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Abstract: In this paper we derive the distribution of the ratio of two in-
dependent exponentiated Pareto random variables, X and Y , and study its
properties. We also find the UMVUE of Pr(X < Y ), and the UMVUE of its
variance. As some of the expressions could not be expressed in closed forms,
some special functions have been used to evaluate them.

Zusammenfassung: In dieser Arbeit leiten wir die Verteilung des Quotien-
ten zweier unabhängiger exponenzierter Pareto Zufallsvariablen X and Y
her und studieren seine Eigenschaften. Wir finden auch den UMVUE von
Pr(X < Y ) und den UMVUE seiner Varianz. Da einige Ausdrücke nicht
in geschlossener Form dargestellt werden können, wurden einige spezielle
Funktionen verwendet, um diese auszuwerten.

Keywords: Exponentiated Pareto Distribution, Generalized Hypergeometric
Function, UMVUE.

1 Introduction
The Pareto distribution is a power law probability distribution having cumulative distri-
bution function (cdf)

F (x) = 1−
(
β

x

)c

, x ≥ β , c > 0 , (1)

where β and c are, respectively, the threshold and shape parameters.
The distribution is found to coincide with many social, scientific, geophysical, actuar-

ial, and various other types of observable phenomena. Some examples where the Pareto
distribution gives good fit are the sizes of human settlements, the values of oil reserves in
oil fields, the standardized price returns on individual stocks, sizes of meteorites, etc. An
extension/generalization of the Pareto distribution is the exponentiated Pareto distribution
with cdf

G(x) = Fα(x) , α > 0 . (2)

Here α denotes the exponentiating parameter, and for α = 1 the distribution reduces to
the standard Pareto distribution (1).

R. C. Gupta, Gupta, and Gupta (1998) introduced the exponentiated exponential dis-
tribution, and its properties were studied by R. D. Gupta and Kundu (2001). Pal, Ali, and
Woo (2006) studied certain aspects of the exponentiated Weibull distribution. M. M. Ali,
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Pal, and Woo (2007) studied several exponentiated distributions, including the exponen-
tiated Pareto distribution, and discussed their properties. They showed that the exponen-
tiated Pareto distribution gives a good fit to the tail-distribution of Nasdaq data.

The problem of estimating the probability that a random variable X is less than an-
other random variable Y arises in many practical situations, like biometry, reliability
study, etc. This problem has been studied by many authors for different distributions
of X and Y , see, for example Pal, Ali, and Woo (2005), M. Ali, Pal, and Woo (2005), and
M. M. Ali, Pal, and Woo (2009).

In this paper, we find the distribution of the ratio of two independent exponenti-
ated Pareto random variables X and Y and study its properties. Some special functions
have been used to evaluate terms that cannot be expressed in closed form. We also find
the UMVUE of Pr(X < Y ) and the UMVUE of its variance. Finally, we obtain the
UMVUEs of Pr(X < Y ) and its variance by analyzing a simulated data set and a real-
life data set.

2 Distribution of the Ratio Y/X
Let X and Y be independent exponentiated Pareto random variables having cdf (2) with
parameters α1, β1, c and α2, β2, c, respectively. Using formula 3.197(3) in Gradshteyn and
Ryzhik (1965), the cdf of the ratio Q = Y/X is obtained as

FQ(z) = F
(
−α2, 1;α1 + 1;

(
β2

β1z

)c)
, if z ≥ β2

β1
, (3)

where F (a, b; c; z) =
∞∑
i=0

(a)i(b)i
(c)i

zi

i!
is the hypergeometric function and (w)i = w(w +

1) · · · (w + i− 1) with (w)0 = 1.
From (3) and formula 15.2.1 in Abramowitz and Stegun (1972), the pdf of Q is there-

fore given by

fQ(z) =
cα2

1 + α1

(
β2

β1

)c
z−c−1F

(
−α2 + 1, 2;α1 + 2;

(
β2

β1z

)c)
, if z ≥ β2

β1
. (4)

The kth moment of Q about the origin is obtained as

E(Qk) =
cα2

1 + α1

(
β2

β1

)c ∞∑
i=0

(−α2 + 1)i(2)i
(α1 + 2)ii!

