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ABSTRACT
Despite the arbitrary and ambiguous character of certain fundamental parts
of the usual theory of non-equilibrium thermodynamics of mixtures, it has
been successful in describing a variety of experimental situations. The goals
of the research partially reported in this paper have been (1) to strengthen the
foundations of the usual, practical theory and (2) to extend its usefulness to
experimental situations hitherto regarded as too complicated to analyse.
The principles and methods of rational mechanics are used to deduce balance
equations which take full account of the kinetic energy of each component
and of the partial stress tensor of each component Similar equations have
been obtained previously by similar techniques. The new results reported
here stem from a particular choice of independent variables; namely, for a
v-component, non-reacting mixture of fluids, the independent variables are
the v component densities and their gradients, the temperature and its gradient,
the v — 1 independent diffusive velocities, and the v symmetric and v — 1 anti-
symmetric parts of the gradients of component velocity. For the special but
very important case of an ordinary fluid mixture, whose constitutive relations
are linear in the diffusion velocities and the independent gradients, the source
term in the entropy balance equation is a bi-linear form in the diffusion velocities
and the independent gradients. This bi-linear form for the entropy source term,
which has eluded previous workers, has two immediate consequences: (1)
Coupled with the second law, it leads to unambiguous conditions for equili-
brium; namely, for equilibrium with respect to all processes in a v-component,
non-reacting fluid mixture, it is necessary and sufficient that the following shall
all vanish: the temperature gradient, the diffusion velocities, and the symmetric
and antisymmetric parts of the gradients of component velocity. (2) It permits
full comparison with the practical theory, wherein the entropy source plays a
central role. It also opens new experimental avenues since it contains terms which

arise from component kinetic energy and component stress tensor.

I. INTRODUCTION
The 'thermodynamics of irreversible processes'1 has enjoyed a history of

practical success in describing a diversity of transport phenomena and a
wide range of material behaviours. Despite its success and apparent complete-
ness, the macroscopic theory as usually presented is deficient in several
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respects, especially in its treatment of mixtures. The procedure for obtaining
linear relations between fluxes and forces is arbitrary and ambiguous.
'Curie's theorem' is often used inconsistently, and rational account of the
number of independent variables is seldom taken. The mechanics of stress
and flow are adequately treated for pure fluids but not for mixtures of fluids;
in the latter case only the composite fluid is considered. Terms arising from
the kinetic energy of diffusion and the so-called inertial and viscous terms
are always neglected in practical applications although explicit formulas
are available. In short, the usual theory is really successful only for mechanical
equilibrium, when pressure and velocity gradients vanish. In recent years
Coleman and Noll2 and Coleman and Mizel3 have developed a new approach
to thermodynamics built on a firm foundation in mechanics—precisely
the area slighted in the conventional theory. In view of its mathematical
origins it is not surprising that the new approach to thermodynamics is
a model of rigour and that it remedies the deficiencies in mechanics of the
conventional non-equilibrium theory, at least in the case of pure components
(single materials).

Having great respect for both the practical success and microscopic
relevance of the conventional theory and the rigour and completeness of
the new approach, we present here a formulation of the thermodynamic
theory of mixtures which is developed using Coleman's methods2' , but
which is aimed at reinforcing and supplementing the previous results. The
approach here is quite similar to that of MUller4, and likewise has its origins
in the work of Truesdell5. Muller, however, did not obtain the bi-linear
form for the entropy production which is central to the earlier theory'.
We obtain the bi-linear form by choosing expressions for the heat flux
slightly different from, but no less general than, those of MUller. For brevity
only the barest rudiments of the fundamental theory and only an outline
of our methods are presented here. Full details may be found elsewhere6.

Generalized linear phenomenological equations are deduced rationally
by application of the entropy inequality to general expressions, called consti-
tutive relations, which relate dependent variables to a complete set of
independent variables. In particular, we assume that the basic local mechanical
and thermal variables energy, entropy, heat flux, entropy flux, stresses and
interaction forces are determined by the basic independent variables tem-
perature, temperature gradient, component densities, component density
gradients, component velocities and component velocity gradients. The
physical principles upon which the theory is constructed are: (i) balance
of mass, energy, linear momentum, and angular momentum; (ii) equipresence,
which means that an independent variable present in one constitutive relation
is present in all unless its presence in a particular constitutive relation
contradicts some other physical principle or any assumed symmetry of the
material in question; (iii) material objectivity, which forbids descriptions
which depend on the frame of reference of the observer, no matter how he
moves; (iv) positive entropy production, which is nothing but the second law of
thermodynamics, and which we call the entropy inequality. The procedure is
to formulate the most general set of constitutive relations consistent with
principles (i), (ii) and (iii) and with any other particular assumptions about
the material in question. We then establish the necessary and sufficient
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conditions on the constitutive relations so that the entropy inequality holds
identically. The resulting, reduced constitutive relations together with the
basic dynamic equations comprise our complete set of macroscopic transport
equations.

