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ON THE REAL SECONDARY CLASSES OF
TRANSVERSELY HOLOMORPHIC FOLIATIONS II

TARO ASUKE
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Abstract. An algorithm to find a basis of the space of complex secondary classes of
transversely holomorphic foliations is given. The mapping which relates the real secondary
classes to the complex secondary classes is completely described when the complex codimen-
sion of the foliation is either two or three. Finally, it is shown that the image of real secondary
classes under this mapping is naturally reduced under a certain condition.

Introduction. Associated with transversely holomorphic foliations, there exist com-
plex secondary classes and real secondary classes. The spaces of these secondary classes are
denoted byH ∗(WUq) andH ∗(WO2q), respectively, whereq is the complex codimension
of foliations. Forgetting transverse holomorphic structures determines a natural mapping[λ]
from H ∗(WO2q) to H ∗(WUq ) [2]. Roughly speaking, the mapping[λ] divides the elements
of H ∗(WO2q) andH ∗(WUq), respectively, into two parts. Namely, the kernel of[λ] can
be considered as obstructions to foliations being transversely holomorphic, and the coimage
of [λ] consists of real secondary classes which still make sense as characteristic classes of
transversely holomorphic foliations. On the other hand, the image of[λ] consists of complex
secondary classes which are in fact real secondary classes, and the cokernel of[λ] consists of
purely complex secondary characteristic classes.

The mapping[λ] is not yet well-understood except for the case whereq = 1 [2]. One
way to study the mapping[λ] is to know the spaceH ∗(WUq). We first give an algorithm
to find a basis ofH ∗(WUq) (Theorem 1.7) and compute it in the cases whereq = 2 or
q = 3. Using these bases, the mapping[λ] is completely determined in the corresponding
cases (Theorems 1.8 and 1.9).

Since the foliations under consideration are of complex codimensionq, it is natural to
expect that the image ofH ∗(WO2q) in H ∗(WUq) can be described only in terms ofhi and
cj with i ≤ q andj ≤ q. Regarding this, we introduce certain classes[h̃i] in H ∗(WUq)

and state a sufficient condition in terms of these classes (Definition 3.4 and Proposition 3.8).
Examples show that these classes are non-trivial in general.
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1. Definitions and statements of the main results. First of all, we briefly recall rel-
evant definitions. We refer the readers to [5, 11, 2] for more details. LetC [v1, . . . , vq ] be
the polynomial ring generated byv1, . . . , vq , where we consider the degree ofvi as 2i. Let
Iq be the ideal generated by monomials of degree greater than 2q, and setCq [v1, . . . , vq ] =
C [v1, . . . , vq ]/Iq . C[v̄1, . . . , v̄q ] is defined simply by replacingvi with v̄i . Similarly,
R2q [c1, . . . , c2q ] is defined, namely,R2q [c1, . . . , c2q ] = R[c1, . . . , c2q ]/I ′

2q , where we con-
sider the degree ofci as 2i andI ′

2q is the ideal generated by monomials of degree greater than
4q.

DEFINITION 1.1. We define graded differential algebras WU(l)
q , l ≤ q, and WO(m)

2q ,

m ≤ 2q, as follows:
WU(l)

q = Cq [v1, . . . , vq ] ⊗ Cq [v̄1, . . . , v̄q ] ⊗
∧

[ũ1, . . . , ũl] ,

WO(m)
2q = R2q[c1, . . . , c2q ] ⊗

∧
[h1, h3, . . . , hm′ ] ,

wherem′ denotes the greatest odd integer not greater thanm. We denote WU(q)
q by WUq and

WO(2q)

2q by WO2q , respectively. These algebras are equipped with differentials determined by
requiringdũi = vi − v̄i , dvi = dv̄i = 0, dhi = ci anddci = 0. The elements̃ui andhi are
considered to be of degree 2i − 1. Finally, we set WU(l)q = WUq if l > q.

The natural mapping[λ] in the introduction is induced by the following mappingλ.

DEFINITION 1.2 [2]. Letλ be the mapping from WO2q to WUq defined by

λ(ck) = (
√−1)k

k∑
j=0

(−1)j vk−j v̄j ,

λ(h2k+1) = (−1)k

2

√−1
2k+1∑
j=0

(−1)j ũ2k−j+1(vj + v̄j ) .

We denote by[λ] the mapping induced on the cohomology.
If in addition the elementsh2k, ui andūi (such thatdh2k = c2k, dui = vi , dūi = v̄i ,

ui − ūi = ũi) are well-defined, we set

λ(h2k) = (−1)k
1

2

2k∑
j=0

(−1)j (u2k−j v̄j + ūj v2k−j ) ,

wherev0, v̄0 are considered as 2.

The mappingλ maps WO(l)
2q to WU(l)

q and commutes with the differentials and natural
inclusions.

DEFINITION 1.3. Letα be a cocycle in WO2q . We denote by[α] the cohomology
class represented byα. Its image by[λ] is denoted by[α]λ. For a cocycleβ in WUq , we also
denote by[β] the cohomology class defined byβ. Thus[α]λ = [λ(α)].
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We now recall the Vey basis [9]. First, letI = {i1, . . . , im} be an index set which consists
of odd integers such that 1≤ i1 < · · · < im < 2q, and letJ = (j1, . . . , j2q) be an index set
which consists of nonnegative integers. We set|J | = j1 + 2j2 + · · · + (2q)j2q . Then the Vey
basis ofH ∗(WO2q) is given by

{[cJ ] ; 1 ≤ |J | ≤ 2q, jk = 0 for all odd integersk}
∪ {[hI cJ ] ; |J | ≤ 2q, i1 + |J | > 2q, i1 ≤ k if k is odd andjk > 0} ,

wherehI cJ = c
j1
1 · · · cj2q

2q ⊗ hi1 · · · hit . The cocycles of the formhI cJ fulfilling the above
conditions are called Vey cocycles.

