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grators in a specific modulator. 
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design of the modulator down to a switched-capacitor implementation of the system. 

To be able to continue with the circuit realization, one needs to do a rigorous noise anal-
ysis of the modulator, which gives the sizes of the different capacitors in the SC-circuits. 
The last topic of this thesis is a method to obtain the specifications of the OTA in each 
integrator.
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ABSTRACT

The sigma-delta techniques for analog-to-digital conversion have for long 
been utilized when high precision is needed. Despite the fact that these have 
been realized by a numerous of different structures, the theory of how to con-
struct a sigma-delta ADC is not very extensive. 

This thesis will assume that an SFG description of the CRFB sigma-delta 
modulator has been designed and presents a structured method to obtain a cir-
cuit realization of the integrators in a specific modulator. 

The first activity is to scale the inputs to each integrator in order to make sure 
that the produced outputs of each integrator is within the output-range of the 
OTA which is used. The next thing that is presented is an algorithmic way of 
descending from the SFG design of the modulator down to a switched-capac-
itor implementation of the system. 

To be able to continue with the circuit realization, one needs to do a rigorous 
noise analysis of the modulator, which gives the sizes of the different capaci-
tors in the SC-circuits. The last topic of this thesis is a method to obtain the 
specifications of the OTA in each integrator.
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1 

INTRODUCTION

1.1 PROJECT DESCRIPTION

Delta-sigma AD-conversion is a method which is commonly used when high 
resolution needs to be achieved and it has been used for a long time in the 
commercial world. The only problem is that there is no theory which really 
investigates the implementation details when building the loop-filter of the 
modulator and this needs to be done in order to be able to satisfy the indus-
try’s goal of low power dissipation. 

1.2 OBJECTIVES

The goal of our work is to find a structured method to go from a given SFG 
description of a sigma-delta modulator to a circuit realization of the modula-
tor, where the focus is upon the trade-off between power consumption and 
precision of the modulator.
We will also investigate the benefits of proper scaling and the modulators sen-
sitivity to noise, since both of these activities are crucial when designing a 
sigma-delta modulator. 

The last activity of this thesis is to construct a “cookbook” for setting the 
requirements of the OTA’s, which is used to realize the SC-integrators in the 
circuit. This activity is particularily important since the OTA’s are the main 
power consumers of a sigma-delta modulator. 
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A subgoal of this thesis is to always have in mind that the modulator should 
be able to realize a bandpass sigma-delta modulator. This is of interest 
because of the fact that bandpass sigma-delta ADC’s with variable center fre-
quency are the next to be accomplished within this technology.

1.3 LIMITATIONS

The limitations of this thesis is given by the fact that we will concentrate on 
the circuit realization of the loop-filter in the modulator. This basicly means 
that:
• The focus of this project will be the modulator which means that we are 

not going to consider the decimation filter, which is placed at the output 
of the modulator.

• We are not going the investigate how to realize the circuits of the ADC 
and the DAC, which are used to realize the feedback path. These compo-
nents will instead be modeled as ideal components and the only thing that 
will be considered is the reference levels of the AAC, especially since 
these levels might be changed due to scaling.

• The switches in the design are going to be realized as ideal, but with lim-
ited on and off resistance. 

• Due to lack of time, we were not able to build the bias network and com-
mon-mode feedback of the OTA. The bias network is instead realized by 
DC-voltage sources and the common-mode feedback is realized as an 
ideal stabilizer.

1.4 WORK METHODOLOGY

This thesis will be performed according to the Top-Down design methodol-
ogy, which is the standard way of constructing a mixed-signal system. We 
will start with a SFG-description of a modulator according to the CRFB 
structure and work our way down to the finished circuit.
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THEORY

2.1 ANALOG-TO-DIGITAL CONVERSION

To be able to process data by digital techniques, one often needs to transform 
pieces of the analog world to something on digital form. An example could 
be that one has some sensor data that have to be processed. Best way to look 
into the data is often by digital signal processing, but the sensors give analog 
voltages as data. Here one wants to convert these analog signals to digital dis-
crete values. This is made by analog-to-digital conversion (A/D conversion) 
and the device for this is called the analog-to-digital converter (ADC). 

The analog signal is divided into time-discrete samples, with the time of the 
sample period Ts between each sample. The digital data are samples quan-
tized to 2N discrete levels for N number of bits. The more bits, the more accu-
racy is achievable. 

Figure 2.1: a) Analog signal. b) Sampled signal. c) Sampled and quantized signal.

The faster the signal is sampled, the higher signal frequencies can be con-
verted to digital domain without loosing information by the phenomenom of 
aliasing. 
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Looking att sampling in the frequency domain, the Fourier transform of the 
analog continous input signal has a frequency spectrum streching over all fre-
quencies from zero to infinity. Sampling the signal with sampling frequency 
fs makes a time-discrete signal, with a Fourier transform that is periodic with 
the normalized period 2π, where π corresponds to half the sampling fre-
quency, fs/2. Every frequency component higher than fs/2 will cause aliasing 
by appearing over the limits for the period. It will appear at undesired angular 
frequencies. In Fig. 2.2, this is shown.

