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ON THE RATIONAL HOMOTOPY TYPE

OF FUNCTION SPACES

EDGAR H. BROWN, JR. AND ROBERT H. SZCZARBA

Abstract. The main result of this paper is the construction of a minimal
model for the function space F(X, Y ) of continuous functions from a finite
type, finite dimensional space X to a finite type, nilpotent space Y in terms
of minimal models for X and Y . For the component containing the constant
map, π∗(F(X, Y )) ⊗Q = π∗(Y ) ⊗H−∗(X;Q) in positive dimensions. When
X is formal, there is a simple formula for the differential of the minimal model
in terms of the differential of the minimal model for Y and the coproduct of
H∗(X;Q). We also give a version of the main result for the space of cross
sections of a fibration.

1. Introduction

In this paper we construct a minimal model in the sense of Sullivan [S] for
F(X,Y ), the space of continuous functions from a space X to a nilpotent space Y ,
in terms of models for X and Y . We also generalize this to the space of sections of
a bundle. We first present some of the required background material and state the
main results of the paper.

Let Y be a connected, nilpotent CW complex (or simplicial set). A Q localization
of Y consists of a space (or simplicial set) YQ and a mapping f : Y → YQ such that
πj(YQ) is a uniquely divisible group for all j > 0 and f∗ : Hj(Y ;Q) → Hj(YQ;Q)
is an isomorphism for j > 0. (See [Hi].)

Let p : E → X be a nilpotent fibration with connected fibre. Recall that a
Q localization of p consists of a fibration p̄ : Ē → X and a fibre preserving map
f : E → Ē covering the identity map on X and defining a Q localization on the
fibres.

For any graded vector space V , we denote by Q[V ] the free commutative (in the
graded sense) differential graded algebra generated by V . If v1, . . . , vn is a basis
for V , we write Q[v1, . . . , vn] for Q[V ]. A commutative differential graded algebra
is said to be free, nilpotent, and of finite type (FNF) if, as an algebra, A ' Q[V ],
where V = {V q}, the dimension of V q is finite and V has a basis v1, v2, . . . such
that dvn+1 ∈ Q[v1, . . . , vn] for all n. We say that A is minimal if A is FNF, dv is
decomposable for all v ∈ V , and V q = 0 for q ≤ 0.

All algebras considered in this paper will be commutative in the graded sense,
will have a unit 1, and all algebra mappings between algebras will preserve the
unit. We will consider Q as a subalgebra of any algebra A under the identification
r 7→ r · 1.
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In [S], Sullivan associates to each CW complex X a “rational de Rham complex”
(Ω(X), d) whose homology is isomorphic to the singular cohomology of X with
coefficients in Q. He also associates to each nilpotent finite type CW complex Y
a minimal algebra A and a homology isomorphism α : A → Ω(Y ). The algebra A
determines the rational homotopy type of Y , is unique up to isomorphism, and

πn(X) = Hom(πn(X)⊗Q,Q),

is isomorphic to the space of indecomposables in An. (For a nilpotent group G,
we define G⊗Q to be the direct sum

∑
(Γi/Γi+1), where {Γi} is the lower central

series of G.) Thus, A = Q[V ] with V ' π∗(Y ). The minimal algebra A is called
the minimal model of X .

Before proceeding with the statements of our results, we describe an algebraic
construction which will be useful in what follows. Let A = Q[V ] be an FNF algebra,
B a DG algebra such that Bq is finite dimensional for all q and Bq = 0 for q < 0.
Let B∗ be the graded coalgebra with

Bq = Hom(B−q, Q).

The differential on B∗ is the adjoint of the differential d on B, and the coproduct
D : B∗ → B∗ ⊗B∗ is the adjoint of multiplication. Let Q[A⊗B∗] be the free DG
algebra generated by the graded vector space A ⊗ B∗ with differential d induced
by the tensor product differential on A ⊗ B∗ and let I be the ideal in Q[A ⊗ B∗]
generated by 1⊗ 1− 1 and by all elements of the form

a1a2 ⊗ β −
∑

(−1)|a2|·|β′j|(a1 ⊗ β′j)(a2 ⊗ β′′j ),(1.1)

a1, a2 ∈ A, β ∈ B, and

Dβ =
∑

β′j ⊗ β′′j .

Then dI ⊂ I (see Theorem 3.3) so that the differential d on Q[A ⊗ B∗] defines a
differential d on Q[A⊗B∗]/I.

Let Q[V ⊗B∗] be the subalgebra of Q[A⊗B∗] defined by the inclusion V ⊂ A =
Q[V ] and let ρ be the composite

ρ : Q[V ⊗B∗] ⊂ Q[A⊗B∗]→ Q[A⊗B∗]/I.

Theorem 1.2. The mapping ρ : Q[V ⊗ B∗]→ Q[A⊗ B∗]/I is an isomorphism of
graded algebras.

This is proved in Section 3 as part of Theorem 3.5. (See also the remarks
following Corollary 3.4.)

Let d1 be the differential on Q[V ⊗ B∗] given by d1 = ρ−1dρ. By definition,
d1(v ⊗ β) can be computed by considering v ⊗ β as an element of Q[A ⊗ B∗],
computing d(v ⊗ β) in Q[A⊗B∗],

d(v ⊗ β) = (dv)⊗ β + (−1)|v|v ⊗ dβ,

and then using the relations (1.1) to express (dv)⊗ β as an element of Q[V ⊗B∗].
For example, if dv = v1v2, v1, v2 ∈ V , then

(dv)⊗ β = (v1v2)⊗ β

=
∑

(−1)|v2|·|β
′
j|(v1 ⊗ β′j)(v2 ⊗ β′′j ),
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where Dβ =
∑

β′j ⊗ β′′j . In particular, we see that the differential d1 depends on

the differentials in A and B∗ and the coalgebra structure in B∗ (or equivalently,
the algebra structure in B).

For any algebra E,∆(E) will denote the rational simplicial form of E. (See
Section 2 below or [S].) The following is a version of a result due to Haefliger, see
[H] and [V1].

Theorem 1.3. Let X and Y be CW complexes with Y nilpotent and of finite type.
Let A and B be DG algebras as above with α : A → Ω(Y ) a minimal model
for Y,A = Q[V ], and β : B → Ω(X) a homology isomorphism. Then the space
|∆(Q[A ⊗ B∗]/I, d)| and hence |∆(Q[V ⊗ B∗], d1)| is homotopy equivalent to the
function space F(X,YQ).

The proof is given in Sections 2 and 3. The construction (Q[A ⊗ B∗]/I, d)
is the Lannes construction (A : B) (see [L]) in the category of differential graded
commutative algebras. (See the remarks following Corollary 3.4.) The (A : B)
functor was used in [BPS] to prove a version of Theorem 1.3 with a more complex
description of d1.

The following is a stronger version of Theorem 1.3 which is proved in Section 5.

Theorem 1.4. Let X,Y,A, and B be as in Theorem 1.3. Then there is a differen-
tial d2 on Q[V ⊗H∗(B∗)] such that |∆(Q[V ⊗H∗(B∗)], d2)| is homotopy equivalent
to F(X,YQ).

We note that the Q localization of a component of F(X,Y ) occurs as a compo-
nent of F(X,YQ) ([Hi], Theorem 3.11).

We next state an analogue of Theorem 1.4 for the components of F(X,YQ).