(
β2

β1

)ci ∫ ∞

β2/β1

z−c(i+1)−1+kdz

=
cα2

1 + α1

(
β2

β1

)k ∞∑
i=0

(−α2 + 1)i(2)i
(α1 + 2)i

1

c(i+ 1)− k

1

i!

=
α2

1 + α1

(
β2

β1

)k(
1− k

c

)−1 ∞∑
i=0

(−α2 + 1)i(2)i
(α1 + 2)i

(1− k/c)

(i+ 1)− k/c

1

i!

=
α2

1 + α1

(
β2

β1

)k(
1− k

c

)−1

3F2

(
1−α2, 2; 1− k

c
;α1+2, 2− k

c
; 1
)
, if k < c, (5)

where

3F2(a, b; c; p; q; 1) =
∞∑
i=0

(a)i(b)i(c)i
(p)i(q)i

zi

i!



M. Masoom Ali et al. 331

is the generalized hypergeometric function in Gradshteyn and Ryzhik (1965).
Figure 1 shows the density curves for different combinations of (α1, α2) when c = 5

and β2/β1 = 2. Table 1 provides the asymptotic means, variances, and coefficients of
skewness of the density (4) when c = 5, for different combinations of (α1, α2). (We
use formula 9.14(1) in Gradshteyn and Ryzhik (1965) for the computation.) The figures
indicate that the distribution of Q is skewed to the right.

Figure 1: Density curves for c = 5 and β2/β1 = 2 for α1 < α2 (left) and α1 > α2 (right).

Table 1: Asymptotic mean, variance, and coefficient of skewness of the density (4) with
c = 5 (units of mean and variance are β2/β1 and (β2/β1)

2, respectively).

α1, α2 Mean Variance Skewness
(1.5, 3.5) 1.20386 0.18101 2.7391
(3.5, 1.5) 0.91806 0.10180 2.6677
(3.5, 5.5) 1.14940 0.18179 2.5964
(5.5, 3.5) 0.97778 0.18092 2.5840
(5.5, 7.5) 1.12560 0.18122 2.5561
(7.5, 5.5) 1.00342 0.14379 2.5519
(7.5, 9.5) 1.11269 0.18079 2.5373
(9.5, 7.5) 1.01776 0.15115 2.5354

From Table 1, we observe that for c = 5:

• the distribution is skewed to the right;

• for α1 > α2, the distribution has smaller variance than that when α1 < α2.

3 Distribution of the Ratio X/(X+Y)

Consider the ratio R = X/(X+Y ), where X and Y are independent exponentiated Pareto
random variables having the cdf (2) with parameters α1, β1, c and α2, β2, c, respectively.
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From (3) we obtain the cdf of the ratio R as

FR(z) = Pr

(
Y

X
>

1− z

z

)
= 1− F

(
−α2, 1;α1 + 1;

(
β2

β1

z

1− z

)c)
, if 0 < z < β1

β1+β2
(6)

and its density function is

fR(z) =
cα2

1 + α1

(
β2

β1

)c
zc−1

(1− z)c+1

×F

(
1− α2, 2;α1 + 2;

(
β2

β1

z

1− z

)c)
, if 0 < z < β1

β1+β2
(7)

Using formula 7.512(5) in Gradshteyn and Ryzhik (1965), the kth moment of R about the
origin is obtained as

E(Rk) =
cα2

1 + α1

(
β2

β1

)c∫ β1
β1+β2

0

zk+c−1(1− z)−c−1F

(
1− α2, 2;α1 + 2;

(
β2

β1

z

1− z

)c)
dz

=
cα2

1 + α1

(
β2

β1

)c∫ β1
β2

0

uk+c−1(1 + u)−kF

(
1− α2, 2;α1 + 2;

(
β2

β1

u

)c)
du

=
cα2

1 + α1

(
β1

β2

)k∫ 1

0

vk+c−1

(
1 +

β1

β2

v

)−k

F (1− α2, 2;α1 + 2; vc)dv

=
cα2

1 + α1

(
β1

β2

)k ∞∑
i=0

(
β1

β2

)i
(−k)Pi

i!