Figure 2.2: Ideal sampling. a) Magnitude spectrum of a continous-time signal. b) 
Magnitude spectrum of the sampled, time-discrete signal. 

Thus, to be able to contain signal information, the signal frequencies should 
be smaller than half the sampling frequency. If the signal fulfills this request, 
the analog signal can ideally be reconstructed again by filtering the digital 
signal. This is known as the Nyquist theorem.[4]

The most common measurement of precision of an ADC is the signal-to-
noise ratio (SNR). If the input signal is a perfect sinusoid, then the output sig-
nal from the ADC will be a perfect sinusoid with noise added. The power of 
the wanted signal at the output divided with the noise power at the output is 
the signal-to-noise ratio. 
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2.1.1 SAMPLE AND HOLD

A common approach to divide the continous analog signal into processible 
parts is to use a sample-and-hold circuit (S&H), that reads the signal value 
with equal time-steps Ts in between each reading, and holds that value at the 
output until next reading. The frequency at which the signal is read is the 
sample frequency fs. 

In most cases the device track-and-hold (T&H) can replace the S&H. Other-
wise, the implementation of S&H is done by T&H’s in series. The T&H 
tracks the signal for the first part of the sample period, and holds the signal 
for the second part of the period. The basic implementation of this device is 
straight-forward, as Fig. 2.3 shows. Still, aiming to make a sampling device 
that samples the correct voltage with good accuracy and is capable of holding 
it and send it further, one encounters problems mainly due to non-idealities in 
switches. Buffers at input and outputs, differential design and special tech-
niques are required for good result. 

Figure 2.3: Basic implementation of track-and-hold. 

2.1.2 QUANTIZATION

When converting to digital data, each sample has to be quantized to a discrete 
value. In the analog domain the value of the signal is determined by the signal 
voltage. To determine what digital value to assign the sample, a ladder of 
comparators can be used. Each comparator tells if the signal is higher or 
lower than a certain reference level. For N bits resolution, that is 2N quantiza-
tion levels, 2N-1 comparators will be needed to place the sample in the right 
level. A structure built with a sample-and-hold and a ladder of comparators 
realizes the flash ADC. 
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Fig. 2.4 shows a 2-bit quantizer realization. Each comparator gives logic ‘1’ 
(logic ‘0’) as output if the differential input to the comparator is positive (neg-
ative), i.e., the Vin-signal is higher (lower) than the reference voltage in to the 
comparator.  The quantizer outputs give three thermometer coded bits. A dig-
ital decoder converts the data to binary code. 

The reference voltages are divided from the Vref, which should be given from 
the power supply. If there are mismatches in resistace sizes, the quantisation 
levels will be non-uniformly distributed, causing non-linear behaviour. 

Figure 2.4: Realization of 2-bit quantizer.

The flash ADC is a realizable and widely used structure. However, for hard 
requirements on SNR, thus many bits of resolution, the number of compara-
tors will be high, and the accuracy required for each comparator and its refer-
ence voltage will be difficult to achieve with non-ideal components. With 
special techniques to linearize the behavior of the flash ADC one can still not 
be able to achieve better than possibly 10-12 bits resolution. 
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Figure 2.5: a) 2-bit quantization of a ramp as input signal. b) Plot of the quantiza-
tion error. 

The difference between the analog value and the quantized value is called the 
quantization error. With properly chosen reference voltages, the quantization 
error can be controlled not to be larger than half the quantization step size. 

Figure 2.6: a) Y is the quantization of X. b) Linear model. 

In the linear model, the quantization error is modelled as an uncorrelated 
zero-mean noise source, with amplitude inversely proportional to the number 
of quantizer levels. Looking at this noise in the frequency domain, the noise is 
assumed to be equally spread over all frequencies. It is called white noise. 

2.1.3 OVERSAMPLING A/D-CONVERSION

Figure 2.7: Decimation.

Oversampling A/D-conversion means that the ADC samples the signal faster 
than the digital system needs, and decimation is made after the A/D conver-
sion. Decimation means low-pass filtering followed by downsampling. 
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Figure 2.8: Downsampling of a sinusoid with M = 3. The result is a sinusoid with 
three times higher frequecy. 

Figure 2.9: Downsampling in frequency domain. a) Filtered signal spectrum con-
sisting of three in-band tones. b) Downsampled signal spectrum. The amplitudes are 
scaled down, and frequencies scaled up. 

With ideal filtering we get rid of noise at frequencies above the stop band 
edge. Hence, by oversampling the analog signal, quantization noise power is 
decreased. This gain is on the cost of less signal frequency range. 

A way to get even higher SNR is to shape the quantization noise, so that when 
the decimation filter attenuates the high frequencies, only a small amount of 
the quantization noise remains in the signal frequency band. This is the con-
cept of sigma-delta A/D-conversion.
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2.2 LOW-PASS SIGMA-DELTA A/D-CONVERSION

The most accurate ADC’s of today, operating at relatively high frequenqies, 
are sigma-delta ADC’s. For example, Texas Instruments’ ADS1282 can give 
130 dB SNR, for 24 bits, at a sample frequency of 4 kHz. With a resolution of 
18 bits and SNR of 101 dB, the AD7678 from Analog Devices can operate at 
a sample frequency of 100 kHz. 