DEFINITION 1.4. Suppose thatI = {i1, . . . , im} andI ′ = {i ′1, . . . , i ′m}. We seti∞ =
im, and sayI < I ′ if i∞ < i ′∞.

DEFINITION 1.5. LetJ = (j1, . . . , j2q) andK = (k1, . . . , k2q) be as above.
1) We denote respectively byj0 andj∞ the smallest and largest numberl such that

jl �= 0. We sayJ ≤ p (resp.J ≥ p) if j∞ ≤ p (resp.j0 ≥ p).
2) We sayJ < K if there is a positive integerl such thatjm = km if m > l andjl < kl.
3) We setJ +K = (j1+k1, . . . , j2q +k2q) and call it the sum ofJ andK. Conversely,

if L = J + K, then the pairJ andK is called as a decomposition ofL.

DEFINITION 1.6. We define differential operators∂l , l = 1, . . . , q, by requiring

∂l(ũi) =
{

vl − v̄l if l = i ,

0 otherwise .

∂l induces a differential operator[∂l] onH ∗(WU(l−1)
q )⊕ũl ∧H ∗(WU(l−1)

q ) in an obvious
way. Clearly,[∂l] ◦ [∂l] = 0 and we can consider the[∂i]-cohomology.

With these preparations, we show the following.

THEOREM 1.7. The space H ∗(WUq) is calculated by taking consecutively the [∂i]-
cohomology from [∂1] to [∂q ].

PROOF. We first setA(l) = ũl ∧ WU(l−1)
q . Then we have an exact sequence 0→

WU(l−1)
q → WU(l)

q → A(l) → 0. Consider the associated long exact sequence

· · · → H ∗(WU(l−1)
q ) → H ∗(WU(l)

q ) → H ∗(A(l))
τ→ H ∗+1(WU(l−1)

q ) → · · · ,

whereτ is in fact equal to[∂l] defined above. To see this, letũlω ∈ A(l). The equation
d(ũlω) = (vl − v̄l)ω− ũl(∂1 +· · ·+ ∂l−1)ω implies thatdA(l) (ũlω) = (∂1 +· · ·+ ∂l−1)(ũlω).
ThusH ∗(A(l)) = ũl ∧ H ∗(WU(l−1)

q ). On the other hand, ifdA(l)(ũlω) = 0, thenτ (ũlω) is
given by the class represented by∂l(ũlω) because(∂1 + · · · + ∂l−1)(ũlω) = 0. Consequently,
H ∗(WUq ) is calculated by computing consecutively the above exact sequences withH ∗(A(l))

replaced bỹul ∧ H ∗(WU(l−1)
q ). This completes the proof. �
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We now give a basis ofH ∗(WUq) and a description of[λ] respectively in the case where
q = 2 or q = 3. In what follows, there appear several tables which contain numbers and
cocycles. Such numbers stand for the degree of the cocycles in the same rows.

THEOREM 1.8. 1) The classes represented by the following cocycles form a basis of
H ∗(WU2).

2 (v1 + v̄1)

4 (v2
1 + v1v̄1 + v̄2

1), (v2 + v̄2)

5 ũ1(v
2
1 + v1v̄1 + v̄2

1), ũ2(v1 + v̄1) + ũ1(v2 + v̄2)

7 ũ1v1v̄1(v1 + v̄1), ũ2(v
2
1 + v1v̄1 + v̄2

1) + ũ1(v1v̄2 + v2v̄1), ũ2(v2 + v̄2)

9 ũ1v
2
1v̄2

1, ũ1(v
2
1v̄2 + v2v̄

2
1), ũ1v2v̄2

10 ũ1ũ2v1v̄1(v1 + v̄1)

11 ũ2v2v̄2

12 ũ1ũ2v
2
1v̄2

1, ũ1ũ2v
2
1v̄2, ũ1ũ2v2v̄

2
1, ũ1ũ2v2v̄2

2) As a basis of the image of H ∗(WO4) in H ∗(WU2), we can take the following
classes:

[c2]λ, [h1c
2
2]λ, [h1c

2
1c2]λ, [h1c

4
1]λ .

3) The kernel of the mapping [λ] is spanned by the following classes:

[c2]2 , [c4] ,

[h3c2] − 1

2
[h1c1c3] ,

[h1c4] − 1

2
[h1c

2
2] + 1

12
[h1c

4
1] , [h1c1c3] − [h1c

2
1c2] + 1

3
[h1c

4
1] ,

[h3cJ ] , where |J | ≥ 3 ,

[h1h3cJ ] , where |J | ≥ 4 .

4) The image is equal to 〈[v̄1]2−2[v̄2]〉⊕H 9(WU2), where 〈[v̄1]2−2[v̄2]〉 denotes the
linear subspace spanned by [v̄1]2 − 2[v̄2]. In particular, the subspace spanned by the classes
[h1c

4
1], [h1c

2
1c2] and [h1c

2
2] in H 9(WO4) is mapped isomorphically to H 9(WU2).

