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On the Reachability of Quantized Control Systems
Antonio Bicchi, Senior Member, IEEE, Alessia Marigo, and Benedetto Piccoli

Abstract—In this paper, we study control systems whose input
sets are quantized, i.e., finite or regularly distributed on a mesh. We
specifically focus on problems relating to the structure of the reach-
able set of such systems, which may turn out to be either dense or
discrete. We report results on the reachable set of linear quantized
systems, and on a particular but interesting class of nonlinear sys-
tems, i.e., nonholonomic chained-form systems. For such systems,
we provide a complete characterization of the reachable set, and, in
case the set is discrete, a computable method to completely and suc-
cinctly describe its structure. Implications and open problems in the
analysis and synthesis of quantized control systems are addressed.

Index Terms—Chained-form systems, discrete controllability
theory, embedded control systems, hybrid systems, quantized
control systems.

I. INTRODUCTION

I N THIS PAPER, we consider discrete-time systems of the
type

(1)

where the input set, , is quantized, i.e., finite or with values
on regular meshes in . Quantized control systems (QCSs)
arise in a number of applications because of many physical phe-
nomena or technological constraints. In the control literature,
quantization of inputs has been mostly regarded as an approxi-
mation-induced disturbance to be rejected [1], [2]. Typical re-
sults in this spirit are those provided by [3], who show how
a nonlinear system with quantized feedback, whose linear ap-
proximation (without quantization) has an asymptotically stable
solution, has uniformly ultimately bounded solutions; and how
such bounds can be made small at will by refining quantization
sufficiently.

A different viewpoint, that has been championed by
D. Delchamps in the early 1990s [4], [5] is that quantization is
a deterministic, memoryless nonlinear phenomenon that may
affect inherent properties of the system in very specific ways,
and that its study should, and indeed can in some cases, be
performed directly. This approach is particularly meaningful
when quantization is rough, or when it is introduced on purpose
in order to reduce the technological complexity of the control
systems. The latter concern is very relevant in many present-day
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control systems, such as, e.g., in mass-produced embedded
systems (where electronics cost reduction is at a premium) or in
distributed control systems. Recently, some attention has been
focused on QCS as specific models of hierarchically organized
systems with interaction between continuous dynamics and
logic [6], [7]. As a consequence of taking such viewpoint, the
focal point of research is to understand how to design a quan-
tized system, rather than assessing robustness of a continuous
design with respect to quantization.

While [4] focused on observability with quantized outputs,
[5]–[8] addressed the stabilization problem. Authors of the latter
paper provide a result on the optimal (coarsest) quantization
for asymptotically stabilizing a linear discrete-time system, that
turns out to require a countable symmetric set of logarithmically
decreasing inputs, namely

. Although this choice (and the corresponding par-
tition induced in the state space) captures the intuitive notion
that coarser control is necessary when far from the goal, it still
needs input values that are arbitrarily close to each other near
the equilibrium.

An observation common to many papers on stabilization with
quantized control is that, if the available quantized control set is
finite, or countable but nowhere dense (in the natural topology
of ) then stability can only be achieved in a weak sense,
be it ultimate boundedness [3], containability [6], or practical
stability [7].

The focus of our paper is on the study of particular phe-
nomena that may appear in QCS, which have no counterpart
in classical systems theory, and that deeply influence the
qualitative properties and performance of the control system.
These concern the structure of the set of points that are reach-
able by system (1), and particularly its density. While some
understanding of the structure of the reachable set for quantized
linear systems has been reached recently [9], the general non-
linear case remains largely unexplored, and probably quite hard
to attack. In this paper, we consider a particular but important
class of nonlinear systems, i.e., chained-form systems. This
class has been introduced by [10] as a canonical form for
continuous-time driftless nonholonomic systems, and has since
been used extensively in the automatic control literature for
modeling and controlling systems that range from wheeled
vehicles (with an arbitrary number of trailers) to satellites (see,
e.g., [11]–[17]). However, to our knowledge, properties of this
class of systems in under quantized inputs have not yet been
considered in the literature.

The main contribution of this paper is Theorem 9, which de-
scribes the structure of the reachable set for chained form sys-
tems, under quantized control inputs. Specifically, this theorem
provide conditions for the reachable set to be discrete, or other-
wise to be dense in the state space, or to have a compound struc-
ture. When the discrete case applies, we show that the reachable
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set possesses a lattice structure, for which we provide a com-
plete description by a finitely computable algorithm: this is in-
strumental to devising steering methods for the system based on
integer programming techniques. Density of the reachable space
is shown toobtainonlyundersome irrationality conditionson the
control values: the practical implications of this result, as a limit
case for increasing quantization resolution, are also discussed.

In the paper, we first provide few examples that illustrate dif-
ferences with classical control systems, and some definitions that
extendclassicalnotionsof reachability tosystemswithquantized
input sets (Section II). In Section III, we study linear QCS. In
particular, in Section III-A we report on recent results of [9] that
apply to the dense synthesis problem, while in Section III-B we
provide some new analysis results for simple linear systems,
which are basic for later developments. In Section IV we pro-
vide a complete solution for chained-form systems.

II. FIRST DEFINITIONS AND EXAMPLES

We consider systems defined as follows.
Definition 1: A system is a quintuple , where
denotes the configuration set,an ordered time set, a set

of admissible input symbols (possibly depending on the config-
uration), a set of admissible input words formed by symbols
in and is a state-transition map . De-
note , with composition by concatenation

.
In particular, we will focus here on , not only because

we are interested in digital control applications, but also because
most interesting effects of quantization on reachability proper-
ties of systems appear to be linked to discrete time. Indeed, for
instance, Raisch [18] has shown by optimal control arguments
that the reachable space of continuous time LTI systems under
quantized control coincides with that of the same system under
continuous control (provided that controls have the same bounds
componentwise). Similar results may be expected to hold for
more general systems, as, roughly speaking, in continuous time
one can choose to switch between different levels of quantized
control at any time, basically allowing a pulse-width modula-
tion (PWM) of signals.