Theorem 1.5. Let Y be a nilpotent space of finite type and let X be a space of
finite type with Hq(X ;Q) = 0 for q > some N . For f : X → Y , let F(X,Y, f)
be the component of the function space F(X,Y ) containing f . Then F(X,Y, f) is
nilpotent and of finite type, and has a minimal model (Q[W ], d), where

W q =

(∑
n

πn(Y )⊗Hn−q(X ;Q)

)
/Kq

for subspaces Kq, q > 0. If f is the constant map, then Kq = 0.

Corollary 1.6. The homotopy group πq(F(X,Y, f))⊗Q, q > 0, is isomorphic to(∑
n

(πn(Y )⊗Q)⊗Hn−q(X ;Q)

)
/Kq.

If f is the constant map, Kq = 0.

This result was proved by Vigué-Poirrier in [V2] when Hp(X ;Q) = 0, p > k, and
Y is (k + 1) connected. In Section 7 we show by an example that the homotopy
groups πq(F(X,Y, f)) ⊗Q can vary with f . Another example was given by G.W.
Whitehead in the appendix of [W].

The results stated above have analogues for the space of sections in a nilpotent
fibre space. For example, we have the following.

Theorem 1.7. Let p : E → X be a nilpotent finite type fibration with fibre Y
and Hq(X ;Q) = 0 for q > some N . Let f : X → E be a section and denote by
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Γ(p, f) the component of the space of sections Γ(p) containing f . Then Γ(p, f) has
a minimal model A ' Q[W ] where W q, q > 0, is isomorphic to a quotient of∑

n

πn(Y )⊗Hn−q(X ;Q).

Corollary 1.8. The homotopy group πq(Γ(p, f)) ⊗ Q is isomorphic to a quotient
of ∑

n

(πn(Y )⊗Q)⊗Hn−q(X ;Q).

The proofs of the results for the space of sections are straightforward extensions
of those for function spaces. An outline is given in Section 4. In particular, a model
for E → X takes the form B[V ] = B ⊗Q[V ], which replaces A in the above, and
the ideal I is modified by adding the relations b⊗β− (−1)α(|b|)β(b), b ∈ B, β ∈ B∗.

The computation of the differential in Q[V ⊗H∗(B∗)] is in general quite compli-
cated. Examples are given in Section 7 to illustrate this. However, if X is formal
[S] (that is, when the minimal model for (H∗(X,Q), d = 0) is a minimal model for
X), the computation is much simpler, as we describe below..

Suppose that X and Y are as in Theorem 1.5 and that X is formal with
Hq(X ;Q) = 0 for q > some N . Let B = H∗(X ;Q) be the rational cohomol-
ogy ring of X as a DG algebra with zero differential. Thus B∗ = H∗(X ;Q) is the
rational homology coalgebra of X . Let D∗ be the coproduct in H∗(X,Q),

D∗ : H∗(X ;Q)→ H∗(X ;Q)⊗H∗(X ;Q).

Applying the algebraic construction described above, we obtain a DG algebra
(Q[V ⊗ H∗(X ;Q)], d1), where V ' π∗(Y ) and d1 = ρ−1dρ with ρ the mapping
of Theorem 1.2. At the end of Section 5 we prove

Theorem 1.9. Let X and Y be CW complexes with Y nilpotent and of finite type,
X formal, and Hq(X ;Q) = 0 for q > some N . Then the space

|∆(Q[π∗(Y )⊗H∗(X ;Q)], d1)|
is homotopy equivalent to F(X,YQ). Furthermore, given f : X → Y , there
is an ideal K (see Section 6) depending on f , closed under d1, and such that
Q[V ⊗ H∗(X ;Q)]/K is FNF on positive dimensional generators and F(X,Y, f)Q
is homotopy equivalent to |∆(Q[V ⊗H∗(X ;Q)]/K, d2)|.

For example, if c ∈ H∗(X ;Q) and v, v1, v2 ∈ V with dv = v1v2, then

d1(v ⊗ c) =
∑

(−1)|v2|·|cj|(v1 ⊗ c′j)(v1 ⊗ c′′j ),

where D∗c =
∑

c′j ⊗ c′′j . Note that, in this case, d1 depends on the differential in
A and the coproduct in H∗(X ;Q).

The proof of Theorem 1.9 is given at the end of Section 5. The special case of
Theorem 1.9 when X = S1 was proved by Sullivan in [VS].

Remark 1.10. All of the above can be reformulated in terms of simplicial sets in-
stead of CW complexes. Then all the theorems remain true with only minor mod-
ifications. In fact, step one in our proofs is to convert to simplicial sets.

Remark 1.11. In [BZ], we showed how to formulate real homotopy theory for sim-
plicial spaces in a way which is analogous to rational homotopy theory for simplicial
sets. All of the above can be converted to real homotopy theory and the theorems
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remain true if, for example, one starts with X = ∆(B) and Y = ∆(A) where A
and B are minimal algebras over the reals instead of the rationals.

Throughout this paper, the set of morphisms between objects S and T in a
specified category will be denoted by (S, T ), possibly with subscripts. For example,
if S and T are objects in the category of differential graded algebras, then (S, T )
will denote the set of DG algebra mappings and (S, T )DG the set of mappings
preserving the grading and commuting with the differentials, but not necessarily
preserving multiplication.

The paper is organized as follows. The proofs of the main results for function
spaces are given in Sections 2, 3, and 5. In Section 4, we outline the changes
necessary to extend our results on function spaces to the space of sections in a
nilpotent fibration. Section 6 deals with components and Section 7 contains two
examples. The first example shows that not all components of a function space
have the same Q-homotopy type. The second example shows that the formality
condition in Theorem 1.9 is necessary.

2. An Algebraic Model for F(X,Y )Q

For topological spaces U and W , let F(U,W ) be the space of all continuous
functions from U to W in the compact open topology. The goal of this section is to
reduce the problem of determining the rational homotopy type of F(U, V ) to the
determination of the homotopy type of the rational simplicial form ∆(Q[V ⊗B∗]) of
the differential graded algebra Q[V ⊗B∗] described in Section 1. Before proceeding,
we recall some of the notions from rational homotopy theory that will be needed in
what follows.

Let ∆S denote the category of simplicial sets. (See [M] for a detailed account of
homotopy theory in ∆S.) Recall that, forX,Y ∈ ∆S, the function space F(X,Y ) ∈
∆S is defined by

F(X,Y )q = (X ×∆[q], Y ),

where ∆[q] is the simplicial set analogue of ∆q with

∆[q]p = {(i0, i1, . . . , ip) : 0 ≤ i0 ≤ i1 ≤ . . . ≤ ip ≤ q}
and (X ×∆[q], Y ) is the set of simplicial mappings from X ×∆[q] to Y . The face
and degeneracy operations in F(X,Y ) are defined in terms of the face inclusions
∆[q − 1] → ∆[q] and degeneracy projections ∆[q + 1] → ∆[q]. (See [M], p. 16,
for details.) For any X ∈ ∆S and y ∈ X0 let Xy denote the simplicial subset of
X consisting of all simplices whose vertices are all at y. When X is Kan, Xy is
homotopy equivalent to the component of X containing y. For u ∈ F(X,Y )0 =
(X,Y ), let F(X,Y, u) = F(X,Y )u.