With Truesdell5, we assume that the mean motion of the fluid is deter-
mined solely by the motions of the components, and that the latter motions
are determined by the usual stress properties plus interaction (exchange o
momentum). For clarity, we restrict the treatment to binary mixtures
there is no conceptual difficulty in extending it to any finite number oi
components. Since we wish to achieve the theory which corresponds most
directly to the successful practical theory', we further restrict the treatment
to the special class of mixtures whose constitutive relations are linear in
the temperature gradient, in the density gradients, and in objective combi-
nations of the velocities and their gradients. A material of this special class
will be called an ordinary binary fluid mixture. A conviction that this type of
material accurately represents the binary fluid mixtures commonly encoun-
tered in the chemist's laboratory is the reason for the label 'ordinary'.
The appropriateness of this label can be evaluated only by testing the ability
of the constitutive relations to represent accurately the observed responses
of the material to variations of independent variables. We neglect entirely the
question of chemical reactions.

II. THERMODYNAMIC PROCESS
The generalization for mixtures of the definition of Coleman and Noll2

is: A process is a thermodynamic process for a v-component mixture if it can
be described by the set of (5v + 6) functions,

(i) the component densities p; (ii) the component velocities v; (iii) the
interaction forces m acting on component due to interaction with other
components; (iv) the external body forces b acting on component c; (v)
the partial stress tensors ae; (vi) the specific internal energy e; (vii) the
temperature T; (viii) the radiative heat supply r (radiation from the external
world absorbed by the fluid); (ix) the heat flux q; (x) the specific entropy S;
and (xi) the entropy flux f,
which satisfy:

(a) the balance of mass for each component*,

/i. + up/x,) + pv/xk) = 0 (2.1)
where

= p, pv = u = — v, pi = 0 (2.2)

and where, for any function g,
= (g/&) + vk(tg/txk) (2.3)

(b) the balance of each vector component of linear momentum for each
species,

pz) — (ôo/x) + = pm + pb (2.4)
*A repeated Latin miniscule subscript on a vector or tensor indicates summation from 1 to 3.
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(c) the balance of angular momentum fOr the mixture,
VVL ij — ' ii — — cijj

1

(d) the balance of energy

1 + (qk/8xk) = pr — p + jk(j/k) (2.6)

In order to specify a thermodynamic process it suffices to prescribe
the (4v + 5) functions p, va, m, cia, , T, q, S and I since the remaining (v + 1)
functions b and r are determined by (2.4) and (2.6). The specific internal
energy is the total specific energy less the specific kinetic energy5'6,

= — (pjp) v (2.7)

The total stress tensor ci is related to the component stress tensors by5'

ci (cia — puu) (2.8)

The component stress tensor here is identical with that of statistical mech-
anical theory7.

III. LINEAR CONSTITUTIVE RELATIONS FOR AN ORDINARY
BINARY FLUID MIXTURE

A material is defined by a constitutive assumption, which is a restriction
on the processes admissible in a body consisting of the material. A mixture
of viscoelastic materials susceptible of diffusion and heat conduction is
completely determined by the values of the (3v + 4) functions A1, S, q,f, ,r and m, where A1 is the specific internal Helmholtz free energy, A1 =
— TS, and is the symmetric part of cii,

= (cr + cr) (3.1)

Muller4 showed that the entropy flux need not be specifically related a priori
to the heat flux, but instead may be given by a constitutive relation whose
form is determined by the basic principles in the same way as other con-
stitutive relations.

The subsequent exposition is restricted to the special material called an
ordinary binary fluid mixture. For such mixtures the constitutive relations
are ordinary functions of Pi, P2 and T and are linear functions of (p1/x,3,
(p2/8Xk), (T/3xk), uk', dJ, d and wJ, where

dk = [(v/xk) + (v/x)] (3.2)

and

0jk = { [(uj/ôxk) — (u/x)] + p1 [up/0xk) — up/x)]}

(3.3)
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The constitutive relations for an ordinary binary fluid mixture are6:

A1 = A1(p1, P2, T), S = S(p1, P2' T)

q = CqT/8Xj) Cq1(3pi/t3Xj) — Cq2(tp2/axj)
—

Cquuj',

lflJ = — CmT/Xj) — Cmi(api/axj) —
Cm2(ip2/axj) — CmuUj

= — CT/x) — C11(ôp,/x) — C12(0p2/ôx) + Ku + (q/T)
Tj1j = KWj1j

= — r + 4fldJJ + 2i(d — d51)
(3.4)

where dkk is the trace of the tensor d.
These constitutive relations have been deduced6 from a starting set of

constitutive relations of the form

R = R[p1, P2' T, (p1/x), (p2/x), (T/0x3), u, u, d1, d, w] (3.5)
Compared with general theory of the conventional sort', the most important
feature of (3.5) is the explicit enumeration of independent variables. Com-
pared with the theory of Muller4, the most important feature of (3.5) is the
particular choice of independent variables. Our choice permits us to obtain
many more consequences from the entropy inequality than does Muller's
choice. Our choice leads to unambiguous definitions of various types of
equilibrium, and to a bi-linear form for entropy production.