∫ 1

0

vk+c+i−1F (1− α2, 2;α1 + 2; vc)dv

=
α2

1 + α1

(
β1

β2

)k ∞∑
i=0

(
β1

β2

)i
(−k)Pi

i!

∫ 1

0

v
k+c+i

c
−1F (1− α2, 2;α1 + 2; v)dv

=
α2

1 + α1

(
β1

β2

)k ∞∑
i=0

(
β1

β2

)i
(−k)Pi

i!(k + c+ i)

×3F2(1− α2, 2; (k + c+ i)/c;α1 + 2, (k + 2c+ i)/c; 1) , if β2 > β1,

where (a)Pi = a(a− 1) · · · (a− i+ 1) and (a)P0 = 0.
Figure 2 shows the density curves and Table 2 provides the asymptotic means, vari-

ances, and coefficients of skewness for the distribution (7) for different combinations of
α1, α2, when c = 5, β1 = 1, and β2 = 2. The figure also shows that the distribution is
skewed to the left.

Table 2 indicates that

• the distribution is skewed to the left;

• its mean and variance increase slightly as α1 increases when α1 > α2 but the mean
slightly decreases and the variance slightly increases as α1 increases when α1 < α2.
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Figure 2: Density curves for c = 5, β1 = 1, β2 = 2 for α1 < α2 (left) and α1 > α2 (right).

Table 2: Asymptotic mean, variance, and coefficient of skewness for the distribution of R
when c = 5 and β1 = 1, β2 = 2.

α1, α2 Mean Variance Skewness
(1.5, 3.5) 0.15237 0.01781 −0.7436
(3.5, 1.5) 0.07623 0.01824 −0.9984
(3.5, 5.5) 0.14275 0.01932 −0.4002
(5.5, 3.5) 0.10631 0.02001 −0.6023
(5.5, 7.5) 0.13727 0.01983 −0.2415
(7.5, 5.5) 0.10875 0.02064 −0.4527
(7.5, 9.5) 0.12844 0.01999 −0.1695
(9.5, 7.5) 0.11026 0.02091 −0.3931

4 Estimation of Pr(X < Y)
Now we attempt to find the uniformly minimum-variance unbiased estimator (UMVUE)
of ξ = Pr(X < Y ), where X and Y are independently distributed as exponentiated
Pareto, having cdf’s

GX(x) =

[
1−

(
β1

x

)c]α1

, x ≥ β1 , α1 > 0 , c > 0

GY (y) =

[
1−

(
β2

y

)c]α2

, y ≥ β2 , α2 > 0 , c > 0 .

From (3) we have

FQ(1) = ξ = Pr

(
Y

X
> 1

)
=

 1− F
(
−α2, 1;α1 + 1;

(
β2

β1

)c)
, if β2 ≤ β1,

F
(
−α1, 1;α2 + 1;

(
β1

β2

)c)
, if β2 > β1,

where F (a, b; c; z) is the hypergeometric function. For β1 = β2,

R = 1− F (−α2, 1;α1 + 1; 1) ,
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which depends only on the exponentiating parameters. We shall assume that β1, β2 and c
are known.

UMVUE of ξ:
Let (X1, . . . , Xm) and (Y1, . . . , Yn) be independent random samples of sizes m and n

from the distributions of X and Y , respectively, where m,n > 2.
Define Ui = − log(1 − (β1/Xi)

c), i = 1, . . . ,m, and Vi = − log(1 − (β2/Yi)
c),

i = 1, . . . , n. Then (U1, . . . , Um) and (V1, . . . , Vn) form independent random samples
from an Exponential(α1) and an Exponential(α2) distribution, respectively.

An unbiased estimator of ξ is given by

Z =

{
1, if X1 < Y1,
0, otherwise.