Let A be the category of differential graded commutative algebras, and let Ωp
q =

Ωp(∆q) be the vector space of rational differential p-forms w on ∆q:

w =
∑

ai1...ipdti1 . . . dtip ,

where the ai1...ip are polynomials in t0, . . . , tq with rational coefficients. Then Ωp =
{Ωp

q, q ≥ 0} is a simplicial set, Ωq = {Ωp
q, p ≥ 0} is a DG algebra, and Ω =

{Ωp
q, p, q ≥ 0} is a simplicial differential graded algebra. Define functors

∆ : A → ∆S, Ω : ∆S → A
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by ∆(A) = (A,Ω) and Ω(X) = (X,Ω). Then ∆(A) is the rational simplicial form
of A and Ω(X) the algebra of rational differential forms on X [BG].

For A,B ∈ A, let F(A,B) ∈ ∆S be the function space defined by

F(A,B)q = (A,Ωq ⊗B),

the space of all DG algebra mappings from A to Ωq⊗B. The simplicial structure on
F(A,B) is defined using the simplicial structure of Ω. For w ∈ F(A,B)0 = (A,B),
let F(A,B,w) = F(A,B)(w).

We note that, in what follows, the function spaces F(X,Y ) and F(A,B) will be
Kan [BZ], so that F(X,Y, u) and F(A,B,w) are actually homotopy equivalent to
the corresponding path components.

Our first result relates the function spaces for topological spaces and simplicial
sets. Let ∆(U) denote the singular complex of the space U and let |X | denote the
geometric realization of the simplicial set X .

Theorem 2.1. For X,Y ∈ ∆S, the simplicial set F(X,Y ) has the same homotopy
type as ∆F(|X |, |Y |).
Proof. For f ∈ F(X,Y )q, f : X ×∆[q]→ Y , define mappings

F(X,Y )
α−→ ∆F(|X |, |Y |) β−→ F(X,∆|Y |) γ−→ ∆F(|X |, |(∆|Y |)|)

in ∆S as follows:

α(f) = |f | : |X ×∆[q]| = |X | ×∆q → |Y |,
where |∆[q]| is identified with ∆q.

For g ∈ ∆F(|X |, |Y |)q, g : |X | ×∆q → |Y | , β(g) is the composite

β(g) : X ×∆[q]
σ−→ ∆|X ×∆[q]| = ∆(|X | ×∆q)

∆g−−→ ∆|Y |,
where σ : X ×∆[q]→ ∆|X ×∆[q]| is the canonical inclusion.

For h ∈ F(X,∆|Y |)q, h : X ×∆[q]→ ∆|Y |,
γ(h) = |h| : |X | ×∆q → |(∆|Y |)|.

It is now easily checked that the composite βα is induced by the canonical
homotopy equivalence Y → ∆|Y | and that the composite γβ is induced by the
canonical homotopy equivalence |Y | → |(∆|Y |)|. It follows that

α∗ : πq(F(X,Y ))→ πq(∆F(|X |, |Y |))
is injective for all q. To see that α∗ is surjective, consider y ∈ πq(∆F(|X |, |Y |))
and let x = (βα)−1

∗ β∗(y). Then

(γβ)∗(α∗(x)) = (γ∗β∗)α∗(βα)−1
∗ β∗(y)

= γ∗β∗(y),

so that α∗(x) = y since (γβ)∗ is an isomorphism. It follows that α is a homotopy
equivalence.

We note that if X = ∆U, Y = ∆W for topological spaces U,W , then

F (U,W ) ' F (|∆U |, |∆W |)
' |∆F (|∆U |, |∆W |)| |α|←−' |F (∆U,∆W )|.

As a consequence of Theorem 2.1, we can and will work in the category of
simplicial sets for the remainder of the paper.
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Let X,Y ∈ ∆S, Y connected, Kan, nilpotent of finite type and Hq(X ;Q) finitely
generated and zero for q > some N . Suppose u ∈ F(X,Y )0 and h : Y → YQ is a Q
localization.

Theorem 2.2. The mapping h∗ : F(X,Y, u)→ F(X,YQ, hu) is a Q localization.

Proof. See [Hi], Theorem 3.11.

Let A,B ∈ A, α : A→ ΩY a minimal model for Y and β : B → ΩX a homology
isomorphism. Assume further that Bq is finite dimensional for all q. Then

h : Y
j−→ ∆ΩY

∆α−−→ ∆A

is a Q localization, where j : Y → ∆ΩY is the canonical mapping and ∆α : ∆ΩY →
∆A is induced by α [BZ]. Thus, h∗ : F(X,Y, u)→ F(X,∆A, hu) is a Q localization.
Now, according to Theorem 2.20 of [BZ], there is a homotopy equivalence

γ : F(X,∆A)→ F(A,ΩX).

Furthermore, according to this same theorem, the mapping

β∗ : F(A,ΩX)→ F(A,B)

is also a homotopy equivalence since β is a homology equivalence. Thus we have

Theorem 2.3. Let ũ = β∗γ(hu). Then F(X,Y, u)→ F(A,B, ũ), is a Q localiza-
tion.

3. An Algebraic Reduction

We now proceed to analyze F(A,B) as described in Section 2. Let B∗ be the
differential, graded coalgebra with coproduct D and grading

Bq = Hom(B−q, Q),

q ≥ 0, with differential the dual of the differential d on B. (We will also use d to
denote the differential on A and on B∗, since no confusion seems likely.) Let {bi}
be a basis for B and {βi} the dual basis for B∗. For b ∈ B, let |b| denote the degree
of b and for any integer n, let α(n) = [(n+ 1)/2], the greatest integer in (n+ 1)/2.
Define

Ψ : (A⊗B∗,Ω)DG → (A,Ω⊗B)DG

in ∆S by

Ψ(ω)(a) =
∑
i

(−1)α(|bi|)ω(a⊗ βi)⊗ bi.

Note that the sum is finite since ω(a⊗ βi) = 0 whenever degree (a⊗ βi) < 0, since
Ω is nonnegatively graded and Bq is finite dimensional.

Theorem 3.1. The mapping Ψ is a simplicial isomorphism.

Proof. Before proving this result, we define two useful mappings. Let

ε : Q→ B∗ ⊗B, η : B ⊗B∗ → Q

be the mappings defined by

ε(1) =
∑
i

(−1)α(|bi|)βi ⊗ bi,

η(b⊗ β) = (−1)α(|b|)β(b).
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Note that, strictly speaking, ε(1) is not an element of B ⊗ B∗, since the sum may
be infinite. However, when ε occurs in what follows, only a finite number of terms
will be involved.

Lemma 3.2. The mappings ε and η above preserve grading and commute with
differentials.

Here we consider Q as the differential graded algebra with Q in degree zero and
0 in degrees different from zero.

Proof. The first assertion is obvious. The second will be proved if we can show that
d ◦ ε = η ◦ d = 0. We begin by showing that d ◦ ε = 0.

Let aji ∈ Q be defined by

dbi =
∑
j

aji bj ,

so that

dβi =
∑
j

aijβj .

Then

dε(1) =
∑
i

(−1)α(|bi|)(d∗βi ⊗ bi + (−1)|b
i|βi ⊗ dbi)

=
∑
i,j

(−1)α(|bi|)aijβj ⊗ bi +
∑
i,j

(−1)α(|bi|)+|bi|ajiβi ⊗ bj .

Interchanging the roles of i and j in the first sum and using the fact that aij = 0

unless |bj | = |bi|+ 1, we have

dε(1) =
∑
i,j

(
(−1)α(|bi|+1) + (−1)α(|bi|)+|bi|

)
ajiβi ⊗ bj.