A system as in Definition 1 with both and discrete sets
essentially represents a sequential machine or an automaton,
while for and continuous sets, a discrete-time, nonlinear
control system is obtained. We are interested in studying reach-
ability problems that arise when has the cardinality of a con-
tinuum, but is discrete, i.e., when inputs arequantized. The
following example motivates the generality of the definition
above with a specific robotics application.

Example 1: We will consider the discrete analogue of a well
known continuous nonholonomic system, which is the plate-ball
system (see, e.g., [19]–[21]). A ball rolls without slipping be-
tween two parallel plates, of which one is fixed and the other one
translates. If the moving plate is driven along a closed trajectory,
in particular e.g., it is translated to the right by some amount,
then forward, left, and backward by the same amount, the same
will happen to the ball center, which will end up in the same
initial position. However, the final orientation of the sphere will
be changed by a net amount. Indeed, it can be shown [22] that
an arbitrary orientation in can be reached by rolling ar-

bitrary pairs of nonisomorphic surfaces, which fact was used as
a basis for building simplified dextrous robot hands.

Consider now a similar experiment with a polyhedron re-
placing the ball. For practical reasons, possible actions on this
system are restricted to be rotations about one of the edges of
the face lying on the plate, by exactly the amount that brings an
adjacent face on the plate [23], [24]. A generic configuration of
the polyhedron can be described by giving the index of the face
sitting on the plate, the position of the projection on the plate
of the centroid, and the orientation of the projection of an inner
diagonal of the cube. Hence, the configuration set is represented
by the manifold , where denotes the set
of faces of the polyhedron. Given the discrete nature of input
actions, we take . For a given face , and for all
states with on the plate , , , the
set of admissible symbols is the subset of faces adjacent to,
and is the set of all sequences of adjacent faces starting with a
face adjacent to . Finally, is the configuration reached
at the end of a sequence admissible at .

Definition 2: A configuration is reachable from if
there exists a time and an admissible input string
that steers the system from to .

In the following, we shall denote by the reachable set
from , i.e., the set of configurations that can be reached from

. For differentiable systems, the notion ofreachability from
is conventionally understood as . For discrete-time

systems with quantized inputs, however,is a subset of all
possible finite sequences of symbols in the discrete set,
hence, is a countable set and, in the general case that the
configuration set has the cardinality of a continuum, it will
not make sense checking whether equals .

Example 1-b: The set of configurations that can be reached
starting from a given configuration of the polyhedron of Ex-
ample 1, in a large but finite number of steps, may have dif-
ferent characteristics. Consider, for instance, (intuitively, or by
simulation) positions reached by the centroid of different poly-
hedra after steps: only points lying on a regular grid can be
reached by rolling a cube, while for a generic parallelepiped or
pyramid they tend to fill the plane asgrows. Also, orientations
obtained by rolling the cube or the parallelepiped are only mul-
tiples of , while orientations reached by the generic pyramid
tend to fill the unit circle as grows (see [23] and [24]).

Notice that the possibility that the reachable set of a quantized
control system is discrete, separates such systems from differ-
entiable systems; on the other hand, the possibility of having
a dense reachable set distinguishes quantized control systems
from classical finite-state machines. The structure of reachable
sets will be described in the further assumption thatis a metric
space with distance . We introduce a concept ofap-
proachabilityas

Definition 3: A configuration can be approached from
if , , such that . We say
that the system is locally approachable fromif the closure
of the reachable set contains a neighborhood of , and is
approachable from if the reachable set is dense in .
Finally, the system is approachable if

closure



548 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 4, APRIL 2002

When is nowhere dense we will say that the reachable set
is discrete. The termdense in a subset will be used to
indicate that

closure

In practical applications, it may be important to measure the
coarseness of discrete reachable sets. We will say that a con-
figuration is -approachablefrom if ,
such that . The set of configurations that
are -approachable from is denoted by . The system will
be said -approachable if .

Let us consider quantized, time independent, control systems
in discrete time in the form

(2)

where , a manifold, and a quantized control
set. By “quantized control set” we mean sets that are finite, or
that belong to a regular mesh, or to a union of a finite number
of regular meshes. A quantized control set is symmetric if

. Examples of symmetric quantized control sets
are as follows:

ZZ (3)

A formal definition of quantized control sets is now given,
whose technical construction will turn out to be useful later in
Theorems 8 and 9.

Definition 4: A quantized control set ,
is a finite union of (sub)sets that can be finitely gener-

ated by linearly independent vectors. Each is described by
a triple , with an invertible matrix,

, and ZZ of cardinality (possibly ), as

diag

In terms of such definition, the previous examples are de-
scribed as

with , , ,

, , ,

ZZ .

Without loss of generality, we can assume that in Defini-
tion 4 vectors have no null components
, , . Indeed, any input subset

with say can be rewritten as
, with and suitably chosen in

the nullspace of the th row of . Also, in full generality,
we can assume that differentare not rationally related, in the
sense that , , . Indeed, if

and are given such that and
are rationally related, then there exist , ,
, ZZ , and diagonal integer matrices , such

thatdiag diag , diag diag ,
, and , so that we can have the same input set

described by with .
Hence, each control subset is comprised of points

belonging to a lattice (recall that a lattice in is an additive
group which can be integrally generated byindependent vec-
tors), and different control subsets have no common underlying
lattice. In Theorems 8 and 9, we will show that each discrete
control set produces, under the considered state transition
maps, a lattice of reachable points whose mesh depends on.
It will also turn out that if two lattices, and of reachable
points from the origin arise, also every point , ,

is reachable. Hence, if two discrete control subsets are
available that are not rationally related, then the whole reach-
able set from the origin is dense (or dense in a subset of).