Since the complete sufficient statistics for α1 and α2 are U∗ =
∑m

i=1 Ui and V ∗ =∑n
i=1 Vi, respectively, by the Lehmann-Scheffé Theorem the UMVUE of R is

ξ̂ = E(Z|U∗, V ∗) = Pr(X1 < Y1|U∗, V ∗) = Pr(U1 > V1|U∗, V ∗)

= Pr

(
U1

U∗ >
V1

V ∗
V ∗

U∗

∣∣∣∣U∗, V ∗
)

. (8)

Since U1/U
∗ and V1/V

∗ are independently distributed, with U1/U
∗ ∼ Beta(1,m) and

V1/V
∗ ∼ Beta(1, n), (8) gives

ξ̂ =

{
n
∫ 1

0
(1− v)n−1(1− av)mdv , if a < 1,

n
∫ 1/a

0
(1− v)n−1(1− av)mdv , if a > 1,

where a = V ∗/U∗.

UMVUE of ξ2:
An unbiased estimator of ξ2 is given by

Z1 =

{
1, if X1 < Y1, X2 < Y2,
0, otherwise.

Hence, by the Lehmann-Scheffé Theorem the UMVUE of R2 is

ξ̂2 = Pr

(
U1

U∗ >
V1

V ∗
V ∗

U∗ ,
U2

U∗ >
V2

V ∗
V ∗

U∗

∣∣∣∣U∗, V ∗
)

.

T1 = U1/U
∗ and T2 = U2/U

∗ are jointly distributed with pdf

fT1,T2(t1, t2) =
Γ(m)

Γ(m− 2)Γ2(1)
(1− t1 − t2)

m−3 , t1, t2 > 0 , t1 + t2 ≤ 1 .

Similarly, W1 = V1/V
∗ and W2 = V2/V

∗ are jointly distributed with pdf

fW1,W2(w1, w2) =
Γ(n)

Γ(n− 2)Γ2(1)
(1− w1 − w2)

n−3 , w1, w2 > 0 , w1 + w2 ≤ 1 .
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Hence,

ξ̂2 =

∫
w1 > 0, w2 > 0
w1 + w2 ≤ 1

Pr(T1 > aW1, T2 > aW2)fW1,W2(w1, w2)dw1dw2 .

Now, for given W1 = w1, W2 = w2,

• if a ≥ 1

Pr(T1 > aw1, T2 > aw2) =


0, if w1 + w2 ≥ 1/a,
1−aw2∫
aw1

1−t1∫
aw2

fT1,T2(t1, t2)dt2dt1, if 0 < w1, w2 < 1/a,

w1 + w2 ≤ 1/a.

• if a ≤ 1

Pr(T1 > aw1, T2 > aw2) =


0, if w1 + w2 ≥ 1,
1−aw2∫
aw1

∫ 1−t1
aw2

fT1,T2(t1, t2)dt2dt1 if 0 < w1 ,w2 < 1,

w1 + w2 ≤ 1.

Applying the transformation T3 = T2

1−T1
, we note that T1 and T3 are independently

distributed with T1 ∼ Beta(1,m−1) and T3 ∼ Beta(1,m−2). Then, for given W1 = w1,
W2 = w2,

Pr(T1 > aw1, T2 > aw2) =


0, if a ≥ 1, w1 + w2 ≥ 1/a
(m− 1)(aw2)

m−2(1− aw1), if a ≥ 1, 0 < w1, w2 < 1/a,
w1 + w2 ≤ 1/a

or a ≤ 1, 0 < w1, w2 < 1,
w1 + w2 ≤ 1.

Therefore, we have the following:

• if a ≤ 1

ξ̂2 =

∫
w1 > 0, w2 > 0
w1 + w2 ≤ 1

Pr(T1 > aW1, T2 > aW2)fW1,W2(w1, w2)dw1dw2

=
Γ(m− 2)Γ(n− 2)

Γ(m+ n− 3)
am−2

∫ 1

0

(1− w1)
m+n−4(1− aw1)dw1

= Γ(m− 2)Γ(n− 2)am−2

{
1

Γ(m+ n− 2)
− a

Γ(m+ n− 1)

}
,
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• if a > 1

ξ̂2 =

∫
0 < w1 < 1/a, 0 < w2 < 1/a

w1 + w2 ≤ 1/a

Pr(T1 > aW1, T2 > aW2)fW1,W2(w1, w2)dw1dw2

=
Γ(m−2)Γ(n−2)