The fact that this expression vanishes is a consequence of the easily verified identity

[(n + 2)/2] = 1 + [(n + 1)/2] + n mod 2.

The equation η(d(b ⊗ β)) = 0 is proved in the same way. We leave the details to
the reader.

For u ∈ (A,Ω⊗B)DG, let Θ(u) be the composite

A⊗B∗
u⊗id−−−→ Ω⊗B ⊗B∗

id⊗η−−−→ Ω⊗Q ' Ω.

Note that Ψ(ω) is the composite

A→ A⊗Q
id⊗ε−−−→ A⊗B∗ ⊗B

ω⊗id−−−→ Ω⊗B,

and that Θ can be written more explicitly as

Θ(u)(a⊗ βi) = (−1)α(|bi|)ωi,

where u(a) =
∑
j

ωj ⊗ bj
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Now, if u and ω preserve grading and differentials, then each of the mappings in
the definition of Θ(u) and Ψ(ω) also preserves grading and differentials. Thus we
have simplicial mappings

Θ : (A,Ω⊗ B)GD → (A⊗B∗,Ω)GD,

Ψ : (A⊗B∗,Ω)GD → (A,Ω⊗B)GD

which satisfy

Ψ(Θ(u))(a) =
∑
i

(−1)α(|bi|)Θ(u)(a⊗ βi)⊗ bi

=
∑
i

ωi ⊗ bi = u(a)

and

Θ(Ψ(ω))(a⊗ βi) = ω(a⊗ βi),

since Ψ(ω)(a) =
∑

i ωi ⊗ bi =
∑

i(−1)α(|bi|)ω(a ⊗ βi) ⊗ bi. Thus each of the com-
posites Ψ ◦Θ and Θ ◦Ψ is the identity, and Theorem 3.1 is proved.

Consider now Q[A ⊗ B∗], the free commutative DG algebra on the differential
graded vector space A ⊗ B∗. Each ω ∈ (A ⊗ B∗,Ω)DG extends to a unique DG
algebra mapping ω : Q[A ⊗ B∗] → Ω. Thus we can identify (A ⊗ B∗,Ω)DG with
(Q[A⊗ B∗],Ω), the DG algebra mappings, and consider Ψ as a simplicial isomor-
phism

Ψ : (Q[A⊗B∗],Ω)→ (A,Ω⊗B)DG.

Let σ : A⊗A⊗B∗ → Q[A⊗B∗] be given by

σ(a1 ⊗ a2 ⊗ β) = a1a2 ⊗ β −
∑
j

(−1)|a2|·|β′j|(a1 ⊗ β′j)(a2 ⊗ β′′j ).

where Dβ =
∑

β′j ⊗ β′′j .

Theorem 3.3. For ω ∈ (Q[A ⊗ B∗],Ω), the mapping Ψ(ω) ∈ (A,Ω ⊗ B)DG is a
DG algebra mapping if and only if ω(1 ⊗ 1∗) = 1 and ω(σ(a1 ⊗ a2 ⊗ βi)) = 0 for
all a1, a2 ∈ A and all β ∈ B∗. Furthermore, if I ⊂ Q[A⊗B∗] is the ideal generated
by 1⊗ 1∗ − 1 and σ(a1 ⊗ a2 ⊗ b), a1, a2 ∈ A, b ∈ B∗, then dI ⊂ I.

Corollary 3.4. The mapping Ψ defines a simiplicial isomorphism

Ψ : (Q[A⊗B∗]/I,Ω)→ (A,Ω⊗B).

Remark. It follows that (Q[A⊗B∗]/I, d) is a realization of the Lannes functor A : B
in the category A. One can view the Lannes machinery as providing a homological
algebra type approach to the preceding algebra. In particular, Theorem 1.2 can be
proved in the Lannes context using Theorem 2.1 [BPS].

Proof of Theorem 3.3. We first note that an element z ∈ Ω⊗B is zero if and only
if (idΩ ⊗ η)(z ⊗ βk) = 0 for all k.

Using the fact that

α(n +m) = α(n) + α(m) + nm mod 2

for all non-negative integers n and m, a straightforward computation shows that

(idΩ ⊗ η)((Ψ(ω)(a1a2)− (Ψ(ω)(a1))(Ψ(ω)(a2))) ⊗ βk) = ω(σ(a1 ⊗ a2 ⊗ βk)),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4940 EDGAR H. BROWN, JR. AND ROBERT H. SZCZARBA

which proves the first part of Theorem 3.3. To prove that dI ⊂ I, consider the
mappings

µ : A⊗A→ A,

D : B∗ → B∗ ⊗B∗,

µ̄ : Q[A⊗B∗]⊗Q[A⊗B∗]→ Q[A⊗B∗],
τ : A⊗A⊗B∗ ⊗B∗ → A⊗B∗ ⊗A⊗B∗,

where µ is the multiplication in A, D the comultiplication in B∗, µ̄ is the multipli-
cation in Q[A⊗B∗], and

τ(a ⊗ a′ ⊗ β ⊗ β′) = (−1)|a
′|·|β|a⊗ β ⊗ a′ ⊗ β′.

Then σ = µ⊗ idB∗ − µ̄τ(idA⊗A ⊗D) and, since each of the mappings on the right
commutes with the corresponding differential, so does σ, and the theorem is proved.

Let A = Q[V ], where V q is finite dimensional for all q, and let ρ be the composite

ρ : Q[V ⊗B∗] ⊂ Q[A⊗B∗]→ Q[A⊗B∗]/I.

Theorem 3.5. The mapping ρ : Q[V ⊗ B∗]→ Q[A⊗ B∗]/I is an isomorphism of
graded algebras.

Let d1 be the differential on Q[V ⊗ B∗] defined by d1 = ρ−1dρ, where d is the
differential on Q[A⊗ B∗]/I induced by the tensor product differential on A ⊗ B∗.
We then have

Corollary 3.6. Let A = Q[V ], B ∈ A, α : A → ΩY a minimal model for Y , and
β : B → ΩX a homology isomorphism. Assume further that Bq is finite dimen-
sional for all q. Then the simplicial set ∆(Q[V ⊗ B∗], d1) is homotopy equivalent
to F(X,YQ).

The proof of Theorem 3.5 proceeds by constructing an inverse for ρ. We begin
with some preliminaries.

Given v1, . . . , vk ∈ V and β` ∈ B∗, define T (v1, . . . , vk, β`) in Q[V ⊗ B∗] induc-
tively by

T (v1, . . . , vk, β`) = v1 ⊗ β` if k = 1,

=
∑
i,j

εkijλ
`
ijT (v1, . . . , vk−1, βi)(vk ⊗ βj) if k > 1,

where

D(β`) =
∑

λ`ijβi ⊗ βj,

εkij = (−1)|βi|(|βj|+|vk|).