The architecture of the converter can vary, but the concept is that the quan-
tized signal is fed back to an analog integrating filter part, so that the noise 
transfer function (NTF) from the quantizer to the output of the modulator is 
high-pass-shaped. The transfer function from input to output of the modula-
tor, the signal transfer function (STF), is instead shaped to get full signal 
swing out from low frequencies, while higher frequency components are 
either suppressed or not considered. They will be filtered out with the deci-
mation filter before downsampling. 

Figure 2.10: Sigma-delta ADC. 

Implementation of a sigma-delta ADC requires the analog modulator, an 
internal ADC for quantization, digital-to-analog converter (DAC) for feed-
back, and digital filtering and downsampling for decimation. 

2.2.1 PROPERTIES OF A SIGMA-DELTA MODULATOR

The heavier the NTF is high-pass shaped, the less quantization noise will dis-
tort the signal. However, with high amplidudes at high frequencies, there will 
be a risk of unstability of the modulator. The input signal swing have to be 
scaled down from full-swing for most modulator structures, not to force the 
signal energies in the integrators too high, giving unstable behaviour. 
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With several cascaded integrators, the NTF gets as many zeros and poles as 
the number of integrators. The number of integrators in a sigma-delta modu-
lator is referred to as the modulator order. As in every filter implementation, 
the higher the modulator order, the more effective is the filter function. 

To place a zero-pair of the NTF above zero frequency, two cascaded integra-
tors with feedback can realize a resonator. 

The oversampling ratio (OSR) means how much faster the analog signal is 
sampled, than what is given out from the digital decimation part. For a given 
sample frequency, with higher OSR, the signal band becomes smaller. That 
means that the bandwidth of the signal cannot be as large, but the NTF 
becomes more effective. Bandwidth is traded for accuracy. 
To increase the signal frequency range, the sample frequency may be 
increased. Then components will have to work faster, forcing higher power 
consumption to still obtain the same accuracy. Obviously, there is also a limit 
for how fast components are able to work.

The excellent behaviour of the sigma-delta modulator makes it possible to 
reach very good signal-to-noise ratio (SNR) for a narrow-band signal, even 
with a quantization to two levels. In fact, sigma-delta ADC’s with a 1-bit 
quantizer is commonly implemented, because of the simple implementation 
of both ADC and DAC. With quantization of more than one bit, non-linear 
behaviour of the DAC may occur. The design of the DAC has to be thor-
oughly done to minimize non-linearity, which can cause great degradation in 
SNR for the whole system. 
With high OSR, the number of quantization bits can be made small, to still 
get good SNR out from the filtered and downsampled digital signal. 

The trade-off between speed, accuracy and power consumtion is what will set 
requirements on the components in the sigma-delta modulator. 
For low power one wants foremost to have low sample frecuency as well as 
OSR, to give the integrators good time to settle and thus small currents 
needed. But low modulator order and low number of quantiztion steps means 
few active components, thus low power consumption. 
To get high SNR, one wants high OSR, high modulator order and many quan-
tization levels. 
For high speed, the OSR should be small, and the sampling frequency should 
be large. 
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If the wanted signal band is not the low-frequency band, band-pass sigma-
delta A/D-conversion shoud be a good alternative. If the NTF is not high-pass 
shaped, but band-stop shaped, and the STF is well amplifying the frequencies 
of the NTF stop band, we have a band-pass sigma-delta ADC. 

2.3 CRFB

The structure of a sigma-delta modulator (SDM) can be described by a signal 
flow graph (SFG). The cascade of resonators with distributed feedback 
(CRFB) [1] is the structure that will be discussed in this report. 

Figure 2.11: Third-order general CRFB SDM. 

The SFG in Fig. 2.11 shows a general third-order CRFB modulator, in the Z-
domain. The output Y is the quantized version of signal U. Interchanging the 
quantization with an addition of the quantization error makes it possible to 
calculate the NTF. Every  box n0 to n10 can realize either a delay element or 
just interconnection.  There are many possible realizations, still realizing a 
STF and NTF of third order. 

The first integrator adds a zero placed in z=-1 in the Z-plane of the NTF. The 
other two integrators form a resonator, with adjustable zero placement, 
because of the feedback path through the multiplication with -g1. 

An even-order CRFB structure, thus consisting of a number of resonators, 
can be realizing an NTF that suppresses noise at any wanted frequency band, 
depending of coefficients ai and gi. If all gi are set to zero, all zeros of the 
NTF will be placed in z=1 in the Z-plane, thus the NTF will be purely high-
pass shaped, i.e. low-pass sigma-delta modulation. To increase the signal 
pass-band and make the transition band of the NTF  shorther, one might want 
gi non-zero, moving zero-pairs through the unit circle in the Z-plane. 
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The STF depends on all coefficients ai, bi and gi. Its zero-placement, though, 
is only dependent of the bi coefficients. It is possible to find coefficients real-
izing the STF complementary to the NTF, or an all-pass STF. Both realiza-
tions are interresting choices. 

Figure 2.12: The example second-order SDM. 

As an example througout the report, the structure of Fig. 2.12 will be consid-
ered. The modulator has one delay element in the resonator loop. If the b3

coefficient is set to zero, the structure is fully symmetric and the implementa-
tion of the addition before the quantization is not needed. In the example, the 
b3 coefficient will not be set to zero, to show how the implementation of the 
adder can be made. 