Remark 1: Notice that, in full generality, we consider input
sets that may contain irrational numbers. In most practical ap-
plications, actual occurrence of irrational quantities is impos-
sible, because of either the use of digital equipment, or of fi-
nite modeling accuracy. However, our taking in consideration
input sets with irrationally related quantities will be useful to
describe limit behaviors of a system as the representation of irra-
tional quantities gets finer and finer: this will allow for instance
to study the effects of increasing machine precision in digital
controllers, or those of reducing tolerances in model descrip-
tions (as, e.g., in the rolling polyhedron example with regard
to the measures of edge lengths or angles). Thus, a practically
important consequence of showing that the reachable set of a
system under a given set of controls is dense will be that the
system can be made-approachable for arbitrarily small, pro-
vided that fine enough a number representation, or a modeling
tolerance, of the input set is available. This result is stated pre-
cisely in Corollary 1.

For simplicity, we will henceforth assumeto be comprised
of all strings of symbols in . Obviously, such definition is
equivalent to assigning a countable number of maps

. In this case the reachable set from a point is
( includes the number
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0 so that ). Moreover, we introduce the relation over
the elements of by setting , , , if .

Quantized control systems may exhibit many peculiar phe-
nomena with respect their differentiable counterparts, as illus-
trated in the following two examples.

Example 2: Consider the linear driftless system

(4)

with and , quantized. For and
, , but since is irrational, .

In some of the analysis to follow, we will focus on a special
class of systems that rule out this type of behavior.

Definition 5: The system (2) is said to be invertible if for
every and there exists a finite sequence of controls

, , such that .
Obviously, the relation is an equivalence relation if and

only if the system is invertible. For invertible systems we can
partition the state space into a family of reachable sets, by taking
the quotient with respect to the equivalence relation.
We call the set the reachability set of the system
(2) and endow with the quotient topology, that is the largest
topology such that , the canonical projection, is
continuous. For instance, the system of Example 2 with

is invertible. The reachable set from the origin
is the subgroup of generated by 1/2, and the reachability set

is homeomorphic to .
Example 3: Consider the system

where , and . The
system is invertible, and for every

ZZ . The reachability set is homeomorphic to the
set , where on there is the usual topology while the
only neighborhood of is the whole space.

Notice that in Example 3, the reachable setfor has
only one accumulation point, namely 0. More regular structures
of the reachable set are obtained if we assume thatis a metric
space and that the maps are isometries. Indeed,
in this case we have a dichotomy illustrated by the following
proposition.

Theorem 1: Consider an invertible system (2). Let be
a metric space and assume that is an isometry for
every . Then, for all , the reachable set is
comprised either only of accumulation points or only of isolated
points.

Proof: Assume that the set admits an accumulation
point . Let , ZZ be a sequence con-
verging to and that the set ZZ is infinite. Since the
system is invertible, for everythere exists
such that and . Define

. For every and we have

Passing to the limit in , we have . Clearly
the sequence converge to and contains infinitely many dis-

tinct points, so is an accumulation point for . Now, it easily
follows that all points of are accumulation points for .

Example 2-b: The system in (4) is an interesting special case
(indeed, it will turn out to play a crucial role in our treatment). It
is clear that for every the reachable set from is
equal to where is the reachable set from the origin.
The hypothesis of the previous theorem are satisfied. Notice that
if and is symmetric then the set is either everywhere
dense or nowhere dense in(since it is a subgroup of ), hence
presenting a stronger dichotomy of the one illustrated by the
above theorem.

For we may have more varied structures. For instance,
for and with reference to (3), the reachable set for the
control set is the unit lattice in . The control sets and
provide lattices that are embedded in a one-dimensional linear
manifold, while for the reachable set is everywhere dense
(see theorem 6 below). The reachable set for the infinite set
coincides with that for . As for the reachable set for , there
are directions along which the set is dense and directions along
which it is discrete. Indeed every subgroupof can be
written as a direct sum with dense in some
subspace of dimensionand a lattice of rank with

. Notice that if we define to be the orthogonal
projection on the direction of the vector, then is dense
in for every not parallel to (0,1) (and this corresponds to
the fact that the projection of the reachable set is precisely the
reachable set of the projection of the system). On the other side,

is discrete for every not parallel to (1,0).

III. L INEAR QUANTIZED CONTROL SYSTEMS

In this section, we report some results on systems of the form

(5)

with a quantized set as usual, and a controllable pair.
Reachability questions that may be asked about such systems
can be divided in two types.

Definition 6:

Q1 given a pair , find conditions under which a
quantized control set exists such that the reachable set

from 0 is dense in . If possible, find such a .
Q2 given a pair , a quantized set , and initial con-
ditions , determine whether or not the corresponding
reachable set is dense.

We will refer to questionQ1 as to a synthesis problem, and to
Q2 as to an analysis problem.

A. Synthesis

The synthesis problem has been extensively studied in [9].
Main results are reported below.

Theorem 2 [9]: Necessary and sufficient conditions for a
quantized control set to exist such that the reachable set
from 0 of (5) is dense in are that

1) is controllable;
2) if is an eigenvalue of , then .
Remark 2: The necessity of the first condition is obvious. If

the second condition does not hold, the reachable set is bounded
in some component. However, a similar density result can still
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be obtained (provided that no eigenvalue ofis zero) if local
approachability at the origin is considered instead.