Lemma 3.7. For any v1, . . . , vk ∈ V, β` ∈ B∗, 1 < m ≤ k, we have

T (v1, . . . , vk, β`) =
∑
i,j

εmk
ij λ`ijT (v1, . . . , vm−1, βi)T (vm, . . . , vk, βj),

where

εmk
ij = (−1)|βi|(|βj|+|vm|+···+|vk|).
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Proof. We proceed by induction on k. The case k = 2 follows immediately from the
definition of T . Suppose the result is true for k − 1 and let 1 < m ≤ k. If m = k,
the result again follows from the definition of T , so we can assume 1 < m < k.
Then, by definition, T (v1, . . . , vk, β`) is given by∑

i,j

εkijλ
`
ijT (v1, . . . , vk−1, βi)(vk ⊗ βj)

=
∑
i,j

εkijλ
`
ij

∑
r,s

εmk−1
rs λirsT (v1, . . . , vm−1, βr)T (vm, . . . vk−1, βs)(vk ⊗ βj)

by induction. Now λ`ijλ
i
rs = λisjλ

`
ri, since multiplication in B is associative. Making

this substitution and rearranging terms, we can express T (v1, . . . , vm, β`) as∑
r,j

εkijε
mk−1
rs λ`riT (v1, . . . , vm−1, βk)

∑
s,j

λisjT (vm, . . . , vk−1, βs)(vk ⊗ βj).

Except for a factor εksj , the second sum on the right is T (vm, . . . , vk, βi) by definition.
Inserting this factor twice, we have

T (v1, . . . , vk, β`) =
∑
r,i

εkijε
mk−1
rs εksjλ

`
riT (v1, . . . , vm−1, βk)T (vm, . . . , vk, βi).

Using the fact that λisj = 0 unless |βs|+ |βj | = |βi| and λ`ri = 0 unless |βr|+ |βi| =
|β`|, we see that |βj | = |βr| mod 2 and |βs| = |βr| + |βi| mod 2. An easy
computation now shows that

εkijε
mk−1
rs εksj = εkri,

which gives the required result

Lemma 3.8. For any v1, . . . , vk ∈ V, β` ∈ B∗, 1 ≤ m < k, we have

T (v1, . . . , vk, β`) = (−1)|vm|·|vm+1|T (v1, . . . , vm−1, vm+1, vm, . . . , vk, β`).

Proof. For k = 2 we have

T (v1, v2, β`) =
∑
i,j

ε2ijλ
`
ij(v1 ⊗ βi)(v2 ⊗ βj)

=
∑
i,j

ε2ij(−1)(|v1|+|b
i|)(|v2|+|βj|)+|βi|·|bj |λ`ji(v2 ⊗ βj)(v1 ⊗ βi)

=
∑

ε1ji(−1)|v1||v2|λ`ji(v2 ⊗ βj)(v1 ⊗ βi)

= (−1)|v1||v2|T (v2, v1, β`).

If k > 2 and m < k − 1, the result follows by induction. If k > 2 and m = k − 1,
one can use Lemma 3.7 to reduce the result to the case k = 2. We leave the details
to the reader.

Now to the proof of Theorem 3.5. To begin with, a straightforward induction
shows that ρ is surjective. Indeed, any element v1 . . . vk ⊗ β` can be expressed
mod I as a sum of products of terms of the form v1 . . . vm ⊗ βi,m < k. To prove ρ
injective, we define

σ : Q[A⊗B∗]→ Q[V ⊗B∗]
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by σ(v1 . . . vk⊗β`) = (−1)α(|β`|)T (v1, . . . , vk, β`). Then σ is well defined by Lemma
3.8, σ(I) = 0 by Lemma 3.7, and σρ = identity by inspection. Thus ρ is bijective
and the theorem is proved.

4. An Algebraic Model for Γ(p)

In this section, we outline the modifications required to prove the analogues
of the results of the previous two sections for the space of sections of a nilpotent
fibration. We begin with an analogue of Theorem 1.2.

Suppose p : E → X is a fibration in ∆S and let Γ(p) be the simplicial form of
the space of sections of p, that is,

Γ(p)q = {f : ∆[q]×X → E : pf = p2},
where p2 is the projection of ∆[q] ×X onto X . We say that p : E → X in ∆S is
nilpotent and of finite type if there is a sequence En → En−1 of principal fibration
with E1 = X and with group and fibre K(Gn,mn) satisfying

(i) Gn is a finitely generated abelian group, mn ≤ mn+1, and mn → ∞ as
n→∞.

(ii) There is an isomorphism E → lim← En such that the diagram

E −−−−→ lim←−Enyp y
X

id−−−−→ X = E1

is commutative.

Let B be a graded algebra and V a graded vector space. We denote by B[V ] the
graded algebra B ⊗Q[V ]. A straightforward generalization of Theorem 2.6 of [BZ]
yields the following:

Theorem 4.1. Let p : E → X be a nilpotent fibration as above, let B ∈ A, and let
f : B → Ω(X) be a homology isomorphism. For each n = 1, 2, . . . , let V (n) be the
graded vector space with

V (n)mn = Hom(Gn;Q),

V (n)j = 0, j 6= mn.

Set V =
∞∑
j=1

V (j) and V [n] =
n∑

j=1

V (j). Then there is a differential d on A = B[V ]

and a homology isomorphism h : A → Ω(E) such that d(V (n)) ⊂ B[V [n − 1]], dv
is decomposable for v ∈ V and the diagram

B
f−−−−→ Ω(X)y y

A
h−−−−→ Ω(E)

is commutative.

We next define an analogue of the space of sections in the category A. Let
A = B[V ] be as in Theorem 4.1 and i : B → A the inclusion. Then Γ(i) is the
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simplicial set defined by

Γ(i) = {u ∈ F(A,B) : u(b) = 1⊗ b for b ∈ B}.

Recall that F(A,B) ∈ ∆S is the function space defined by

F(A,B)q = (A,Ωq ⊗B)q.

The proof of Theorem 2.20 in [BZ] then carries over to produce

Theorem 4.2. If i : B → A is as above, then the components of Γ(i) include the
Q- localizations of the components of Γ(p).

We now identify Γ(i) with a simplicial subset of ∆(Q(A ⊗ B∗)/I) ≈ F(A,B).
Recall that in Section 3 we defined an isomorphism Ψ : (A⊗B∗,Ωq)→ (A,Ωq⊗B)
given by

Ψ(w)(a) =
∑
i

(−1)α(|bi|)w(a ⊗ βi)⊗ bi.

We need to determine which w satisfy Ψ(w)(b) = 1⊗ b, that is,

Ψ(w)(bj) =
∑
i

(−1)α(|bj|)w(bj ⊗ βi)⊗ bi = 1⊗ bj

or, equivalently,

w(bj ⊗ βi)− (−1)α(|bj |)βi(bj) = 0

for all i and j. Let J ⊂ Q[A⊗B∗] be the ideal generated by I and all elements of
the form b⊗ β − (−1)α(|b|)β(b), b ∈ B, β ∈ B∗.
Theorem 4.3. The mapping Ψ induces an isomorphism

∆(Q[A⊗B∗]/J) ≈ Γ(i).

We alter the proof of Theorem 3.5 slightly to prove

Theorem 4.4. The inclusion V ⊂ B(V ) = A induces an isomorphism

Q[V ⊗B∗] ≈ Q[A⊗B∗]/J.

Proof. Note that A ⊗ B∗ is spanned by elements of the form bv1v2 · · · v` ⊗ β, b ∈
B, v1, . . . , v` ∈ V, β ∈ B∗.

Define

T (b, v1, v2, . . . , vk, β`) =
∑

β`ijT (v1, v2, . . . , vk, βj),

where T (v1, v2, . . . , vk, βj) is as in the proof of Theorem 3.5 and

β`ij = βi(b)λ
`
ij(−1)ε,

where ε = α(|βi|) + (
∑ |vt|)|βi|. The proof of Theorem 4.4 then proceeds exactly

as in Theorem 3.5.
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5. A Reduction of Q[V ⊗B∗] to Q[V ⊗H∗(B∗)]

Suppose A = Q[V ] and B are as in Corolary 3.6. Let {vi} be a basis for V such
that |vi| > 0, |vi| ≤ |vi+1| and dvi+1 ∈ Q[Vi], where Vi is the subspace spanned by
v1, . . . , vi. Note that dvi is decomposable and |vi| → ∞ as i → ∞. Let {ai, bi, ci}
be a basis for B∗ with d∗ai = bi and d∗ci = 0.