5) The cokernel consists of the secondary classes of H ∗(WU2) which are not of degree
9 and the subspace spanned by the classes [v̄1], [v̄1]2 + 2[v̄2].
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THEOREM 1.9. 1) The classes represented by the following cocycles form a basis of
H ∗(WU3).

v̄1, v̄
2
1, v̄2, v̄

3
1, v̄1v̄2, v̄3

7 ũ1(v
3
1 + v2

1v̄1 + v1v̄
2
1 + v̄3

1), ũ2v
2
1 + ũ1v1v̄2 + ũ1v̄1v̄2, ũ2(v2 + v̄2),

ũ3v1 + ũ1v̄3

9 ũ1(v
3
1v̄1 + v2

1v̄2
1 + v1v̄

3
1), ũ2v

3
1 + ũ1v

2
1v̄2 + ũ1v1v̄1v̄2,

ũ2(v1v2 + v1v̄2), ũ3v
2
1 + ũ1v1v̄3, ũ3v2 + ũ2v̄3

11 ũ1(v
3
1v̄2

1 + v2
1v̄3

1), ũ1(v1v2v̄
2
1 + v2v̄

3
1), ũ1(v1 + v̄1)v2v̄2,

ũ2v2v̄2, ũ3v
3
1 + ũ1v

2
1v̄3, ũ3v1v2 + ũ1v2v̄3, ũ3(v3 + v̄3)

13 ũ1v
3
1v̄3

1, ũ1v1v2v̄
3
1, ũ1v1v2v̄1v̄2, ũ1v1v2v̄3, ũ1v3v̄

3
1, ũ1v3v̄3,

ũ2v1v2v̄2, ũ2v2v̄3

14 ũ1ũ2(v
3
1v̄2

1 + v2
1v̄3

1), ũ1ũ2(v1v2v̄
2
1 + v2v̄

3
1), ũ1ũ2(v

3
1v̄2 + v2

1v̄1v̄2),

ũ1ũ2(v1 + v̄1)v2v̄2, ũ1ũ3(v
3
1v̄1 + v2

1v̄2
1 + v1v̄

3
1),

ũ2ũ3v
3
1 + ũ1ũ3v

2
1v̄2 + ũ1ũ3v1v̄1v̄2 − ũ1ũ2v

2
1v̄3, ũ2ũ3(v1v2 + v1v̄2) − ũ1ũ2v2v̄3

15 ũ2v3v̄3

16 ũ1ũ2v
3
1v̄3

1, ũ1ũ2v
3
1v̄1v̄2, ũ1ũ2v

3
1v̄3, ũ1ũ2v1v2v̄

3
1, ũ1ũ2v1v2v̄1v̄2, ũ1ũ2v1v2v̄3,

ũ1ũ2v3v̄
3
1, ũ1ũ2v3v̄1v̄2, ũ1ũ2v3v̄3, ũ1ũ3(v

3
1v̄2

1 + v2
1v̄3

1),

ũ1ũ3(v1v2v̄
2
1 + v2v̄

3
1), ũ1ũ3(v1 + v̄1)v2v̄2, ũ2ũ3v2v̄2

17 ũ3v3v̄3

18 ũ1ũ3v
3
1v̄3

1, ũ1ũ3v
3
1v̄3, ũ1ũ3v1v2v̄

3
1, ũ1ũ3v1v2v̄1v̄2, ũ1ũ3v1v2v̄3,

ũ1ũ3v3v̄
3
1, ũ1ũ3v3v̄1v̄2, ũ1ũ3v3v̄3, ũ2ũ3v1v2v̄2, ũ2ũ3v3v̄2, ũ2ũ3v2v̄3

19 ũ1ũ2ũ3(v
3
1v̄2

1 + v2
1v̄3

1), ũ1ũ2ũ3(v1v2v̄
2
1 + v2v̄

3
1), ũ1ũ2ũ3(v

3
1v̄2 + v2

1v̄1v̄2),

ũ1ũ2ũ3(v1 + v̄1)v2v̄2

20 ũ2ũ3v3v̄3

21 ũ1ũ2ũ3v
3
1v̄3

1, ũ1ũ2ũ3v
3
1v̄1v̄2, ũ1ũ2ũ3v

3
1v̄3, ũ1ũ2ũ3v1v2v̄

3
1, ũ1ũ2ũ3v1v2v̄1v̄2,

ũ1ũ2ũ3v1v2v̄3, ũ1ũ2ũ3v3v̄
3
1, ũ1ũ2ũ3v3v̄1v̄2, ũ1ũ2ũ3v3v̄3

2) As a basis of the image of H ∗(WO6) in H ∗(WU3), we can take the following
classes:

4 [c2]λ
13 [h1c

2
3]λ, [h1c1c2c3]λ, [h1c

3
1c3]λ, [h1c

4
1c2]λ, [h1c

2
1c

2
2]λ, [h1c

6
1]λ, [h3c

2
2]λ

17 [h3c
2
3]λ

18 [h1h3c
2
3]λ, [h1h3c1c2c3]λ, [h1h3c

3
1c3]λ, [h1h3c

4
1c2]λ, [h1h3c

2
1c

2
2]λ, [h1h3c

6
1]λ

3) The kernel is spanned by the following classes, namely,

[h1c
3
2] − 1

8
[h1c

6
1] + 3

4
[h1c

4
1c2] − 3

2
[h1c

2
1c

2
2] ,

[h1c2c4] − 1

16
[h1c

6
1] − [h1c1c2c3] + 1

4
[h1c

2
1c

2
2] + 1

8
[h1c

4
1c2] ,
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[h1c
2
1c4] − 1

4
[h1c

6
1] + [h1c

4
1c2] − [h1c

3
1c3] − 1

2
[h1c

2
1c

2
2] ,

[h1c1c5] − [h1c1c2c3] − 1

20
[h1c

6
1] + 1

2
[h1c

2
1c

2
2] ,

[h1c6] + 1

80
[h1c

6
1] − 1

8
[h1c

4
1c2] + 1

4
[h1c

2
1c

2
2] − 1

2
[h1c

2
3] ,

[h3c4] − 1

4
[h1c

3
1c3] + [h1c1c2c3] − [h1c

2
3] − 1

2
[h3c

2
2] ,

[h5c2] − 1

2
[h1c1c5] ,

[h3c5], [h3c2c3] ,

[h3c6] − 1

2
[h3c

2
3] ,

[h5c4], [h5c
2
2], [h3c

3
2], [h3c2c4] ,

[h1h3c
3
2] − 1

8
[h1h3c

6
1] + 3

4
[h1h3c

4
1c2] − 3

2
[h1h3c

2
1c

2
2] ,

[h1h3c2c4] − 1

16
[h1h3c

6
1] − [h1h3c1c2c3] + 1

4
[h1h3c

2
1c

2
2] + 1

8
[h1h3c

4
1c2] ,

[h1h3c
2
1c4] − 1

4
[h1h3c

6
1] + [h1h3c

4
1c2] − [h1h3c

3
1c3] − 1

2
[h1h3c

2
1c

2
2] ,

[h1h3c1c5] − [h1h3c1c2c3] − 1

20
[h1h3c

6
1] + 1

2
[h1h3c

2
1c

2
2] ,

[h1h3c6] + 1

80
[h1h3c

6
1] − 1

8
[h1h3c

4
1c2] + 1

4
[h1h3c

2
1c

2
2] − 1

2
[h1h3c

2
3] ,

[h5c5] ,

the secondary classes of degree greater than 20, and the Pontrjagin classes other than [c2].
4) The image is described as follows:

i) The only Chern class in the image is [v̄1]2 − 2[v̄2].
ii) The image of the secondary classes is contained in the subspace H 13(WU3)⊕

H 17(WU3) ⊕ H 18(WU3), more precisely,
ii-a) the subspace of H 13(WO6) spanned by the classes

[h1c
6
1] , [h1c

4
1c2] , [h1c

3
1c3] , [h1c1c2c3] , [h1c

2
3] , [h1c

2
1c

2
2]

is mapped to the subspace of H 13(WU3) spanned by the classes

[ũ1v
3
1v̄3

1] , [ũ1v1v2v̄
3
1] , [ũ1v1v2v̄1v̄2] , [ũ1v1v2v̄3] , [ũ1v3v̄

3
1] , [ũ1v3v̄3] .

The class [h3c
2
2] is mapped to the class [ũ2v1v2v̄2] − [ũ2v2v̄3] modulo the above subspace.

ii-b) The class [h3c
2
3], of degree 17, is mapped to the class [ũ3v3v̄3].

ii-c) The subspace spanned by the classes

[h1h3c
6
1] , [h1h3c1c2c3] , [h1h3c

3
1c3] , [h1h3c

2
3] , [h1h3c

4
1c2] , [h1h3c

2
1c

2
2] ,
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which are of degree 18, is mapped to the subspace spanned by the classes

[ũ1ũ3v
3
1v̄3

1] , [ũ1ũ3(v1v2v̄3 + v3v̄1v̄2)] , [ũ1ũ3(v
3
1v̄3 + v3v̄

3
1)] ,

[ũ1ũ3v3v̄3] , [ũ1ũ3v1v2v̄
3
1] , [ũ1ũ3v1v2v̄1v̄2] .

5) The cokernel is generated by the following classes, namely,
i) the classes of degree not equal to 4, 13, 17, 18,
ii) the class [ũ2v1v2v̄2] + [ũ2v2v̄3] (of degree 13),
iii) the classes [ũ1ũ3(v

3
1v̄3−v3v̄

3
1)], [ũ1ũ3(v1v2v̄3−v3v̄1v̄2)], [ũ2ũ3v1v2v̄2], [ũ2ũ3v2v̄3]

and [ũ2ũ3v3v̄2] (of degree 18), and
iv) the class [v̄1]2 + 2[v̄2] (of degree 4).

REMARK 1.10. Some classes have several different representations, for example,

[ũ1v1v2v̄1v̄2] = [ũ2v2v̄
3
1] , [ũ1ũ3v1v2v̄1v̄2] = [ũ2ũ3v2v̄

3
1] ,

[ũ2ũ3v
3
1 + ũ1ũ3v

2
1v̄2 + ũ1ũ3v1v̄1v̄2 − ũ1ũ2v

2
1v̄3] = [ũ1ũ3v1v̄1v̄2 + ũ2ũ3v

2
1v̄1] .

In particular,

[u1vJ1vJ2 v̄K1v̄K2] = [u1vJ1vK2v̄K1v̄J2]
holds inH 4q+1(WUq) if |J1| + |J2| = |K1| + |K2| = q and|J1| = |K1|.

REMARK 1.11. One might notice thatH 2q+1(WUq) ∼= H 2q+1(Wq ) ⊗ C as vector
spaces ifq = 2 orq = 3, where Wq = Rq [c1, . . . , cq ] ⊗ ∧[h1, h2, . . . , hq ] andH ∗(Wq) is
the space of real secondary classes of real foliations with trivialized normal bundle. Recently,
this turns out to be true in general [4].

In what follows, we always assume thatq > 1 even though most of the claims remain
valid even ifq = 1.

2. Computational lemmas. First, we examine some relations among the Pontrjagin
classes. We denote byCj and byVj thej -th Pontrjagin character and thej -th Chern character,
respectively. Namely,Cj (resp. Vj ) are the Newton polynomials (cf. [10]) evaluated bycj

(resp.vj ). We denote byCJ the monomialCj1
1 · · · Cj2q

2q , whereJ = (j1, . . . , j2q). It is easy

to verify thatλ(Ci) = (
√−1)i(Vi + (−1)iV̄i).