 

2.4 ELECTRONIC COMPONENTS

The thesis is focused on the design of sigma-delta CRFB structure imple-
mented in CMOS integrated circuits (IC). This means that the MOS transistor 
is the basic building block. 
The analog filter realization is based upon the theory of switched-capacitor 
(SC) filters, consisting of switches, capacitors and operational amplifiers. 

2.4.1 THE MOS TRANSISTOR

CMOS stands for complementary MOS, where MOS is short for MOSFET, 
that is metal oxide semiconductor field effect transistor. What is complemen-
tary, is that both NMOS and PMOS transistors are used. The NMOS transis-
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tor operates best at low voltage levels, near ground, and the PMOS are better 
near the supply voltage. 

Figure 2.13: NMOS transistor. The potential is higher at drain than source. 

The transistor can be seen as a voltage-controlled current source. The higher 
the gate-source voltage, the higher the current Id, which flows from drain to 
source. 

2.4.2 TRANSISTOR SWITCHES

The NMOS transistor can be used as a switch, that conducts when a high 
voltage is applied to its gate, and is non-conducting when a low voltage is 
applied to the gate. Similary, the PMOS transistor can be used, but with the 
inversed control signals, high gate potential for non-conducting, low for con-
ducting. 

The non-ideal MOS switch has non-zero on-resistance, and finite off-resist-
ance. This means that when in conducting mode, some small voltage drop 
will appear over the swich, and in cut-off, a little leakage current will still 
flow through the component. The on-restance of the MOS transistors is 
potential dependent. For NMOS, the resistance is higher, the higher potential 
there is at the drain and source. The PMOS on-resistance is higher, the lower 
the potential. 

By connecting an NMOS and a PMOS transistor in parallell one gets smaller 
and foremost less signal dependent on-resistance. This coupling is called the 
transmission gate. Depending on signal strength, the choice between simple 
NMOS or PMOS switch and transmission gate has to be decided for each 
individual design. 

Unwanted effects in transistor switches can be thermal noise, leakage cur-
rents, charge injection, clock-feedthrough, flicker noise. Differential design, 
non-overlapping control signals and large loads suppresses noise. 
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2.4.3 OPERATIONAL AMPLIFIERS

The operational amplifier (OP-amp) is a differential amplifier that amplifies a 
signal highly from input to output. The device is used in circuits where nega-
tive feedback makes the closed-loop gain controllable. The higher the open-
loop gain, the more accurate the closed-loop output signal. 

Figure 2.14: OP-amp symbols. a) Single-ended output. b) Differential output. 

One source of amplifier is the voltage-to-voltage OP-amp, which is supposed 
to have very high input impedance, very low output impedance and very high 
voltage gain from input to output. 

In applications with capacitive loads, the OP-amp can be constructed as a 
voltage-to-current amplifier, an operational transconductance amplifier 
(OTA). This device has high input as well as output impedance, and the 
transconductance should be large. 

 

The OTA is the active component in SC-integrators, since it is the component 
that consumes current from the power supply. In low-power design, much 
consideration in the OTA design has to be taken. 

When designing an OTA for minimum power consumtion, the following 
requirements have to be specified: DC-gain, unity-gain bandwidth, slew rate, 
common mode range, output range. 

DC-gain usually refers to open-loop gain at zero frequency, the maximal 
open-loop gain. The unity-gain bandwidth is the frequency where the open-
loop gain is unity. 

If the OTA is to make fast transitions on its output, large currents are required. 
The slew rate is a measure of the maximum voltage change per unit time at 
the output. The slewrate is proportional to the supply current, and inversely 
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proportional to the load capacitance. 

In differential design, the common-mode level (CM) defines the DC-level of 
the positive and negative signal. 

Output range is an important factor when scaling voltage levels. The range 
between minimum and maximum output voltage of the OTA sets the output 
range. With differential output, the maximum output voltage is Vmax - Vmin, 
and the minimum becomes Vmin - Vmax, if the positive and negative output has 
the same limitations.
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3 

SCALING OF COEFFICIENTS

3.1 METHODOLOGY

When a SDM is being designed, an important step before realizing the circuit 
is to scale the inputs of the integrators so that the maximum output signal 
from the integrator can be realized according to the OTA’s output range. It is 
very important to do this activity right since clipping in the integrators can 
reduce the SNR significantly.

3.1.1 INSERTION OF SCALE COEFFICIENTS

The idea of scaling is that all of the inputs to each integrator should be scaled 
by the same coefficient, and in order to fulfill the same transfer function of 
the SDM, the output of the integrator has to be scaled by the same factor. The 
output scaling factor cannot usually be realized within the current integrator, 
so the multiplication has to be passed on to the next integrator or, as a special 
case, to the next ADC. This particular issue will be discussed further in this 
chapter. 

The second-order SDM is used as an example here and the modulator struc-
ture can be seen in Fig 3.1.
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Figure 3.1: The second-order SDM.