Lemma 5.1. The algebra Q[V ⊗ B∗] has a free set of generators wij , uij and vij
satisfying

(i) wij = vi ⊗ cj + xij , where xij ∈ Q[Vi−1 ⊗B∗],
(ii) uij = vi ⊗ aj and vij = duij,
(iii) dwij ∈ Q[{wk` : k < i}],
(iv) if d(vi ⊗ cj) is decomposable, so is dwij .

Let W be the subspace of Q[V ⊗ B∗] spanned by {wij} and U the subspace
of Q[V ⊗ B∗] spanned by {uij, vij}. Thus W is isomorphic to V ⊗ H∗(B∗) and
Q[V ⊗B∗] is isomorphic to Q[W ]⊗Q[U ].

Lemma 5.2. The algebra Q[W ] is a deformation retract (in the category A) of
Q[V ⊗B∗].

(See [BG], Section 4 for a discussion of homotopy theory in the category A.)
Before proving these lemmas, we state the following consequence.

Theorem 5.3. There is a differential on Q[V ⊗H∗(B∗)](≈ Q[wij ]) making it an
FNF (as in section 1) algebra such that

Q[V ⊗B∗] ≈ Q[V ⊗H∗(B∗)]⊗Q[{uij, vij}]
as DGA algebras (where duij = vij). Furthermore Q[V ⊗H∗(B∗)], with this differ-
ential, is a deformation retract of Q[V ⊗B∗] in the category A. Thus, ∆(Q[V ⊗B∗])
has the homotopy type of ∆(Q[V ⊗H∗(B∗)]).

Proof of Lemma 5.1. We use induction on i. Let w1j = v1 ⊗ cj , u1j = v1 ⊗ aj and
v1j = du1j . Then dwij = 0, since dv1 = 0 and conditions (i),...,(iv) are satisfied.
Suppose wk,` have been defined for k < i and satisfy (i),...,(iv). Using induction
and the fact that

vk` = d(vk ⊗ a`)

= ±vk ⊗ b` + (dvk)⊗ a`

= ±vk ⊗ b` mod Q[Vk−1 ⊗B∗],

we have wk` = vk ⊗ c`, uk` = vk ⊗ a` and vk,` = vk ⊗ b`, modulo Q[Vk−1 ⊗ B∗].
Since vk⊗ c`, vk⊗a` and vk⊗ b`, k < i, freely generate Q[Vi−1⊗B∗], it follows that
wk,`, uk,` and vk`, k < i, freely generate Q[Vi−1 ⊗B∗]. Hence, we have

Q[Vi−1 ⊗B∗] = Q[wk` : k < i]⊗Q[uk`, vk` : k < i]

as DG algebras. Since

d(vi ⊗ cj) = (dvi)⊗ cj ∈ Q[Vi−1 ⊗B∗]

is a cycle,

d(vi ⊗ cj) = x+ du,

where x ∈ Q[wjk : j < i] and u ∈ Q[Vi−1 ⊗ B∗]. Let wij = vi ⊗ cj − u. Then
dwij = x, as specified by 5.1 (iii).
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Suppose d(vi ⊗ cj) is decomposable and dwij = x as above. Then

x =
∑
k<i

δk`wk,

u =
∑
k<i

αk`uk` +
∑
k<i

βk`vk` +
∑
k<i

γk`wk`,

mod decomposables. Since dvk` = 0, d(βk`vk`) will not contribute to du and hence
we may assume βk` = 0. Furthermore, the d(γk`wk`) terms could be shifted to the
decomposable part x in the formula

d(vi ⊗ cj) = x+ du,

so that we can assume γk` = 0. Hence

d(vi ⊗ cj) =
∑

δk`wk` +
∑

αk`vk`,

mod decomposables. Therefore δk` = αk` = 0 and dwij = x is decomposable.

Proof of Lemma 5.2. Define the DG algebra mapping

Q[W ]
j−→ Q[W ]⊗Q[u]

r−→ Q[W ]

in the obvious way, and define a deformation retract

H : Q[W ]⊗Q[U ]→ Ω1 ⊗Q[W ]⊗Q[U ]

by

H(wij) = wij ,

H(uij) = uij(1− t),

H(vij) = vij(1− t) + (−1)|vij |uijdt.

A straightforward computation shows that H has the required properties.

We now prove Theorem 1.9. Since B is formal, we can find a DG algebra mapping
h : B → H∗(B) extending the projection Z∗(B)→ H∗(B). Then

h∗ : H∗(B)∗ = H∗(B∗)→ B∗

is a coalgebra map. Let αi be a basis for H∗(B∗). In choosing a basis ai, bi, ci as
above, we may set ci = h∗(αi). IfD∗(αi) =

∑
εh`i α`⊗αj , thenD(ci) =

∑
εh`i ch⊗c`.

Thus d(vi⊗ cj) will only involve terms consisting of products of vj ⊗ ck, and hence,
in the notation of the proof of Lemma 5.1, we may choose wjk = vj ⊗ ck. Then
computing d(vi ⊗ cj) using D will give the same result as computing d(vi ⊗ αj)
using D∗.

6. Components of ∆(Q[W ])

We now give an algebraic description of the components of ∆(Q[W ]), where W
is defined in the previous section.

Suppose E = (Q[W ], d),W ⊂ Q[V ⊗ B∗], is as in Section 5 and let {xi} be a
basis for W satisfying |xi| ≤ |xi+1| and dxi ∈ Q[Wi−1], where Wi is the subspace
of W spanned by the xj with j < i. Now, E is a deformation retract of Q[V ⊗B∗]
(by Lemma 5.2), ∆Q[V ⊗ B∗] is homotopy equivalent to F(X,YQ) (by Corollary
3.6), and F(X,YQ) is Kan when YQ is Kan (see Theorem 6.9 of [M]), which we
are assuming. Thus ∆(E) is Kan, and it follows that the component of ∆(E)
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containing u ∈ ∆(E)0 is homotopy equivalent to ∆(E)u, the simplicial subset of
∆(E) consisting of those w all of whose vertices are at u:

∆(E)u = {ω ∈ ∆(E) | ∂q−i∂iω = u, all i, q = |w|}.
Let Ku be the ideal in E generated by the set

{w : |w| < 0} ∪ {dw : |w| = 0} ∪ {w − u(w) : |w| = 0}.
Theorem 6.1. The ideal Ku is closed under differentation and the quotient map
E → E/Ku induces a homotopy equivalence

∆(E/Ku)→ ∆(E)u.

Furthermore, E/Ku is FNF, and is isomorphic to Q[W̃ ], where W̃ q = 0 for q <

1, W̃ 1 ⊂ W 1, and W̃ q = W q for q > 1. Finally, if u = 0 and dw is decomposable
for all w ∈W , then E/Ku is minimal and W̃ 1 = W 1.

Proof. Note first of all that if w ∈ ∆(E) vanishes on Ku, then, for w ∈ W 0, we
have

ω(w) = ω(w − u(w) + u(w)) = u(w),

since u(w) ∈ Q. Thus, u is the only 0-simplex in ∆(E/Ku), so that ∆(E/Ku) ⊂
∆(E)u.