The following lemma is easily shown by using the equationλ(Ci) = (
√−1)i (Vi +

(−1)iV̄i).

LEMMA 2.1. Let Nq denote the kernel of λ restricted to R2q [c1, . . . , c2q ]. Then Nq

is generated by the monomials CJ such that there are no decompositions J into J1 and J2

with |J1| ≤ q and |J2| ≤ q . Denote by Kq the ideal of WO2q generated by Nq , namely,
Kq = {hIω | ω ∈ Nq }. Then Kq is contained in the kernel of λ. In particular, λ(Ci) = 0 if
i > q .

For example,Cq

2 belongs toNq if q is odd. There are also elements of kerλ that do not
necessarily belong toKq .
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LEMMA 2.2. Suppose that hI cJ is a Vey cocycle and let m be the number of entries of
I . Suppose also that im−t+1+· · ·+im+|J | > (2+t)q−t (t − 1)/2 holds some t (1 ≤ t ≤ m).
Then λ(hI cJ ) = 0 in WUq In particular, we have the following:

1) λ(hI cJ ) = 0 in WUq if im + |J | > 3q .
2) λ(hI h2q−1cJ ) = 0 in WUq if I �= φ .

PROOF. We setI ′ = {im−t+1, . . . , im}. Thenλ(hI ′cJ ) is a linear combination of
ũLvAv̄B with |A| + |B| = im−t+1 + · · · + im + |J | − (q + · · · + (q − t + 1)) > 2q.
Thusλ(hI ′cJ ) = 0. By settingt = 1, we obtain 1). By settingt = 2 and noticing that
im−1 + |J | > 2q, we obtain 2). �

Certain elements with simple index sets belong to ker[λ].
LEMMA 2.3. Let a be a positive integer and assume that q + a is odd. Then we have

the following.
1) If [(|J | + 1)/2]+a > q , then [hq+acJ ]λ is trivial, where [(|J | + 1)/2] denotes the

largest integer which is not greater than (|J | + 1)/2.
2) If j + a > q, then [hq+aCj ]λ is trivial.

PROOF. Setl = q + a. Then, up to multiplication of a constant,

hl = ũq(va + v̄a) − ũq−1(va+1 + v̄a+1) + · · · − ũa(vq + v̄q ) ,

becauseq + a is odd. We now writeλ(cJ ) = ∑
aA,B(vAv̄B ± vBv̄A), whereA + B = J ,

and assume that|A| ≥ |B|. It follows from the assumption that(vt + v̄t )(vAv̄B ± vBv̄A) =
−(vt − v̄t )(±vAv̄B − vBv̄A), wherea ≤ t ≤ q. Henceũq−t (va+t + v̄a+t )(vAv̄B ± vBv̄A) −
ũa+t (vq−t + v̄q−t )(vAv̄B ±vBv̄A) is an exact form. Thereforeλ(hq+acJ ) is exact. The second
claim can be shown by using the equationCj = (

√−1)i(Vi + (−1)iV̄i) and following almost
the same argument as above. �

COROLLARY 2.4. If |J | > 2, then [h2q−1cJ ]λ = 0. On the other hand, 2[h2q−1c2]λ =
[h1c1c2q−1]λ holds as elements of H 4q+1(WUq).

PROOF. The first equality follows from 1) of Lemma 2.3. The second equality follows
from the equation[h2q−1C2]λ = 0, which holds by 2) of Lemma 2.3 as we assumed that
q > 1. �

For example, in the case whereq = 3, [h5c4]λ = 0. This cannot be deduced from 1) of
Lemma 2.2.

LEMMA 2.5. If q is odd, then [hqc2q−1]λ = [hqcq−1cq ]λ = 0.

PROOF. As q > 2, the following equation holds, namely,

λ(hqc2q−1) = d

(
ũq−1ũq(vq + v̄q ) − 1

2
ũ1ũq−1(vq−1v̄q + vq v̄q−1)

)
,

from which the triviality of[hqc2q−1]λ follows.
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We show thatλ(hqcq−1cq) is exact. First,cq−1cq is a linear combination of the cocycles
of the form

Si,j = (vi v̄q−1−i + vq−1−i v̄i )(vj v̄q−j − vq−j v̄j )

= (vivj v̄q−1−i v̄q−j − vq−1−ivq−j v̄i v̄j ) + (vq−1−ivj v̄i v̄q−j − vivq−j v̄q−1−i v̄j ) ,

where 0≤ i, j ≤ (q − 1)/2. The first term does not vanish if and only ifi + j ≤ q and
2q − (i + j + 1) ≤ q. Under the condition we assumed oni and j , it is equivalent to
j = q − i − 1. The second term does not vanish if and only ifq − 1 − i + j ≤ q and
q + i − j ≤ q. These conditions are equivalent toj = i + 1 or i = j . Thuscq−1cq is a linear
combination of the cocycles of the form

vivq−i−1v̄i v̄q−i − vivq−i v̄i v̄q−i−1 , and

vivq−i−1v̄i+1v̄q−i−1 − vi+1vq−i−1v̄i v̄q−i−1 .