Lets start by looking at the first integrator with the input coefficients k1, k2

and k3. All of these coefficients shall now be scaled by a variable s1 and, in 
order to preserve the transfer functions of the SDM,  the output has to be 
scaled by 1/s1. The output scaling is realized with coefficient k4, which is 
physically realized in integrator 2. The original values of the coefficient can 
be seen in column 1 and the resulting scaled coefficients can be seen in col-
umn 2 in table 3.1.

Table 3.1. Scaling scenario of the modulator coefficients.
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The next step is to scale the inputs and outputs of integrator 2. The scaling 
constant is here called s2 and is inserted in the same way as with the first inte-
grator. A special case is here that the output of integrator 2 also goes to the 
input with the coefficient k3 of integrator 1, and this coefficient shall therefore 
also be scaled by 1/s2. The result of this can be seen in column 3 in table 3.1. 

The last addition before the quantizer does not need to be scaled since it is 
directly connected to the quantizer. The quantizer cannot produce higher out-
puts than the highest reference level and the only thing that is required is 
therefore that these voltages can be produced.

The resulting SFG describing the second-order SDM with inserted scaling 
coefficients is now completely equvivalent to the original SFG. This can be 
shown by first calculating the transfer function of the SFG in Fig 3.1. The 
transfer function can be seen in equation (3.1).

(3.1)

To be able to show that the transfer function of the SFG with scaled and 
unscaled coefficients are equal, one only needs to insert the coefficients from 
table 3.1 into equation (3.1). The unscaled coefficients can be found in col-
umn 1 and the scaled coefficients can be found in column 2.

(3.2)

Both the scaled and the unscaled coefficients ki results in the same transfer 
function, shown in equation (3.2), and this means that the scaled SFG’s trans-
fer function is equivalent to the original transfer function.

3.1.2 SCALING IN THE QUANTIZER

There exists SDM structures where there is no addition before the quantizer, 
which basically means that the scaling coefficient from the integrator, which 
is connected to the quantizer, must be realized within the quantizer. A good 
option is to scale the reference levels of the ADC by the scale constant of the 
last integrator and to still keep the output-voltages of the DAC the same. This 
can easily be done since the reference levels are produced by resistor nets and 
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will result in a gain in the quantizer by the inverse of the scaling factor of the 
reference levels.

3.2 SIMULATION

When insertion of scaling coefficients have been done one needs to set the 
coefficients s1 and s2. To be able to set the coefficients so that the integrators 
never reaches their maximum value one needs to simulate this model of the 
SDM with every possible input signal and this is of course not possible. A 
model suggested by [1] is to simulate the system with sinusoidal signals as 
inputs.  The frequency of the input signal shall be varied over the whole pass-
band of the modulator and the amplitude should be the maximum stable 
input-range. The value that overflows the most, according to the output range 
of the integrator, is the value which sets the scale coefficient si. A suggested 
way of simulating the system is to have the quantizer levels set to be symmet-
ric around zero. The advantage of this is that one only has to look at the abso-
lut value of the integrator output to find the maximum value.

In this simulation the maximum allowed input swing is 75% of the quantizer 
range, which is decided to be -1V to 1V.  The modulator coefficients which is 
used can be seen in table 3.2.

Coefficient Value

b1 0.25

a1 0.24

g1 0.005

v1 1

b2 0.28

a2 0.53

v2 1

b3 0.47

Table 3.2. Modulator coefficient values.



Chapter 3 –  Scaling of coefficients 21

Figure 3.2: Maximum absolute value of the normalized output of the integrators 
plotted against normalized angular frequency.

One can see in Fig 3.2 that the maximum value at the output of the first inte-
grator is 0.557 and the maximum value at the output of the second integrator 
is 1.729. The maximum output swing of the integrator is here supposed to be 
1, and therfore the scale constant s2 is supposed to be  and the scale 
constant s1 is supposed to be . These coefficients are calculated 
according to equation (3.3) where Vr is the normalized maximum output 
swing of the integrator from Vcm and Vout is the maximum value at the integra-
tor of index i. 

(3.3)

The fact that s1 is larger than one means that the output signal of the first inte-
grator is upscaled and this feature means that thermal noise is moved from the 
input of the first stage to the input of the second stage. This will be discussed 
further in Chapter 5.

Another issue is that one here needs to decide the output range of the integra-
tor Vr and this has to be estimated before building the OTA. If this estimation 
cannot be fullfilled, the only thing to do is to do the scaling all over again. 
However, if one want to use an OTA which already has been built, Vr  can be 
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calculated according to equation (3.4). This parameter is usually smaller than 
one due to the fact that only a few OTA structures have the ability to drive the 
output voltage rail-to-rail. 

(3.4)

3.2.1 OTA EXAMPLE

The OTA for which the scaling is supposed to be done has the parameters 
according to Table 3.3.

The thing that needs to be done is to calculate the normalized maximum 
swing Vr, and this is done according to equation (3.5).