To prove that dKu ⊂ Ku, it is enough to prove that dω ∈ Ku for ω in each of
the three sets of generators defining Ku. If w ∈ E−1, then

dw = dw − u(dw) = w̄ − u(w̄) ∈ Ku,

since u(dw) = du(w) = 0. We next prove E/Ku = Q[W̃ ]. Let K = Ku and let
Ln ⊂ A be the ideal generated by the set

{xn : m < n and |xn| < 0} ∪ {xn − u(xn) : m < n and |xn| = 0}.
Then, if |xn| = 0,

dxn =
∑
|xm|=1
m<n

anmxm mod Ln,

an,m ∈ Q. Hence, we can change bases among the xn’s of dimension zero into one
of the form

x̄n = cnxn +
∑
m<n
|xm|=1

bnmxm,

where cn, bn,m ∈ Q, cn 6= 0, such that if |x̄n| = 0, dx̄n = x̄m or 0 mod Ln. Note
that x̄m ∈W 1 is in K if and only if x̄m = dx̄n. Hence

E/K = Q[xn : |xn| > 1]⊗Q[x̄m : |x̄m| = 1, x̄m 6= dx̄n].

Furthermore, the differential of a generator in E/K only involoves previous gener-
ators, so that E/K is FNF.

We next prove E → E/K induces a homotopy equivalence of ∆(E/K) into
∆(E)u. Let En = Q[Wn]. It is sufficient to prove that En → En/K induces
a homotopy equivalence, since ∆(E) → ∆(En) is a fibration with fibre whose
connectivity increases with n. We proceed by induction on n. The case n = 0 is
immediate. Suppose it is true for n − 1. Let un = u|∆(En) and let Kn be the
ideal K for En. If |xn| < −1, then ∆(E/Kn) = ∆(En−1/Kn−1) and ∆(En)un =
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∆(En−1)un−1 by definition. If |xn| = −1, then ∆(En/Kn) = ∆(En−1/Kn−1) by
definition. If ω ∈ ∆(En−1)un−1 and |w| = q, then dω(dxn) = 0 and ∂q0w(dxn) =
u(dxn) = 0, so that w(dxn) = 0. We then have

∆(En−1)un−1 = {ω ∈ ∆(En−1)un−1 : ω(dxn) = 0}
= ∆(En)un .

Suppose |xn| ≥ 0. We then have fibrations p1 and p2 in the following commuta-
tive diagram with ∆Q[xn] the fibre of both:

∆(En−1/Kn−1[xn]) −−−−→ {ω ∈ ∆(En) : ω | En−1 ∈ ∆(En−1)un}
p1

y p2

y
∆(En−1/Kn−1) −−−−→ ∆(En−1)un−1

For |xn| > 0 this gives a homotopy equivalence ∆(En/Kn)→ ∆(En)un . If |xn| = 0,
then p1 and p2 are covering projections. Let v ∈ ∆((En−1/Kn−1)[xn])0 be defined
by v(xn) = u(xn). Then v maps to un above and, passing to components, we have
a homotopy equivalence

∆(En−1/Kn−1[xn])v → ∆(En)un .

Thus it is sufficient to show that

∆(En/Kn)→ ∆(En−1/Kn−1[xn])v

is a homotopy equivalence. If dxn ∈ Kn−1, the two sides are equal, since dω(xn) = 0
and ∂q0ω = un implies ω(xn) = u(xn). Suppose dxn /∈ Kn−1. Then, as in the proof
of freeness above, we may assume dxn = xm,m < n. Let x = xn and y = xm. If
j < i, then dxj = αj + yβj in En−1/Kn−1 and αj , βj ∈ Ej−1. Let

x̄j = xj − xβj , j ≥ 1, j 6= m.

One can solve for the xi’s in terms of x̄j ’s, and hence dx̄j ∈ Q[x̄j : i < j]. Thus

En−1/Kn−1[xn] = Q[x̄j ]⊗Q[x, y],

as DG algebras. Hence Q[x̄j ] is a deformation retract of En−1/Kn−1[xn] as in
Lemma 5.1. The image of x̄j under the map

Q[x̄j ]→ En−1/Kn−1[xn]→ En/Kn

is xj − u(x0)βj . Since βj is a polynomial in xk, k < j, this map is an isomorphism.
Hence

∆(En/Kn)→ ∆(En−1/Kn−1[xn])v → ∆(Q[x̄j ])

are homotopy equivalences.

Corollary 6.2. If E = (Q[W ], d) is as in Theorem 6.1 and u ∈ ∆(E)0, there are
W̄ and d̄ such that W̄ is isomorphic to a quotient of W , Ē = (Q[W̄ ], d̄) is minimal
and ∆(Ē) is homotopy equivalent to ∆(E)u.

Proof. In [BG], Propositions 7.11 shows that such an Ē exists which is homotopy

equivalent to Ẽ as in Lemma 5.2.
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7. Two Examples

In this section we present two examples. In the first, we determine the set
of components and describe a minimal model for each component. It follows from
this description that not all components have the same homotopy type. The second
example shows that the formality condition is necessary in Theorem 1.9.

Let A = Q[V ], where V has a basis {x, y, v} with

|x| = 2 , dx = 0,

|y| = 4 , dy = 0,

|v| = 5 , dv = xy.

Let B∗ = Q[α, β] be the Hopf algebra with α, β primitive and with |α| = −2, |β| =
−3, and dα = dβ = 0. Let W = V ⊗ B∗ and let Q[W ] be the DG algebra with
differential induced by the differential in Q[A⊗B∗] as in Corollary 3.6. Then Q[W ]
in dimension q = −1, 0, 1, 2 has a basis as follows (we write xα for x⊗ α and x for
x⊗ 1):

degree − 1 : xβ, yαβ, vα3,

degree 0 : xα, yα2, vαβ,

degree 1 : yβ, vα2,

degree 2 : x, yα, vβ.

Ignoring terms involving negative dimensional generators, the non-zero differentials
of the basis above are given by

d(vα3) = 3(xα)(yα2),

d(vαβ) = (xα)(yβ),

d(vα2) = 2(xα)(yα) + x(yα2),

d(vβ) = x(yβ).

For example,

d(vαβ) = d(v ⊗ αβ) = xy ⊗ αβ

= (x⊗ 1)(y ⊗ αβ) + (x⊗ αβ)(y ⊗ 1) + (x⊗ α)(y ⊗ β) + (x ⊗ β)(y ⊗ α),

using equation (1.1), since

D(αβ) = D(α)D(β)

= (1⊗ α+ α⊗ 1)(1⊗ β + β ⊗ 1).

However, the first, second, and fourth terms involve negative dimensional generators
so that

d(vαβ) = (x⊗ α)(y ⊗ β)

= (xα)(yβ).

The other cases are similar.
We now compute the set of components of ∆(Q[W ]). Note first of all that the

set ∆(Q[W ])0 of 0-simplices can be identified with the set of mappings u : W 0 → Q
satisfying u(dw) = 0 for any w ∈W−1. Thus, u is determined by a, b, c ∈ Q, where

u(xα) = a, u(yα2) = b, u(vαβ) = c.
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The condition u(dw) = 0 implies that ab = 0, so that

∆(Q[W ])0 ≈ {(a, b, c) ∈ Q3 : ab = 0}.
Let ua,b,c denote the element of ∆(Q[W ])0 corresponding to (a, b, c).