The thermodynamic processes possible for a particular material must of
course depend on the material. Since it is the constitutive relations which
define a material, we define an admissible thermodynamic process as a thermo-
dynamic process which is compatible with the constitutive relations for the
material in question. In particular, an admissible thermodynamic process
for an ordinary binary fluid mixture must be compatible with (3.4). Applica-
tion, in Section IV, of the entropy inequality provides restrictions on the
phenomenological coefficients of (3.4) but affects neither the choice of
independent variables nor the forms of the constitutive relations.

IV. THE ENTROPY INEQUALITY AND ITS CONSEQUENCES
Entropy and entropy flux are related by the balance equation

= —(âfk/âxk) + pcP + (pr/T) (4.1)

where P is the rate of specific entropy production not due to external radiation
sources. Specification of an admissible thermodynamic process determines
i through the constitutive relations for S and f. The second law of thermo-
dynamics in this context is the Postulate2: For every admissible thermo-
dynamic process the inequality

(4.2)

must hold at all times and at every point in the material. That is, the entropy
production is non-negative, identically in the independent variables. In order
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to conserve space, we omit the details6 of the exploitation of (4.2). Repeated
application of (4.2) and full utilization of the independence of the variables
of (3.4) yield a host of consequences, which we now list:

(a) Equilibrium theorem
An ordinary binary fluid mixture is at equilibrium if and only if each of

the independent variables (3T/x,3, uk', d and oJ, is zero. Vanishing of
the density gradients or of the barycentric velocity is not required for
equilibrium.

(b) Entropy equations
For an ordinary binary fluid mixture, a deductive consequence of the

principles of rational mechanics is

S = —(0A1/T)p1,p2 (4.3)

which is a familiar identity in thermostatics. Each of the first three coefficients
of (3.4)4 vanishes, and the entropy flux becomes

f = Ku' + (q/T) (4.4)

The final bi-linear form for the entropy production is

pT'li (CqT/T) (tT/xk) (T/xk) + eTUT/xk) + (p2/p2) C,72UjU

+ + (P/PP2) KWCO=1 p=i 2 2
+ 2ij(d — dk5IJ) (d — (4.5)=1 p=1

where

= T(K/0T)1,2 + (Cqu/T) + (P2/P2) CrnT (4.6)

(c) Viscosity coefficients
For an ordinary binary fluid mixture there appear to be nine (not two)

viscosity coefficients, restricted only by the conditions:
K 0,

4, 0,4 0, [4u4 — (q512 + 2,)]? 0,

n 0,22 0, [11fl22 —(12 + p121)] (4.7)

(d) Heat flux equation
For an ordinary binary fluid mixture, Cqi and Cq2 vanish, and (•)2

becomes

q = —CqT(aT/axj) —
CquUj1 (4.8)

This is precisely the heat of transport form of the heat flux equation in the
practical theory, with CqT the thermal conductivity coefficient, p u1 the
diffusion flux j' and (—Cqu/pi) the heat of transport Q,*.
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(e) Diffusion flux equation
Rearrangement of (3.4)3 yields

= PlCmT/Cmu) (T/ix) — (piCmi/Cmu) (p1/5x)

PiCm2/Cmu)(P2/Xj) — (pi/Cmu) m' (4.9)

For an ordinary binary fluid mixture, (4.2) requires:

Cmu ? 0, [(P2/P2) CqTCmu — 0

Cmi = (P21P3) TK — (p2/p2)(iK/pl)T P2 — (P2/P)(aAI/aPl)TP.
Cm2 = (Pi/P3) TK P2/P2) T(aK/1P2)T,Pl + (pl/p)(3AI/8p2)T,1

(4.10)

Further reduction of these equations must await identification of the co-
efficient K which occurs explicitly not only in (3.4)4, (4.4), (4.6) and (4.10),
but also in two further consequences of (4.2) for an ordinary binary fluid
mixture; namely, the irof (3•4)6 must be given by:

= ppl(äAI/pl)T,2 + (P2/P) TK
= pp2(AI/p2)T,Pl — (P2/P) TK (4.11)

The iç may be called partial pressures since

7t1 + 2 = p[p1(Al/pl)T,P. + p2(AJ/p2)T,1] = P (4.12)
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