(3.5)

Parameter Value

VDD 3.3 V

VSS 0 V

Vcm 1.65 V

Vout_max 2.9 V

Vout_min 0.3 V

Table 3.3. OTA parameters

V r

min V outmax
V cm– V cm V outmin

–{ , }

min V DD V cm– V cm V SS–{ , }
------------------------------------------------------------------------------------=

V r

min V outmax
V cm– V cm V outmin

–{ , }

min V DD V cm– V cm V SS–{ , }
------------------------------------------------------------------------------------

min 2.9 1.65– 1.65 0.3–{ , }
min 1.65 1.65{ , }

----------------------------------------------------------------- 0.818= = =
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Figure 3.3: Maximum absolute value of the normalized output of the scaled inte-
grators plotted against normalized angular frequency.

Fig 3.3 shows the normalized maximum values of the integrator outputs with 
scaled coefficients. Here Vr is set to 0.818, which means that the normalized 
output range of the integrators is -0.818 to 0.818. One can see that the output 
is never larger than 0.818, which means that the scaling has been done prop-
erly. The resulting coefficients after scaling can be calculated according to 
column 3 in table 3.1, where  and .s

1

0.818

0.577
------------- 1.469= = s

2

0.818

1.7291
---------------- 0.47308= =
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4 

A METHOD FOR REALIZING CRFB 

SDM´S WITH SC-INTEGRATORS

4.1 INTRODUCTION

This chapter will guide the reader through the systematic design flow from a 
given CRFB modulator structure down to a circuit realization on a switched-
capacitor filter level. The idea of this method is to move delay elements by 
equivalence transformations to get either whole or half delay into every inte-
grator input, which directly gives the scheduling and the SC-realization. A 
special case in this theory is the addition before the quantizer, which has to be 
realized with no delay or half of a delay. This activity is suggested to be per-
formed after the scaling of the given modulator has been done.

4.2 EQUIVALENCE TRANSFORMATIONS

To get a signal flow graph where all inputs to any integrator have either a 
whole or a half delay, and the inputs to the addition before the quantizer have 
either a half or no delay, one has to modify the original SFG by equivalence 
transformations. 

4.2.1 RULES 

Given a structure one is allowed to modify the difference equations as long as 
the result remains exactly the same. Timing of operations can be reordered by 
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a few rules. This is equivalent to moving delay elements in the SFG. When a 
signal passes through a component with one input and one output a delay ele-
ment before the component is equivalent to a delay element after the compo-
nent. When several signals are coupled together or a signal is split into several 
signals, equivalence transformations can be made as shown in Fig. 4.1 and 
Fig. 4.2.

The difference equations of Fig. 4.1:a gives the same bahaviour as the equa-
tions for Fig. 4.1:b.

(4.1)

(4.2)

Figure 4.1: Equivalent SFG´s.

(4.3)

(4.4)

(4.5)

Delay elements can be moved through nodes as shown in Fig. 4.2.

Figure 4.2: Equivalent SFG´s.

In this approach we also deal with movement of half-delays. This means that 
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it is allowed to transform the SFG´s of Fig. 4.1 and Fig. 4.2 into Fig. 4.3:a 
and Fig. 4.3:b, respectively.   

Figure 4.3: a) SFG equivalent to Fig. 4.1. b) SFG equivalent to Fig. 4.2.

As shown in section 4.4, half-delays as well as whole delays can be realized 
at any input to the swithed-capacitor integrators used to build the CRFB 
SDM, since the SC-integrators are utilizing two-phase clocking schemes. 

It is also possible to realize integrator inputs without delay, but this will 
require an unnecessary long path to settle at one half period, and thus take 
longer time to settle, shown in section 4.5.6. Therefore this option is not to 
recommend. 

4.2.2 METHOD

The task of equivalence transformations is to make sure there is either a full 
or half delay at every input to each integrator, which basicly means at every 
input to the adder before every integrator. This will give that two integrators 
never have to follow each other without some delay in between. In the SC 
realization, this means short paths to settle at a time, and gives good settling 
time constraints for the active components. 
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4.2.3 EXAMPLE: SDM2

Figure 4.4: Original SFG of the second-order sigma-delta modulator.

The second-order sigma-delta modulator structure in Fig. 4.4 has one delay 
element after the second integrator. This can be moved back through the inte-
grator and splitted into three delay elements at the inputs to the second inte-
grator. Now take half the delay element that has appeared at the output of the 
first integrator, move back through the first integrator and split into three half-
delays at the inputs to the first integrator. This gives the equivalent structure 
shown in Fig. 4.5.

Figure 4.5: Transformed SFG of the second-order sigma-delta modulator.

4.3 SCHEDULING

The next thing to do after the transformation of  the SFG is to make a proper 
schedule that later on can be implemented using SC-circuits. The most 
important thing to understand during this activity is how the notation in the 
schedule works, because the schedule is later on supposed to be translated 
directly into a SC-circuit. 
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4.3.1 DESCRIPTION OF THE SCHEDULE

The schedule, as can be seen in Fig. 4.6, is constructed of half clock periods 
since the SC-circuits is using a two-phase clocking scheme. A period in this 
schedule, which is t time units long, is referred to as a half period. This is due 
to the fact that one clock period is lasting 2τ time units. One can also see that 
the input signal Xin is stable over clock phase 1 and 2 and this is due to the 
fact that integrator 1 samples the input signal at time t and integrator 2 sam-
ples the input signal at time t+τ. These two samples are supposed to be the 
same according to the model and if they are not, an error will be introduced. 
The drawback of this is that an external Sample & Hold circuit will be 
required to be able to hold the input signal stable during the time when the 
integrators sample the signal.