Conditions for a positive answer to the synthesis problem are
very weak. Proofs given in [9], though far from trivial, are con-
structive, as they provide explicitly astandardcontrol set

that achieves density for a fixed system. Fur-
thermore, results are shown to be uniform with respect to both
initial conditions and eigenvalue locations.

A further twist to the synthesis problem results from re-
stricting control values to be rational numbers, as is natural in
digital control. In particular, in applications involving uniform
quantization (e.g., due to D/A conversion), inputs will be
restricted as . For this case, we immediately have the
following “negative” synthesis result.

Theorem 3: Consider the system (5) and assume that,
have integer entries. Then, for any , the reachable set

is a subset of a lattice.
In general, if we allow the control set to be dis-

crete but infinite then (unless we are in the situation of the above
theorem with rational) we expect density of to be
generic. The situation is profoundly different if we consider fi-
nite control sets , even without uniform bound on the cardi-
nality. There is a special class of algebraic numbers that play a
key role. We recall that an algebraic numberis a real number
that is root of a polynomial with integer coefficients. If, more-
over, the leading coefficient of is 1 then is called an alge-
braic integer. For an algebraic numberwe can determine the
minimal polynomial that is the polynomial of minimal de-
gree such that , moreover if is an algebraic integer

can be chosen with leading coefficient 1. Given an algebraic
number we call the other roots of the Galois conjugates of

(obviousy they may be not real).
Definition 7: An algebraic integer is a Pisot number

if all its Galois conjugates have modulus strictly less than one.
The following theorem holds.
Theorem 4 [9] : Consider a system (5) satisfying the assump-

tions of Theorem 2 (necessary for density) and assume that
is in Jordan form with real eigenvalues, (the identity
matrix). For every finite set the reachable set is not
dense in if and only if there exists an eigenvalue ofwhose
modulus is a Pisot number.

Notice the strength of the theorem implying that in the case in
which an eigenvalue is a Pisot number, then whatever choice of a
finite set with arbitrarily large finite cardinality gives a
nondense reachable set. The set of Pisot number is obviously
countable but the surprising fact is that it is closed. Hence, it is
not dense in and indeed is “small” in a topological sense.
Many facts are indeed known about the setof Pisot numbers.
For example, admits a minimum value , that is the
unique positive root of . The smallest accumulation
point of is the well known golden number that is
root of . We refer the reader to [9] and the references
therein for information about Pisot numbers.

On the other hand, if all eigenvalues are not Pisot then it is
possible to obtain density of choosing a large enough number

(of the order of the modulus of the biggest eigenvalue) and
all controls with integer coordinates in . See [25] and
[26].

B. Analysis

The analysis question is indeed much more difficult to an-
swer. To understand the difficulty we refer the reader to [27]
where the so-called problem is studied. This corre-
sponds exactly to the analysis of the Hausdorff measure of the
reachable set for the system , , ,

, if we allow infinite sequences of controls.
The analysis problem has some partial answer in the cited paper
and references therein.

Another strictly linked number theory problem is the one con-
sidered in [25]. We refer the reader to [9] for a deeper discussion
of the links between these hard mathematical problems. From
the results of [25], it is even more clear the role played by Pisot
numbers.

In this section, we provide some results on the analysis ques-
tion concerning the simple but fundamental case of driftless
linear systems

(6)

where and takes values in a quantized set .
Our aim is to find conditions for the reachable set from any

initial point to be dense in , or otherwise study its structure.
To do so, we start by considering system (6) with .

Given two real numbers , , we write when
. Obviously is an equivalence relation. Consider

the following condition.

There exist , such that and there exist ,
such that and notice that it is equivalent

to the folllowing.
There exist , such that and .

Oviously, implies . On the other hand, assume that
is true, then are nonempty. If for every
and we have then, since is an equivalence re-
lation we get that all control have rational ratio, a contradiction.

We start reporting the following result.
Lemma 1 ([9]): The reachable set from the origin for

system (6) with is dense if and only if there exist two
sequences and both converging to zero such
that .

Let us now prove the following.
Theorem 5: Let be a reachable set for the system (6) with

from the origin. Then, is dense if and only if holds
true. Moreover, if is not dense then it is nowhere dense.

Proof: Let us first assume that holds true and let ,
be as in . Since the ratio is not rational we can

consider the sequence , , integers, ,
given by its continued fraction. We have

where and grows to infinity. We get im-
mediately

From ,we get , hence .
Now the required sequences are obtained setting, if ,
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for even and for odd and
the opposite if .

Assume now that does not hold. Then, either
for every , or for every , . In the first
case, it is obvious that the set is contained either in
or in . In the latter case, the proof is as follows. Let

and assume then there exists , , such
that . Any point of the reachable set from

can be written as , with
. Thus

Now if we have that the numerator of the above expres-
sion is different from zero and being an integer is at least of
modulus 1. Therefore, if we get

and, obviously, can not be dense. Moreover, from the same
expression we have thatis always a multiple of
hence is indeed nowhere dense.

Since the reachable set from a point is exactly ,
we have a dichotomy similar to that of Section II, even though,
for asymmetric sets , may fail to be a subgroup of . Next,
let us consider the system (6) with .

Theorem 6: For the set of configurations reachable from
the origin for system (6), the following hold.

i) A necessary condition for the reachable set to be
dense is that contains controls of which are
linearly independent.

ii) If , whereof are linearly
independent, and are the components of w.r.t. to
the other ’s, then is dense if and only if is nega-
tive for all and 1, are linearly independent
overZZ, that is , ZZ, if
and only if for all .

iii) If are linearly independent and there
exists irrational negative numbers such that

for every then is dense
in .

iv) If there exist linearly independent vectors
such that , there exist integers
such that , then is discrete (actually, a
subset of a lattice) in .