Γ(m+n−3)
am−2

∫ 1/a

0

B 1−aw1
a(1−w1)

(m−1, n−2)(1−w1)
m+n−4(1−aw1)dw1

=
Γ(m−2)Γ(n−2)

Γ(m+n−3)
am−2

∫ 1/a

0

B 1−aw1
a(1−w1)

(m−1, n−2)(1−w1)
m+n−4(1−aw1)dw1 ,

where
Bx(r, k) =

∫ x

0

zr−1(1− z)k−1dz .

The UMVUE of var(ξ̂) is then given by v̂ar(ξ̂) = ξ̂2 − ξ̂2.

5 Data Analysis
We now analyze two sets of data, a simulated one and a real life one, to give UMVUEs of
ξ = Pr(X < Y ) and its variance.

Example 1 (Simulated Data)
The following two independent samples were generated from exponentiated Pareto

distributions with parameters α1 = 2, β1 = 1.5, c = 2 and α2 = 1.5, β2 = 1.25, c = 2,
respectively. The first distribution corresponds to that of X and the second one to that of
Y . The observations are as follows:
Sample 1: 1.775, 1.571, 2.484, 4.258, 1.518, 1.509, 1.609, 1.558, 4.425, 1.601, 6.511,
1.513, 7.986, 1.998, 8.316, 2.075, 1.503, 2.089, 1.508, 5.544, 1.506, 2.282, 2.093, 1.682,
1.817.
Sample 2: 2.110, 1.255, 1.559, 1.256, 1.436, 1.549, 1.402, 1.266, 1.708, 1.370, 1.689,
1.253, 1.910, 2.122, 1.455, 1.262, 1.804, 6.916, 1.352, 2.105, 2.047, 1.646, 3.648, 1.259,
1.500, 1.317, 1.311, 1.253, 1.643, 1.907.

The true value of ξ = Pr(X < Y ) is 0.3145. Here, a = 1.22898. Hence, the UMVUE
of ξ and its variance are ξ̂ = n

∫ 1/a

0
(1−v)n−1(1−av)mdv = 0.4931 and v̂ar(ξ̂) = 0.2432,

respectively.

Example 2 (Real Life Data)
Data on the major rice crop in the crop year 2001-2002 (April 1, 2001 to March 31,

2002) from two Tambols – Nongyang and Nonghan - of Amphoe Sansai in the Chiang
Mai province, Thailand, have been used as samples (data source Watthanacheewakul and
Suwattee, 2010). Each Tambol consists of a set of 228 and 281 farmer households, re-
spectively. Samples of sizes 23 and 28 were drawn from each Tambol. The sampled data
are shown in Table 3.

We first fitted exponentiated Pareto distributions with parameters α1, β1, c and α2,
β2, c, respectively, to the data on X and Y and then checked the goodness of fit using
exponentiated Pareto probability plots.
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Table 3: The Major Rice Crop in Kilograms from the two Tambols for the Crop Year
2001-2002 (April 1, 2001 to March 31, 2002).

Nongyang Nonghan Nongyang Nonghan
X Y X Y

3440 2300 18000 3200
3200 1800 3150 1900
5400 2000 8500 2200
3800 2400 4500 3500
4300 12000 4250 6000
7000 2800 3500 2300
3700 3000 3000 2850
6000 2250 3600 3700
3250 2100 5000 1900
3500 2700 3000
3000 1800 4000
3400 3500 3600
5000 2500 4270
3600 2600 5800

Let (X1, . . . , Xm) and (Y1, . . . , Yn) denote the random samples on X and Y , and let
the corresponding ordered statistics be X(1) < · · · < X(m) and Y(1) < · · · < Y(n)). Then,
the likelihood function for θ = (α1, α2, β1, β2, c) is given by

L(θ) = cm+nαm
1 α

n
2β

cm
1 βcn

2

m∏
i=1

x
−(c+1)
(i)

n∏
i=1

y
−(c+1)
(i)

×
m∏
i=1

(1− (β1/x(i))
c)α1−1

n∏
i=1

(1− (β2/y(i))
c)α2−1Ix(1)>β1,y(1)>β2 ,

where the indicator function is defined as

Ix(1)>β1,y(1)>β2 =

{
1, if x(1) > β1, y(1) > β2,
0, otherwise.