Another thing that is worth mentioning is that the times when the signals X1

and X2 appear in the schedule is when the output signal is stable at the output 
of the corresponding integrator. This can be seen by, for example, if we look 
at the signal xin(n) which can be seen at time t and then look at the delay until 
x1(n) is produced. x1(n) is the output of the first integrator in Fig. 4.5 and it 
seems to be outputted at the time t+τ. This means that there is half a delay 
unit between the input Xin and the output of X1, which it also is supposed to 
be according to the transformed SFG in Fig. 4.5. For example if there was a 
whole delay unit between the input Xin and the corresponding output X1, the 
signal X1 would appear in the schedule at time t+2τ if the input Xin where sta-
ble at time t.

Figure 4.6: Schedule of the second-order sigma-delta modulator.

When it comes to the correct numbering of the samples, everything is related 
to the initial convention, that one needs to set up before one starts the sched-
uling. For example, if xin(n) is stable between time t and t+2τ, the convention 
might be that every signal that starts either at time t or t+τ, will be indexed as 
n and the signals that starts either at time t+2τ or t+3τ will be indexed n+1

and so on. The rule here is that the area where to index the signals n should be 
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two half periods, and the following two half periods should be indexed n+1.

The last thing to notice about the schedule is that the signals are drawn as 
blocks were the left edge is rounded. This is due to the fact that the output 
signals are not stable before the active blocks have settled, and this will be 
considered when building the circuit.

4.3.2 METHOD FOR SCHEDULING OF AN SFG

The methodology of scheduling is to start with the input signal which can be 
inputted at any time in the schedule. A good start is preferably to let xin(n) last 
between time t and t+2τ, since this might be necessary if the integrators sam-
ple the input signal at different times. If it turns out that they do not, this 
requirement can be subscribed and it is then not necessary to have a Sample 
& Hold circuit in front of the sigma-delta modulator.

The next thing to do is to check the delay between Xin and X1. If there is half 
a unit delay between these signals the correct thing is to schedule the X1 sig-
nal to time t+τ, which is one half of a clock period after Xin appears and index 
it as x1(n), since the signal starts at time t+τ. If there is a whole unit delay 
between Xin and X1 one shall schedule X1 to start at time t+2τ, which is one 
clock period after Xin appears. Due to the fact that the signal X1 is scheduled 
one clock period later than Xin, it here should be indexed as x1(n+1). If we 
have several cascaded integrators the next step is to continue to schedule X2, 
which is the output of the second integrator, from X1 or Xin in the same man-
ner as the first integrator. When the scheduling is done all the way from the 
input signal, through all of the integrators, to the quantizer the feedback paths 
are ready to be verified in the same way as when the signals were scheduled. 
The only difference is that the signals are already plotted in the schedule and 
one only needs to verify that the delay between the signals is correct.

4.3.3 EXAMPLE: SCHEDULING OF SDM2 

The assignment here is to schedule the the second-order sigma-delta modula-
tor shown in Fig. 4.5, transformed from the original SFG shown in Fig. 4.4. 

The first thing to do is to schedule xin(n) to be stable between time t and t+2τ. 
This means that x1(n) should be scheduled to appear one half of a clock 
period after xin(n) since there is half of a delay unit between Xin and X1. This 
can be seen in Fig. 4.7.
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Figure 4.7: Start of the schedule of the second-order sigma-delta modulator.

The next thing to do is to is to schedule the X2 signal. As we can see in 
Fig. 4.5 X2 is delayed with one unit delay compared to Xin and with half of a 
unit delay compared to X1. This means that we shall schedule X2 to appear 
one clock cycle after Xin and a half clock cycle after X1. This can be seen in 
the Fig. 4.8 and X2 will here be indexed as x2(n+1) due to the fact that it 
appears at time t+2τ, which is one whole clock cycle after xin(n) appears. 

To finish this schedule we continue with the quantizer output. Since there is 
no delay between X2 and the quantizer output we just schedule it at the same 
time as X2. More thought will be put into the quantizer timing during the cir-
cuit design chapter. The last two operations of scheduling can be seen in 
Fig. 4.8.

Figure 4.8: Allmost complete schedule of the second-order SDM.

The final step is to fill out the schedule with all of the samples and to check 
that the feedback paths are correct. The finished schedule can be seen in 
Fig. 4.9, where the arrows show which signals that have been used to produce 
a particular signal.

Figure 4.9: Complete schedule with arrows indicating were the signals are used.
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4.4 SWITCHED-CAPACITOR CIRCUITS

To be able to build a circuit out of the schedule, one needs some knowledge 
about how to construct an SC-integrator with a specified number of inputs 
and outputs.

There are mainly two types of SC-circuits that are used when building sigma-
delta modulators and both of these two standard realizations are insensitive to 
parasitic capacitors [2]. The first model is called non-inverting connection 
and the second one is called inverting connection.

These circuits are two-phase clocked, which means that two different, non-
overlapping, trigger signals will be constructed out of the master clock. The 
first trigger signal will be high during the period were the master clock is high 
and the second trigger signal will be high during the period were the master 
clock is low. These two trigger-signals are called P1a and P2a and they can 
be seen in Fig. 4.10. 