In the same way, it can be shown that the set ∆(Q[W ])1 of 1-simplices of
∆(Q[W ]) consists of all pairs (u, s), where

u : W 0 → Q[t], s : W 1 → Q[t, dt]

satisfy u(dw) = 0 for w ∈ W−1 and s(dz) = du(z) for z ∈ W 0. Suppose that

u(xα) = a(t),

u(yα2) = b(t),

u(vαβ) = c(t),

s(yβ) = f(t)dt,

s(vα2) = g(t)dt.

Then,

0 = u(d(xα)) = du(xα) = α′(t)dt,

so a(t) = a is a constant. Similarly, b(t) = b is a constant, ab = 0, and c′(t) = af(t).
Thus ∆(Q[W ])1 can be identified with the set of 5-tuples (a, b, c(t), f(t), g(t)), where
a, b ∈ Q, c(t), f(t), g(t) ∈ Q[t]. Note that, with this identification, ∂0(u, s) is the zero
simplex corresponding to (a, b, c(0)) and ∂1(u, s) is the zero simplex corresponding
to (a, b, c(1)).

Suppose that (u, s) is as above and a = 0. Then c′(t) = 0 and c(t) = c is
constant. It follows that ∂0(u, s) = ∂1(u, s), so that the component of ∆(Q[W ])
containing the zero simplex u0,b,c contains no other 0-simplices. Thus, each u0,b,c

determines a distinct component.
Next, suppose that a 6= 0 and b = 0 and that ua,0,0, ua,0,c ∈ ∆(Q[W ])0. Let

(u, s) ∈ ∆(Q[W ])1 correspond to (a, 0, c(t), c′(t)/a, 0), where c(0) = 0 and c(1) = c.
Then ∂0(u, s) = wa,0,0 and ∂1(u, s) = wa,0,c, so that each 0-simplex wa,0,c lies in
the same component as wa,0,0.

It follows from the discussion above that π0(∆(Q[W ])), the set of components
of ∆(Q[W ]), is given by

π0(∆(Q[W ])) ≈ Q2 ∪ {Q− (0)}.
Let u = u0,0,0, w = u1,0,0 ∈ ∆(Q[W ])0. A straightforward computation shows

that the ideal Ku (defined in Section 6) is generated by all z ∈ Q[W ] with |z| < 0
together with the elements xα, yα2, vαβ. Similarly, the ideal Kw is generated by
all z ∈ Q[W ] with |z| < 0 together with xα − 1, yα2, vαβ, yβ. Set Au = Q[W ]/Ku

and Aw = Q[W ]/Kw. According to Theorem 6.1, the component of ∆(Q[W ])
containing u is homotopy equivalent to ∆(Au) and the component of ∆(Q[W ])
containing w is homotopy equivalent to ∆(Aw). Now, A1

u has basis yβ, vα2 with
d(yβ) = d(vα2) = 0 and A1

w has basis vα2 with d(vα2) = 2yα. It follows that

H1(∆(Q[W ])u) ' Q2,

H1(∆(Q[W ])w) ' 0,

so that the components ∆(Q[W ])u and ∆(Q[W ])w have different homotopy types.
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We note that Au is a minimal model for ∆(Q[W ])u. Applying Theorem 6.1, we
see that the subalgebra of Aw generated by x, vβ, v−x(vα)+(x)2(vα2) is a minimal
model for ∆(Q[W ])w .

We next calculate differentials in a nonformal example. This yields a result
different from what is obtained using the coproduct in H∗(B∗) as in the formal
case.

Let A = Q[V ], where V has a basis {v1, v2, v3, v4} with

|v1| = 3 , dv1 = 0,

|v2| = 2 , dv2 = 0,

|v3| = 4 , dv3 = v1v2,

|v4| = 6 , dv4 = v1v3.

Let B = Q[x, y, z, u, w], where U has a basis {x, y, z, u, w} with

|x| = |y| = |z| = 2, dx = dy = dz = 0,

|u| = |w| = 3, du = xy, dv = yz,

and consider the sets

γ = {x, y, z, x2, y2, z2, xz, σ = uz − xw},
α = {u, v, xu, yu, xw, yw, zw},
β = {xy, yz}.

Then α∪β∪γ is a basis for B1⊕· · ·⊕B5 and we let α∗∪β∗∪γ∗ be the dual basis for
(B1⊕ · · · ⊕B5)∗. The basis α∗ ∪ β∗ ∪ γ∗ is of the kind required in Section 5. More
explicitly, the elements of γ∗ correspond to the ci, the elements of α∗ correspond
to the ai, and the elements of β∗ correspond to the bi.

We now construct the elements wij ∈ Q[V ⊗B∗] satisfying (i) and (iii) of Theorem
5.1. Let wij = vi ⊗ cj , i, j = 1, . . . , 4, cj ∈ γ∗ except for cj = σ∗, i = 3, 4. Then (i)
and (iii) of Theorem 5.1 are satisfied for the wij and we need only define

w1 = v3 ⊗ σ∗ mod Q[V2 ⊗B∗],

w2 = v4 ⊗ σ∗ mod Q[V3 ⊗B∗],

with dw1 and dw2 satisfying (iii). A straightforward computation shows that

Dσ∗ = 1⊗ σ∗ + σ∗ ⊗ 1 + u∗ ⊗ z∗ + z∗ ⊗ u∗,

so that

d(v3 ⊗ σ∗) = v1v2 ⊗ σ∗

= (α1 ⊗ σ∗)(v2 ⊗ 1∗) + (v1 ⊗ 1∗)(v2 ⊗ σ∗)

+ (v1 ⊗ z∗)(v2 ⊗ u∗) + (v1 ⊗ u∗)(v2 ⊗ z∗).

The first two terms in this expression are of the required form but the last two are
not. To eliminate the last two terms, we note that

d((v2 ⊗ z∗)(v2 ⊗ (xy)∗) + (v1 ⊗ (xy)∗)(v2 ⊗ z∗))

= −(v1 ⊗ z∗)(v2 ⊗ u∗)− (v1 ⊗ u∗)(v2 ⊗ z∗).

Defining w1 by

w1 = v3 ⊗ σ∗ + (v1 ⊗ z∗)(v2 ⊗ xy∗) + (v1 ⊗ xy∗)(v2 ⊗ z∗),

we see that dw1 has the required form.
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In the same way, we define w2 by

w2 = v4 ⊗ σ∗ + (v1 ⊗ z∗)(v3 ⊗ xy∗) + (v1 ⊗ xy∗)(v3 ⊗ z∗).

Then

dw2 = (v1 ⊗ σ∗)(v3 ⊗ 1∗) + (v1 ⊗ 1∗)(w1)

− (v1 ⊗ z∗)(v1 ⊗ x∗)(v2 ⊗ y∗)

− (v1 ⊗ z∗)(v1 ⊗ y∗)(v2 ⊗ x∗),

which has the required form.
On the other hand, if σ̃ is the element of H∗(B∗) determined by σ∗, then

D̃σ̃ = σ̃ ⊗ 1 + 1⊗ σ̃,

where D̃ is the coproduct in H∗(B∗). We then have

d(v4 ⊗ σ̃) = v1v3 ⊗ σ̃ = (v1 ⊗ σ̃)(v3 ⊗ 1) + (v1 ⊗ 1)(v3 ⊗ σ̃).
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