Proof: While i) and iv) are obvious, iii) follows directly
from application of arguments used in the proof of Theorem 5.
We now prove ii).

Assume first that are negative and that the linear diophan-
tine equation

has unique integer solution , . Given
, we indicate by its integer part and by

its fractional part. By Kroneker’s theorem (see, e.g., [28]), the
sequence is dense in the unit

-cube. Take and let be its coordinates w.r.t. the
basis . For every there exists such
that and . Hence,

. Since are
negative so are , and from the choice of we get that

. Since is arbitrary, we
conclude one implication.

If some is positive then clearly the projection of any
along is positive. Assume that there exist integers,

, not all vanishing, such that
and, with no loss of generality, that , where

is the canonical base of . Given
, , , we have that

is a discrete subset of , thus is not dense.

Necessary and sufficient conditions for approachability can
be given under stronger hypotheses on the control set.

Definition 8: A quantized control set
with as in Definition 4, is aregular control
set if

• it is symmetric;
• each set contains linearly independent vectors.

Moreover, we say that the quantized control set issufficiently
rich if the following holds. For all , contains

vectors with , pairwise not parallel and
of which are linearly independent. All the other vectors of
are parallel to some of thesevectors.

Theorem 7: Let the set be symmetric. The
reachable set of , ,
is a lattice generated by linearly independent vectors if and
only if contains linearly independent vectors.

Proof: The necessity part is obvious. We prove the suf-
ficiency part. By definition each element of is
written as an integer combination of linearly indepedent vec-
tors (the columns of ) of , then by Theorem 6iv) we have
that the reachable set is discrete. Recalling that the set contains

linearly independent vectors and it is symmetric we conclude
that the reachable set is a subgroup of , hence it is an -di-
mensional lattice.

In the following, we will denote the basis
for the -dimensional lattice generated by the set

which satisfy the hypothesis of Theorem 7.
Theorem 8: Consider the system , ,

with a regular quantized control
set. Then, we have the following cases.

1) If , the reachable set is a lattice with basis
diag .

2) If , for every consider the corre-
sponding condition such that

.
Then, we have
2.a) if holds for , then the reachable
set is dense in .
2.b) Otherwise, let be such that
holds iff , and let denote the cardinality of .
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Then there exists a subspace of dimension
and a lattice generated by vectors (not
belonging to ) such that the reachable set is dense in

.
Proof: The first part of the thesis is obvious. As for part

2.a), denote the matrix of columns . Without
loss of generality we can assume that has in-
teger entries. For every vector det ZZ we can solve
the system for ZZ . Hence for every
det ZZ , we can reach the point

diag diag

By conditions for these points form a dense
set in . The proof of2.b)can be obtained in the same way.

IV. NONLINEAR DRIFTLESSSYSTEMS

As already pointed out, quantized control systems pose non-
trivial problems, particularly from the analysis point of view.
Such problems are even more severe with nonlinear systems.
However, it turns out that for a particular, yet important class
of systems, the analysis problem can be given a complete so-
lution. Consider the discrete-time analog of the much studied
class of continuous-time, driftless, nonholonomic systems that
can be written in chained form [10]

...
...

(7)

Consider now the discrete system

...
...

(8)

which can be regarded as (7) under unit sampling. We are inter-
ested in studying the reachability set of (8) with

, a quantized control set. System (8) is invertible While this
property will be proved in the sequel (see Section IV-A), they
can be expected from the fact that (8) is an exact sampled model
of (7), and should hence inherit such property (on the opposite,
a discrete-time approximation of (7) such as that obtained by
the forward Euler method would not be invertible).

In order to study the reachability set of (8), our program is
to show first that the reachability analysis in the whole state
space can be decoupled in the reachability analysis in the
“base” space spanned by the first two variables , and in
the “fiber” space corresponding to a given reach-
able base point, (such base-fiber decomposition of state

space is standard in the nonholonomic literature, see, e.g., [29]
and [30]). Reachability in the base space will then be studied by
results reported in Section III, and the rest of this paper will be
devoted to the study of reachability in the fiber space.

The summarizing result of our reachability analysis for
chained-form systems under unit sampling with quantized
control is stated in the following.

Theorem 9: Consider (8) with controls belonging to a regular
and sufficiently rich quantized control setas in Definitions 4
and 8. Then, we have the following cases:

1) if , the reachable set is a lattice;
2) if and both conditions and in Theorem

8 hold, the reachable set is dense in the state space;
3) if and either condition or in Theorem

8 does not hold, there exists a subspaceof dimension
and a lattice generated by a single vector

such that the reachable set is contained and dense in
.

The proof of these results, which is reported in Section IV-B,
is constructive. For cases where the reachable set is a lattice, we
provide in Lemma 8 explicitly a finite set of generators, such that
steering on the lattice is reduced to solving a linear Diophantine
equation, which can be done in polynomial time (see, e.g., [31]).
If the reachable set is dense the problem of steering the state to
an neighborhood of a desired point, that is to haveapproach-
ability, can be solved by constructing, as shown in Corollary 1,
lattice approximations of the reachable set with sufficient gran-
ularity. The case where the reachable set is dense in a subset of
the state space is analogous, provided that the desired final point
belongs to the closure of the reachable set.