Hencehqcq−1cq is a linear combination of the cocyclesAi , Bi , A′
i andB ′

i defined respectively
by the formulae

Ai = ũq(vivq−i−1v̄i v̄q−i − vivq−i v̄i v̄q−i−1) ,

Bi = ũq−1(v1 + v̄1)(vivq−i−1v̄i v̄q−i − vivq−i v̄i v̄q−i−1) ,

A′
i = ũq(vivq−i−1v̄i+1v̄q−i−1 − vi+1vq−i−1v̄i v̄q−i−1) ,

B ′
i = ũq−1(v1 + v̄1)(vivq−i−1v̄i+1v̄q−i−1 − vi+1vq−i−1v̄i v̄q−i−1) ,

where 0≤ i ≤ (q − 1)/2. First, we assume thati �= 0. ThenAi is exact because in this case

Ai = ũq (vi − v̄i )(vq−i−1v̄i v̄q−i + vivq−i v̄q−i−1)

= −d(ũq ũi(vq−i−1v̄i v̄q−i + vivq−i v̄q−i−1)) .

Here we used the fact thatq − i − 1 ≥ (q − 1)/2 > 0 becauseq > 1.
On the other hand, we have the following equation because 2q − 1 > q, namely,

A0 = ũq(vq−1 − v̄q−1)(vq + v̄q) = −d(ũq ũq−1(vq + v̄q)) .

ThusAi is always exact. Finally, as 2q − 2 > q, the following equation holds, namely,

Bi = d(ũ1ũq−1(vivq−i−1v̄i v̄q−i + vivq−i v̄i v̄q−i−1)) .

Similarly,A′
i andB ′

i are also exact. �

Since the image ofH ∗(WO2q) under[λ] is written in terms of̃ui , vj andv̄j , it consists
of the elements of degree at mostq2 + 4q. But a slightly careful observation shows that the
image is much smaller.

PROPOSITION 2.6. The image of H ∗(WO2q) under [λ] consists of the elements of de-
gree at most q2 − [q/2]2 + 4q, where [q/2] denotes the largest integer not greater than q/2.

PROOF. We show that the mappingλ annihilates Vey cocycles of degree greater than
q2 − [q/2]2 + 4q. Suppose thathI cJ is a Vey cocycle such thatλ(hI cJ ) is non-trivial in
WUq . Let 2i − 1 be the smallest entry ofI . Then|J | ≥ 2q − 2i + 2, becausehI cJ is a Vey
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cocycle. It follows from 1) of Lemma 2.2 thata ≤ q + 2i − 2 if a ∈ I . Hence the number of
the entries ofI is at most[(q + 1)/2]. Therefore, if we writeλ(hI cJ ) as a linear combination
of the elements of the form̃uI vJ v̄K , the degree of thẽuI -part is at most

q∑
t=q−[(q+1)/2]+1

(2t − 1) = q2 − [q/2]2 .

On the other hand, the degree ofvJ v̄K is at most 4q. Consequently, the degree of the cocycle
hI cJ is at mostq2 − [q/2]2 + 4q. �

Finally, we recall the following proposition.

PROPOSITION 2.7 [2, Proposition 3.9].Suppose that |J | > q and |J | is even. Then
there is a well-defined element ηJ of WUq such that dηJ = λ(cJ ).

3. Writing the image by hi and cj with i, j ≤ q . In this section, we study the
following question:

(Q) Is it possible to write Im[λ] only in terms ofhi andcj with i, j ≤ q ?
Theorem B of [2] shows that this is true ifq = 1. The following proposition shows that the
answer is yes ifq ≤ 3.

PROPOSITION 3.1. The image of H ∗(WO2q) under [λ] can be written in terms of
h1, . . . , h2q−3 and c1, . . . , cq . In particular, 2[h2q−1c2]λ = [h1c1c2q−1]λ.

PROOF We can excludeh2q−1 by virtue of 2) of Lemma 2.2 and Corollary 2.4. It
remains to show the following:

LEMMA 3.2. Let hI cJ be a Vey cocycle in WO2q . Then the class [hIcJ ]λ is represented
by a linear combination of cocycles of the form [hI ′cJ ′ ]λ, where I ′ ≤ I and J ′ admits a
decomposition J ′ = J ′

1 + J ′
2 with |J ′

1| ≤ q and |J ′
2| ≤ q .

PROOF. Suppose thatJ does not admit any decompositions as in the statement. Then

λ(hICJ ) = 0 by Lemma 2.1, whereCJ = C
j1
1 · · ·Cj2q

2q . This means thatλ(hI cJ ) can be
written as a linear combination of the cocycles of the formλ(hI cJ ′) with J ′ < J and|J ′| =
|J |. Therefore, ifI = {1}, then we can deduce the conclusion by the induction on the order of
J . If I �= {1}, the cocycleshI cJ ′ as above need not be a Vey cocycle. However, suchhI cJ ′ is
cohomologous to a linear combination of Vey cocycles of the formhI ′cJ ′′ with I ′ < I . This
completes the proof of the lemma and Proposition 3.1. �

The following corollary shows that the answer to (Q) is yes if we restrict ourselves to the
residual classes, namely, the classes[hIcJ ] with |J | = 2q.

COROLLARY 3.3. The image of a residual class is non-trivial only if it is a linear
combination of the classes of the form [hI cJ ]λ with I ≤ q and J ≤ q .

PROOF. First, Lemma 2.2 shows thatλ(hI cJ ) = 0 if i∞ > q. We may assumeJ ≤ q

by Proposition 3.1. �
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We use the following classes[h̃i] belonging to Im[λ].
DEFINITION 3.4. We define an elementh̃2i+1 of WUq as follows. First, letP2i+1 be

the Newton polynomial of degree(2i + 1), and writeP2i+1 = ∑i
k=0 akx2k+1σ

2i+1
k . Hereσk

is a polynomial inxj ’s, which are uniquely determined by requiring that ifxj appears inσk,
then eitherj is even orj ≥ 2k + 1. We denote again byσ 2i+1

k the element of WO2q obtained
as the polynomialσ 2i+1

k evaluated byc1, . . . , c2q . We now set

h̃2i+1 =
i∑

k=0

akλ(h2k+1σ
2i+1
k ) ,

and denote by[h̃2i+1] the induced class ofH ∗(WUq), where 2i + 1 > q.

