-i(l -e~") £ *,-}] (4-3)
i l i l

and

S
i=i

[{2(1 A l-4A"i) ift)A{A-i(l-e-^.S^}] (4-5)

A-Hl-e-A)(£ ^ i + S/c^ + tlAl^A-i) S ^ . (4-6)
\i=l i=l / i=l

< A -

Remark. Estimate (4-1) is clearly better than (4-5) if v = oo. On the other hand, for
large A, (4-5) can improve upon (41), in circumstances where £"=i<fy is not small but
A~*S*=i/*^ is; t n e latter condition is natural, in that it is simply requiring that the
expected contribution to V from Y'B not taking the values 0 or 1 should be small when
compared to the spread Ai of Px. If the F '̂s take only the values 0, 1 and 2, estimate
(4-4) reduces to y-^l -e~v) {SLi^i + SSLift}, and estimate (4-6) to

A-i(l - e-*) ( S p\ + 2 S qt{l +Pi)) + 2(1 A 1-4A-*) £ q{,
U=l i=l i i=l

enabling comparison with (4-1) to be easily made.
Estimate (4-4) is typically smaller than (4-6), because »'-1(l — e~") < A~x(l — e~x) and,

usually, i'~1S?=i/f<^i < (1 A l-4A-i)2?=i/*i- However, in view of (4-1), this does not
necessarily imply that it is better to use Pv than PA to approximate the distribution of V.

Proof. Pick any A c J+, set PJ = V — Yj, define a; as in (2-3) but with v for A, and
observe that

P\_VeA]-Pv(A) = £ ^
i

££ v,#{(z(F+ 1)-*(I5+1))/P5 > 2]}
i
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The three terms are now estimated using (2-5) and (2-6), again with v for A, giving (4-3).
The proof of (4-5) is similar, starting from the equation

£

- S

It is also possible to adapt the proof of Theorem 2 so as to get lower bounds for
&(&( V), Pv) and d(£f( V), Px), to contrast with (4-2). The following Theorem establishes
such a result, without, however, retaining the elegance of (2-7) or (4-2).

THEOREM 5. If the hypotheses of Theorem 4 are satisfied, and if, in addition, Kj < oo,
1 < j < n, then

/ ^

and

(21/2e)i(A v l)i £ P,+U1 A A-i) [( 2 ^ )

+ 2 5 i»Ji'y(iv-2)jj 2 A(l A A-i) S ^ . (4-8)

Remark. Kthe 3 '̂s are in fact 0-1 random variables, the complicated additional term
on the left hand side of (4-7) is negative: it only becomes important when the Y^'s

are too far from being 0-1 variates. Some such term has to be present, since, if each Yt

is a Poisson variate, d(SC(V),Pv) = 0, whereas the right hand side of (4-7) is positive.

Proof. Take x as defined in (2-8), but with v for A, and deduce, from the proofs of
Theorems 2 and 4, that, for 6 > e,

+ S vytf{(a;(F+l)-a;(15+l))J|Ty £ 2]}+

Thus, from the argument leading to (2-10), it follows that

n

y ^ { ^ ^ } > ( 4 - 9 )

16-2
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where the last line is a consequence of (2-12). Evaluating the moments of PJ — v enables
the right hand side of (4-9) to be estimated as no smaller than

Jt -1 (3v + 7)} - 3(0i>)-i S W,[ .2 {<) ~ *j) + 2*v(»»y - 2)

and the proof of (4-7) is concluded in the same way as the proof of Theorem 2, taking
6 = 21(1 A v)-1. The upper bound (4-8) is proved in a similar way. |

Some simplification of (4-7) and (4-8) can often be achieved. The next Corollary,
which follows directly from (4-7), illustrates the possibilities. The inequality obtained
reduces to (2-7) when the ly's are 0-1 random variables.

COROLLARY. / / , in addition to the conditions of Theorem 5, vt ^ 2 for allj,

A | / ^ if "<i

(4-10)
and

(4-11)

The first author gratefully acknowledges the help afforded by a Visiting Fellowship
at the Australian National University, during which this work was begun.
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