A. Invertibility of Quantized Chained Form Systems

Consider (8) with a symmetric set of input symbols. The
set of input words strings of symbols in is a group
for string concatenation, with the relation
(empty string) and inverse

, . In full generality, the state-transition map for (8)
can be written as

(9)

For an input word with symbols, , denoting
by the th component of , by simple calculations one finds
for the first two components and

Moreover, introducing the shorthand notation

if

if

we have the following.
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Lemma 2: The addends of can be written as

and

The proof is given in the Appendix .
Using the above expression of the state-transition map, we

can now prove invertibility of the the following system.
Theorem 10:System (8) is invertible with any symmetric

control set.
Proof: It is sufficient to show that ,

with . Immediately, we have that
and . From and Lemma 2, we also

get and , .

B. Proof of Theorem 9

Consider now the subgroup of control words that take
the base variables back to their initial configuration. These are
sequences of inputs such that the sum of the first and second
components are zero, i.e., . For all and ,

. Hence, the action of this subgroup on the fiber is
additive: 1

Because of additivity, is an isometry (w.r.t. the
Euclidean norm) for all . Hence, by Theorem 1, the reach-
able set is comprised either of isolated points or of accumula-
tion points. Moreover, , so that without
loss of generality we may study the reachable points along the
fiber over any base point, and in particular over , .
Along any other fiber the reachable set will have the same struc-
ture, up to a translation.

System (8) can therefore be decomposed, to the purposes
of reachability analysis, in two different discrete systems of
the form (5). The first subsystem (which we will call “base”
system), is simply with and

. The second (or “fiber”) subsystem is given
by with and

where ( denotes
the -dimensional projection of on the fiber space). The
control set is itself symmetric. Indeed if then also

and, by the invertibility property (see Theorem 10),
.

Observe that Theorem 8 can be used in order to compute the
reachable set for . On the other hand, is not finite, nor
is it known whether it is quantized in the sense of Definition 4,
and, hence, conditions of Theorems 6 and 8 cannot be checked
directly.

We begin by proving case 1) of Theorem 9, which we restate
here for convenience.

Claim 1: The reachable set of system (8) for a sufficiently
rich quantized control set is a lattice in .

1Notice that this represents a significant departure, and simplification, from
the behavior of the continuous model (7), where the action of the generic cyclic
control is additive only on the first fiber variablex and more restricted sub-
groups should be searched within~
 that have additive action on the rest of the
fiber.

Proof: From Theorem 8, we have directly that the reach-
able set of the base system is a lattice generated bydiag ,
diag , with , a basis for the lattice generated by the
elements of .

In order to analyze the structure of the reachable set of the
fiber system we proceed as follows: in Lemma 3 a characteri-
zation of the set is provided, and a set of generators for
is given in Lemma 4. The translation with is de-
scribed in Lemma 5. Then the set , which
can be written as the group of translation of generated
by , is completely determined. To give
a complete charachterization of we provide, in Lemma 6 a
finite set of generators for which allow us to show that
there exists such that each element in can be written as
diag , for some with rational components. For applying
Theorem 8 with and conclude that the reachable set is
a lattice it will remain to give a basis in Lemma 8 for the lattice
of the reachable points of for which fact,
by Theorem 7, is equivalent to prove that the control setis
regular.

As a first step, a set of generators foris characterized.
Recall that we are assuming that is regular

and sufficiently rich. Hence, it contains , pairwise
not parallel elements, of which two are linearly independent.
In order to characterize the reachable set, it is not restrictive to
assume that the cardinality of is finite with ( is
symmetric). We can then identify with a matrix with
integer coefficients such that where and
are matrices with . Denote the th column
of and let ZZ be defined for as

where and

if diag
if diag
otherwise.

counts the number of appearances of different symbols in a
string, taking their signs into account.

Remark 3: For the map the following properties hold:

a) if then ;
b) for all , ;
c) if and is obtained by permutation of

symbols of , then . If and are as
in c) then we denote ;

d) by a), b), and c), if , then .
Let denote the matrix with integer co-

efficients such that , and, ,
. Then, we have the fol-

lowing.
Lemma 3: The subgroup can be characterized as

ZZ

Proof: Let be such that for some
ZZ . Then, collecting together symbols from
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where is the canonical projection on the first
two components of onto , and

diag if
diag if

Recalling that then
diag diag

. Then .
Vice-versa, let . Suppose for absurd that .

Then, by permuting the symbols of, one has that

diag

Then diag ,
which is a contradiction (end of proof for Lemma 3).

Consider now the finite subset of given by

the th column of

of minimal length

In other terms, if contains a symbol, it does not contain
its opposite.

Lemma 4:

is a set of generators for.
The proof is given in the Appendix.
Remark 4: If the control set is regular but not sufficiently

rich then the set reduces to the empty word. In this case, to
generate we need to consider the commutators of words in.

Lemma 5: ,

with

where is a lower Jordan block with zero eigenvalues
and .

Proof: Let and
. Denote , then, for

We substitute in the expression for in terms of
and as follows:

if
if
if

hence

Moreover, collecting together the first and the last sums, and
recalling that , we have

Finally, observing that we obtain

We rewrite the coefficient of in the sum as

and substitute it into the expression for
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Notice that the coefficient of , is

for

for

for

hence

and the thesis is proved (end of proof for Lemma 5).
By Lemma 5 it follows that, for the generating set, it holds

. Observe that is
not yet a finite basis (becauseis an infinite free group). How-
ever, a finite basis for is provided by a deeper analysis as
follows. Recall that . Then, we write the compo-
nents of the columns of , with ,
coprime integers, for , and, by letting , , be in-
teger numbers with, coprime,

and . Thus elements of can be written
as , . Then, if

, for some ZZ, one can write
. Define ZZ as

, such that . Observe
that .