REMARK 3.5. 1) By a similar argument as in the proof of Lemma 3.1 of [2], one can
show that the classes[h̃2i+1] can be calculated by using real connections. As we do not need
this fact here, we omit the proof.

2) Suppose that the complex normal bundle of the foliation is trivial. Then allh2k ’s
are well-defined. In such a case we can consider also the cocyclesh̃2k, 2k > q by using
the Newton polynomial. For example, if complex codimension is equal to one, then[h̃2] =
[λ(h1c1 − 2h2)] = −2Re Bott1, where Bott1 = u1v1 (cf. Definition 1.2) is the Bott class
for transversely holomorphic foliations with trivial complex normal bundles. See [2] for the
details.

The classes[h̃2i+1] are non-trivial in general.

EXAMPLE 3.6 [5, 7]. LetM = Cq+1 \ {0}, and consider a holomorphic vector field

X(λ0, . . . , λq) = λ0z0
∂

∂z0
+ λ1z1

∂

∂z0
+ · · · + λqzq

∂

∂zq

,

where(z0, . . . , zq) is the natural coordinate ofCq+1. Suppose that allλi ’s are non-zero and
none of the numbersλi/λj is a negative real number. We denote byF the holomorphic flow
given byX. ThenF restricts to a transversely holomorphic (real) flow on the unit sphere
S2q+1 in Cq+1. By applying the Baum-Bott theory to Chern characters, we see that

∫
S2q+1

h̃q+1 = 2 Im(
√−1)q+2λ

q+1
0 + λ

q+1
1 + · · · + λ

q+1
n

λ0λ1 · · · λq

.

Here is another example such that the class[h̃2q+1] is non-trivial.

EXAMPLE 3.7 [3, 2, 12]. Consider the foliatioñF of SL(q + 1, C) defined as the left

cosets of the subgroupH given byH =
{ (

a ∗
0 C

)
; C ∈ GL(q, C)

}
, namely,F̃ = {gH ;

g ∈ SL(q + 1, C)}. Let Γ be any cocompact uniform lattice of SL(q + 1, C)/T q , where
T q is the maximal torus realized as a subgroup of diagonal matrices. Then the manifold
Γ \SL(q + 1, C)/T q inherits a foliation, sayF . We can show that[h̃2q+1](F) is a multiple
of the Godbillon-Vey class. At least forq ≤ 3, the multiplier is non-zero.



372 T. ASUKE

We now state a condition of writing the image of[λ] only in terms ofhi andcj with
i, j ≤ q. Note that the condition in the proposition is clearly necessary.

PROPOSITION 3.8. Suppose that for any i, [hI cJ ]λ · [h̃2i+1] ∈ [λ](H ∗(WO(2i−1)
2q )),

where I ≤ q and J ≤ q . Then the image of H ∗(WO2q) is represented by linear combinations
of the secondary classes of the form [hIcJ ]λ, where I ≤ q and J ≤ q .

PROOF. By Lemma 3.2, it suffices to show that[λ](H ∗(WO(l)
2q)) = [λ](H ∗(WO(q)

2q ))

for l > q. We proceed by an induction onl. Let hI cJ be a Vey cocycle such thati∞ = l

and J ≤ q. Set I ′ = I \ {l}, and consider the product[hI ′cJ ]λ · [h̃l]. As [hI ′cJ ]λ ∈
[λ](H ∗(WO(l−1)

2q )), we may assume that[hI ′cJ ]λ · [h̃l] ∈ [λ](H ∗(WO(q)
2q )). On the other

hand, the cocycleλ(hI ′cJ )h̃l is written as a linear combination of the elements of the form
λ(hI ′cJ h2k+1σ

l
k), where 2k+1 = 1, 3, . . . , l. Hence the class[hI cJ ]λ is a linear combination

of the classes of the form[hI ′h2k+1cJ σ l
k]λ with 2k + 1 < l. �

4. Proof of the theorems.

PROOF OFTHEOREM 1.8. The part 1) is obtained by straightforward calculations. By
virtue of Propositions 2.6 and 2.7, we see that the secondary classes of degree greater than
11 vanish and that the only non-trivial Pontrjagin class is[c2]λ. There remain the following
classes:[h3c3]λ, [h1c4]λ, [h1c1c3]λ, [h1c

2
2]λ, [h1c

2
1c2]λ, [h1c

4
1]λ and[h3c2]λ.

First, the triviality of[h3c3]λ follows from Corollary 2.4. The relations among the other
classes are deduced from Corollary 2.4 and Lemma 2.1 applied to the cocyclesh1c1C3 and
h1C4. The rest of the claims follows from the following relations:

λ(h1c
2
2) = √−1 ũ1(2v2v̄2 + v2

1v̄2
1) ,

λ(h1c
2
1c2) = √−1 ũ1(v

2
1v̄2 + v2v̄

2
1 + 2v2

1v̄2
1) ,

λ(h1c
4
1) = 6

√−1 ũ1v
2
1v̄2

1 . �

PROOF OFTHEOREM 1.9. The part 1) is shown by some calculation using Theorem
1.7. The Pontrjagin classes other than[c2]λ vanish by Proposition 2.7, and the secondary
classes of degree greater than 20 vanish by Proposition 2.6.