Now, for α1 < 1, α2 < 1, as β1 approaches x(1) and β2 approaches y(1), L(θ) tends
to ∞. This implies that the maximum likelihood estimators (MLEs) of α1, α2, and c
do not exist. We therefore obtain modified MLEs of the unknown parameters using the
procedure proposed by Raqab, Madi, and Kundu (2007).

Since the likelihood function is maximized at (β1, β2) = (x(1), y(1)), the modified
MLEs of β1 and β2 are β̂1 = x(1), β̂2 = y(1). The modified likelihood function for
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θ∗ = (α1, α2, c) is then given by

Lmod(θ
∗) = cm

∗+n∗
αm∗

1 αn∗

2 xcm∗

(1) y
cn∗

(1)

m∏
i=2

x
−(c+1)
(i)

n∏
i=2

y
−(c+1)
(i)

m∏
i=2

(1− (x(1)/x(i))
c)α1−1

×
n∏

i=2

(1− (y(1)/y(i))
c)α2−1 ,

where m∗ = m− 1, n∗ = n− 1, and the log likelihood is given by

logL(θ) = (m∗ + n∗) log(c) +m∗ log(α1) + n∗ log(α2) + c(m∗ log(x(1)) + n∗ log(y(1)))

−(c+ 1)

(
m∑
i=2

log(xi) +
n∑

i=2

log(yi)

)
+ (α1 − 1)

m∑
i=2

log(1− (x(1)/x(i))
c)

+(α2 − 1)
n∑

i=2

log(1− (y(1)/y(i))
c) .

The modified MLEs of α1 and α2 are then obtained as

α̂1 = − m∗∑m
i=2 log(1− (x(1)/x(i))c)

, α̂2 = − n∗∑n
i=2 log(1− (y(1)/y(i))c)

and the modified MLE ĉ of c is a solution of the non-linear equation

c = g(c) ,

where

g(c) = (m∗ + n∗)

(α̂1 − 1)


m∑
i=2

(
x(1)

x(i)

)c
log
(

x(1)

x(i)

)
1−

(
x(1)

x(i)

)c


+(α̂2 − 1)


n∑

i=2

(
y(1)
y(i)

)c
log
(

y(1)
y(i)

)
1−

(
y(1)
y(i)

)c
+

m∑
i=2

log

(
x(i)

x(1)

)
+

n∑
i=2

log

(
y(i)
y(1)

)−1

.

For the given data set, the modified MLEs of the unknown parameters came out as
β̂1 = 1800, β̂2 = 3000, ĉ = 3.1399, α̂1 = 1.8014, α̂2 = 1.5482. The goodness of fit
of the distributions has been checked using probability plots (see Figure 3). These plots
show that the exponentiated Pareto distribution fits fairly well to the two data sets.

Assuming the true values of the parameters β1, β2, and c to be known and given by
their modified MLEs, i.e., β1 = 1800, β2 = 3000, c = 3.1399, we obtain the UMVUE of
ξ = Pr(X < Y ) as ξ̂ = 0.5714, and v̂ar(ξ̂) = 0.3265.

6 Conclusion
The paper studies the distributions of the ratios Y/X and X/(X +Y ), when X and Y are
distributed independently as exponentiated Pareto. These distributions find importance in
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Figure 3: Probability plots for the distributions fitted to data set 1 (left) and 2 (right).

many situations, like studying the proportion of human settlement in a place, proportion
of oil reserves in an oil field, etc. They are also useful in computing the reliability function
Pr(X < Y ), when X and Y denote the stress and strength variables, respectively. The
paper, further, finds the UMVUE of Pr(X < Y ), and also UMVUE of its variance. A
simulated data set and a real data set are analyzed to estimate Pr(X < Y ) and its variance.
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