Lemma 6: Choose such that
and ; define

. Then , a finite set, generates
by integer linear combinations.
Proof: Fix . To prove the proposition it is sufficient to

show that for with or , a positive
linear integer combination of exists such
that . Notice that this is
equivalent to showing that a linear combination over the integers
exists such that

(10)

since one can take , if , otherwise
and .

Observe that is in the form

The fact that such Toeplitz matrices are completely specified
by their first column implies that finding the solution of (10) is
reduced to solving for the first column, i.e., if , solving
the system of equations

(11)

in , . The unique solution of (11) is inZZ.
Indeed (11) can be written in matrix form as

...
...

...

...
(12)

where . Observe that the Vandermonde determinant of
the matrix in (12) is . By the Cramer rule,
solutions are given by the first equation shown at the bottom of
the next page, i.e., up to sign, by binomial coefficients, which
are integers (end of proof for Lemma 6).

We have thus obtained a finite setof generators for . We
are now in a position to show the following.

Lemma 7: There exists such that each element incan
be written asdiag , for some with rational components.

Proof: Recall that for all
and . Then for ,

let
and, . Then, one can write

and, for ,

where
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In particular, for

Recalling that , one has, for and for a
control words in

and denoting

(13)

one writes

where depends on and is an integer
number. Then, for all and

diag with
, and

(end of proof for Lemma 7).
From the previous lemma, it immediately follows that the

reachable set of with is a discrete set in
. To finalize the proof of claim 1) by applying Theorem

8, we provide a more detailed description of the structure of the
reachable set. In particular, we givelinearly independent gen-
erators of the lattice.

Lemma 8: Let with
, be the minimum translations

that can be obtained in the first variable on the fiber space,
using control inputs from . Then, the lattice on the fiber is
generated by the vectors shown in the second equation at the
bottom of the page, where .

In order to prove Lemma 8, we need first the following.
Lemma 9: Using the conventions that , it

holds that

if
if

The proof of this lemma is given in the Appendix , while for
Lemma 8 we have the following.

Proof: The vector can be generated by a pos-
itive integer combination of elements of. Indeed for all

, .
Next, for all we want to find integers ,

(we denote ) and a word of
type

such that is a vector with zero in the first com-
ponents. Observing that

the problem of finding is equivalent to find integers
such that is a lower

triangular matrix of rank , i.e., to solve the system

in the integers .
One solution is given by with

, (observe that ,
are the binomial coefficients with alternate signs for

the Newton binomial of degree ). Indeed, for all

by Lemma 9. Moreover, for

...

...

...

...
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Observe that, by the structure of the matrices , the com-
ponents on each diagonal of are all equal. In particular, the
first non zero diagonal of is the one corresponding to the

th row with value
. Hence, the first nonzero component

of is

and, passing to the over one obtains the expres-
sion for hence for .

To complete the proof it remains to show thatis the min-
imum that can be achieved so that .

First of all, we will prove that for all , and for all
, can be written as an integer linear combination

of , for . In other words, there exists integers
such that for all

for . We have a unique solution, indeed
rewriting the equation in matrix form

...
...

...
...

...
...

we have that this is exactly (11) where we have replacedby
. Then

can be rewritten as

i.e., a system with a one-dimensional space of solutions. Hence
for all , where

must be an integer because and all numbers
in the righthandside are integers. Then any other solution gives
rise to the translation

i.e., the minimum is for which finalizes the proof (end of
proof for Lemma 8).

We can now apply Theorem 8 with , to conclude
that the reachable set is a lattice. The proof of claim 1) is now
completed.

We are finally ready to prove cases 2) and 3) of Theorem 9.
While the thesis has already been proved for the base system,
we restate here the claim on the fiber system for convenience.

Claim 2: The reachable set of the fiber subsystem of (8)
under a regular quantized control set is dense if

.
Proof: Recall that for all

then the expression for theth component of is

where

is an integer number.
Then, for each , there exist integers

such that

where is the th element of the canonical base for and
is defined in Lemma 8.

For each we denote as the word of input
symbols for and in similar way we denote

.
Observe that, for all , belongs to

the lattice generated by . Moreover, we can write:

diag

where

diag

and

Observe that with corresponding to

. Moreover, any element of type
with and , , is an element of not
belonging to for any .

We want to apply Theorem 8.2 to the set which
is regular: it is symmetric and
are linearly independent vectors in .

If and condition holds but not then the
reachable set of the fiber system is dense. Indeed let, such
that then
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for all . If otherwise, only condition holds,
we have to analyze the ratios . Consider the fol-
lowing condition.

such that .
Let

s.t. condition holds

then the reachable set on the fiber is dense at least in the sub-
space of the fiber generated by of dimension

where is the minimum of the com-
plement of in the set . Observe that by
hypothesis.

If both conditions and of theorem 8 hold we have
to analyze the ratios . Consider the
following condition:

such that
and let

s.t. condition holds

Then the reachable set on the fiber is dense in at least a subspace
generated by of dimension

where is the minimum of the complement of in
the set .

To complete the proof we need to analyze the following cases.

1) Only condition holds, and there existss.t.
2) Both conditions and hold, and there existss.t.

We consider with and ,
, and compare with the set

with . Recalling (13), we prove that
and s.t. . Notice that is a root

of a polynomial where . Then is
the minimal polynomial of , indeed if the minimal polynomial
would have degree then its term of degree 0 would be a
rational number and a product of roots of , thus, we would

get contradicting the minimality of . Assume, by con-
tradiction, that there exists such that .
If then there exists a polynomial with rational co-
efficients of degree , with as a root. But the degree of
the minimal polynomial of is which is a contradiction. If
otherwise is a multiple of we can write as
a polynomial with rational coefficients of degre in by
substituting where , and

is a rational number. Then, by the arguments used before
we obtain the same conclusion.