Other classes ofH ∗(WO6) are represented by the following Vey cocycles:

19 h5c5

18 h1h3c6, h1h3c1c5, h1h3c2c4, h1h3c
2
1c4, h1h3c

2
3, h1h3c1c2c3,

h1h3c
3
1c3, h1h3c

3
2, h1h3c

2
1c

2
2, h1h3c

4
1c2, h1h3c

6
1

17 h5c4, h5c
2
2, h3c6, h3c2c4, h3c

2
3, h3c

3
2

15 h3c5, h3c2c3

13 h1c6, h1c1c5, h1c2c4, h1c
2
1c4, h1c

2
3, h1c1c2c3,

h1c
3
1c3, h1c

3
2, h1c

2
1c

2
2, h1c

4
1c2, h1c

6
1, h3c4, h3c

2
2, h5c2

4 c2
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It follows from 1) of Lemma 2.2 that the class[h5c5]λ is trivial. The classes of degree 15
vanish by Lemma 2.5. There remain the classes of degrees 13, 17 and 18.

Among the classes of degree 17,[h5c4]λ, [h5c
2
2]λ, [h3c

3
2]λ and[h3c2c4]λ are trivial. First,

the triviality of the classes[h5c4]λ and[h5c
2
2]λ follows from Corollary 2.4. The triviality of

the class[h3c
3
2]λ follows from Lemma 2.1 applied toλ(h3C

3
2). Lemma 2.1 also shows that

λ(h3c2C4) = 0. By rewriting this equation in terms of the Vey basis, we obtain the relation
[h3c2c4]λ = (1/2)[h3c

3
2]λ = 0. Second, we show that[h3c

2
3]λ = 2[h3c6]λ �= 0 inH 17(WU3).

By rewriting the equationλ(h3C6) = 0 obtained by Lemma 2.1 and using the fact that[h3c
3
2]λ

and[h3c2c4]λ are trivial, we obtain the first equality. The non-triviality follows from the part
1) because[h3c

2
3]λ = −2[√−1ũ3v3v̄3].

We now examine the secondary classes of degree 13. The first five relations in the state-
ment are deduced from Lemma 2.1 applied to the cocyclesh1c

2
1C4, h1c2C4, h1c1C5, h1C6

andh1C
3
2. Note that these relations already hold in WU3.

Next, Corollary 2.4 shows that 2[h5c2]λ = [h1c1c5]λ in H ∗(WU3). On the other hand,
λ(h3C4) = 0 by Lemma 2.1. From this we see that

[h3c4]λ = 1

4
[h1c

3
1c3]λ − [h1c1c2c3]λ + [h1c

2
3]λ + 1

2
[h3c

2
2]λ .

We now have the following equations:

λ(h1c
2
3) = 2

√−1ũ1(v3v̄3 + v1v2v̄1v̄2) ,

λ(h1c1c2c3) = √−1ũ1(v1v2v̄3 + v3v̄1v̄2 + v3
1v̄1v̄2 + v1v2v̄

3
1 + 2v1v2v̄1v̄2) ,

λ(h1c
3
1c3) = √−1ũ1(v

3
1v̄3 + v3v̄

3
1 + 3(v3

1v̄1v̄2 + v1v2v̄
3
1)) ,

λ(h1c
2
1c

2
2) = √−1ũ1(2(v3

1v̄1v̄2 + v1v2v̄
3
1) + 2v3

1v̄3
1 + 4v1v2v̄1v̄2) ,

λ(h1c
4
1c2) = √−1ũ1(4(v1v2v̄

3
1 + v3

1v̄1v̄2) + 6v3
1v̄3

1) ,

λ(h1c
6
1) = 20

√−1ũ1v
3
1v̄3

1 ,

λ(h3c
2
2) = −√−1ũ3(v

2
1v̄2

1 − 2(v1v2v̄1 + v1v̄1v̄2) + 2v2v̄2)

+
√−1

2
ũ2(v

3
1v̄2

1 + v2
1v̄3

1 − 2(v1v2v̄
2
1 + v2

1v̄1v̄2))

+ √−1ũ2(v2v̄1v̄2 + v1v2v̄2)

+ 2
√−1ũ1v1v2v̄1v̄2 .

From the part 1) it follows that these cocycles are linearly independent even if we pass into
the cohomology.

Finally, we deal with the secondary classes of degree 18. The relations between the
classes of degree 18 follows as in the case of degree 13 by consideringh1h3 instead ofh1.

On the other hand, the following equations hold inH 18(WU3):
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[h1h3c
2
3]λ = 2[ũ1ũ3(v3v̄3 + v1v2v̄1v̄2)] ,

[h1h3c1c2c3]λ = [ũ1ũ3(v1v2v̄3 + v3v̄1v̄2 + v3
1v̄1v̄2 + v1v2v̄

3
1 + 2v1v2v̄1v̄2)] ,

[h1h3c
3
1c3]λ = [ũ1ũ3(v

3
1v̄3 + v3v̄

3
1 + 3(v3

1v̄1v̄2 + v1v2v̄
3
1))] ,

[h1h3c
2
1c

2
2]λ = [ũ1ũ3(2(v3

1v̄1v̄2 + v1v2v̄
3
1) + 2v3

1v̄3
1 + 4v1v2v̄1v̄2)] ,

[h1h3c
4
1c2]λ = [ũ1ũ3(4(v1v2v̄

3
1 + v3

1v̄1v̄2) + 6v3
1v̄3

1)] ,

[h1h3c
6
1]λ = 20[ũ1ũ3v

3
1v̄3

1] .

Now the linear independence of these classes follows again from the part 1). The proof is
completed. �
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