We now prove that are linearly indepen-
dent overZZ. Indeed for every ZZ, is
a polynomial in . By arguments used above, it is easy to check
that it can be zero if and only if for every .

Analogously, , and s.t. .
Indeed if is a multiple of and then

would be a polynomial with rational coefficients of degree
, with the degree of the minimal polynomial of.

If otherwise then by substituting the rational value
of we would find a polynomial with rational coefficients of
degree strictly less than that of the minimal polynomial of.

As before are linearly independent over
ZZ.

By choosing or , we can apply Theorem 6, case ii),
to

and

This concludes the proof of claim 2 of Theorem 9.
Corollary 1: Consider (8) and assume that is a reg-

ular sufficiently rich control set. Given a vectorwith irrational
components, for every there exists such that if there
exists with , then the system is-approach-
able.

Proof: Since the components ofare irrational, given
there exist , ZZ such that . If

, then and we conclude
taking sufficiently small.

V. CONCLUSION

In this paper, we have considered reachability problems in
quantized control systems. We have shown that the reachable
set may be dense or discrete depending on the quantized set of
inputs, and have provided some results in the analysis and syn-
thesis problems. We have also provided a definition and some
characterization of nonholonomic phenomena occurring in non-
linear quantized control systems. Many open problems remain
in this field, that is in our opinion among the most important
and challenging for applications of embedded control systems
and in several other applications. Although some problems have
been shown to be hard, we believe that a reasonably complete
and useful system theory of quantized control system could be
built by merging modern discrete mathematics techniques with
classical tools of system theory.
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APPENDIX

A. Proof of Lemma 2

We show the lemma, by induction on the length of. If
is a word of length 1 then the forms of and of
follow trivially by (8). Let with a word of
length , , , ,
and suppose that .
Then

and, substituting the expressions for , into
the last equation, we have

Collecting together the terms that depend onand those that do
not, we obtain with

and

We show first that and afterwords that
. In a more compact way, we can write

Observing that

and noticing that in the last line, we can replace the sum with
that up to . Thus, it follows:
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Next observe that, since by definition , can
be written as

Consider the second sum appearing in ; by reversing the
order of the sums we can write

where

Finally

which completes the proof.

B. Proof of Lemma 4

Let , and, in particular, .

Step 1) First of all, we shall prove that if is comprised of
elements of then itself is com-
prised of elements of . By definition for
and , . Then, clearly,

Further, if are elements of and
then

is comprised of elements in.
Step 2) Next, we will show that if then

belongs to the group generated by.
We shall see it by induction.

a) First, we show that for any
belongs to the group gener-

ated by . There exists such that
with , , ZZ. Since

is symmetric we can, for simplicity, assume
that , , . Then,
where

b) The next step is to see that if and
then property

belongs to the group generated by

holds true. The proof follows by induction on
the length of . For length property

has been shown in a). Suppose that we
have proved for all with length strictly
less than . Now suppose that the length of

is equal to .
Let . Then

Observe that the elements in the parenthesis
belong to the group generated byby a) and
by induction. We conclude applyingStep 1).

c) Finally, then property

belongs to the group generated by

holds true. Again, we shall prove it by induc-
tion on the length of . If length
recall the proof inb). Suppose that we have
proved for all with length strictly less
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than . Suppose now that length of is
equal to . Let

The two terms in the parenthesis are elements
of the group generated by (by induction).
Then, the proof ofStep 2)is completed.

Step 3) and with there exists
some belonging to the group generated bysuch
that . In other words, . By
induction, the following hold.

a) then with
an element of the group generated

by .
b) with then

.

Let denote the commutator . Be-
fore completing the proof, we should prove
that

which is comprised of elements of for what
we have seen inStep 1).

c) with then
. Suppose first that length

then

Next, suppose that for all with
with lenght ,

it holds . We shall prove it
also for lenght . Let then

By the inductive hypotheses (length
), one has

with comprised of elements of. Finally

and the proof is completed.
d) Let . Cleary by permuting the

elements two by two any permutation ofcan
be produced. Suppose the elements are
permuted then, by letting
and , one has

If length , then byc), there exist some
comprised of elements of either of type

or of type with such that

Suppose that for length there exists
some concatenation of elements of, either
of type or of type with such
that

Now let length and .
Then

Now is comprised of elements of type
and of type of type . We shall then use
b) andc) to complete the proof.

Observe that if , then
mod . In fact, if

then .
Step 4) We shall now prove the proposition in the general

case. Clearly, if then for
some and where

ZZ is a vector with all components zero
except for the th which is 1. Therefore .

Now, if then , for some
ZZ . Let be such that

and

where is the th component of and

if
if

Clearly and concatena-
tion of elements of . By Step 3), it is possible to
permute (mod elements of) the symbols so that

with a concatenation of elements of
of type . Then is comprised of elements
of . The proof is completed.
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C. Proof of Lemma 9

First, we show that for it holds that

if
if

For , it follows trivially by the conventions. For then

Suppose that . Then

Observe that, by the properties of binomial coefficients we have

(14)

then

which reduces to

Suppose now that . Then we show that the following
holds true:

(15)

By collecting the first and the last terms of the sum which
defines , we obtain

and using (14), we have

By observing that the generic term of the two sums, for
either cancel each other (if ) or they are both zero, while
the generic term of the first sum, for is equal to .
Then, one can write the following equation:

Now, we are ready to give the proof of the lemma by induc-
tion. For , by induction because

and because .
Then, by (15), we obtain .

For it is an easy computation to check that
. Moreover, for , we have

because and, by the inductive hy-
pothesis, . Then by (15) we
obtain which completes
the proof.
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