It is also needed to construct two additional trigger signals which are basicly 
the same as the two signals described above, but with the difference that they 
go low a little earlier than the previous trigger signals. These two signals will 
be called P1a and P2a and is used to end the integration phase before the 
input signal is removed from the input of the integrator. They can be seen in 
Fig. 4.10.

Figure 4.10: Timing diagram of trigger signals.
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4.4.1 THE NON-INVERTING INTEGRATOR

Figure 4.11: Integrator with one non-inverting input.

The non-inverting integrator as can be seen in Fig. 4.11 realizes an integration 
with a positive input and a unit delay. The switches that have p1 as trigger are 
conducting in phase 1 and the switches triggered by p2 is conducting in phase 
2. The transfer function can be calculated from the following equations:

 (4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

Charge conservation, which is due to the fact that we have an ideal OP-amp 
with no input current, gives:

(4.12)
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(4.13)

Equations (4.6), (4.7) (4.8), (4.11), (4.12) and  (4.13) give

(4.14)

Since 2τ corresponds to one clock period, we can rewrite equation (4.14) as:

(4.15)

The last step of this is to use the Z-transfrom on equation (4.15), which gives:

(4.16)

Equation (4.16) corresponds to an integrator of the same type as the picture 
above shows, with one positive input which is scaled by  C1/C2. The most 
important thing to remember about the non-inverting integrator is that the 
input signal is collected during the first phase of the integrator which often is 
referred to as the sampling phase. This integrator is not sensitive to an input 
signal which is unstable, as long as all of the integrators that use the same sig-
nal sample it at the same time.
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4.4.2 THE INVERTING INTEGRATOR

Figure 4.12: Integrator with one inverting input.

The inverting integrator realizes an integration with a half unit delay with a 
negative input and the circuit realization can be seen in Fig. 4.12. The transfer 
function is calculated below:
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Equations (4.17), (4.18), (4.19), (4.22), (4.23) and (4.24) give

(4.25)

(4.26)

(4.27)

Equation (4.27) corresponds in this case to an integrator which is delayed by 
half of a unit delay with a negative input. The important thing to think about 
when using an inverting input to your integrator is that the input signal have 
to be as stable as possible to get a good result. An unstable input signal will 
greatly affect the settling time of the circuit.

4.4.3 DESIGN OF A DESIRED SC-INTEGRATOR

As shown in this chapter, one can design with both inverting integrators and 
non-inverting integrators. The next step now is to learn how to combine these 
two types of integrators to a new integrator with a number of non-inverting 
inputs and another number of inverting inputs. At first one must look at the 
difference between the two different types of integrators described in the text 
above.

Figure 4.13: a) Non-inverting input. b) Inverting input. 

If we compare the two figures that describe the circuit realizations of the non-
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inverting (Fig. 4.11) and inverting (Fig. 4.12) integrators, one can see that the 
only thing that differs between them is the two switches to the left of capaci-
tor C1. This means that we can start with a standard non-input integrator as 
the one presented in Fig. 4.14 and connect either non-inverting or inverting 
inputs to it. This is done by connecting one or more of the input circuits 
shown in Fig. 4.13 to node C in the circuit shown in Fig. 4.14. 

For example if we connect node A and node B of the circuits in Fig. 4.13 to 
node C of the circuit of Fig. 4.14 we will achieve an integrator with one 
inverting input and one non-inverting input. This example is studied in sec-
tion 4.4.5. If we later want to expand this integrator with even more inputs, it 
is just a matter of connecting another circuit of the ones shown in Fig. 4.13 to 
node C of the integrator.

Figure 4.14: The general SC-integrator structure. 
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4.4.4 EXAMPLE: SWITCH CONFIGURATION FOR AN SC-INTE-

GRATOR WITH TWO INPUTS

Figure 4.15: Two-input integrator SFG.

An integrator with two inputs, as the one in Fig. 4.16, with the SFG of 
Fig. 4.15, can be clocked in four ways making the inputs either delayed a full 
period or delayed half a period with negative sign. 

Table 4.1 shows the proper switching for each case. ‘1’ means that the switch 
is conducting during the phase of interest. Option 3 gives for example the 
transfer function .

A B Phase SA1 SA2 SB1 SB2 Ssamp Sint

1 z-1 z-1
Sample 1 0 1 0 1 0

Integration 0 1 0 1 0 1

2 -z-1/2 z-1
Sample 0 1 1 0 1 0

Integration 1 0 0 1 0 1

3 z-1 -z-1/2
Sample 1 0 0 1 1 0

Integration 0 1 1 0 0 1

4 -z-1/2 -z-1/2
Sample 0 1 0 1 1 0

Integration 1 0 1 0 0 1

Table 4.1. Different SC-integrator realizations.
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Figure 4.16: Two-input SC-integrator.

The discussion in this chapter has concerned single-ended SC-circuits. How-
ever, it is not difficult to realize a fully differential implementation of the 
same integrators. Fig. 4.22 shows an example of a fully differential SDM 
implementation. 

In a differential implementation of the SC-integrators, an inverting input can 
be flipped to non-inverted by swiching place of the positive and negative 
input signal terminals. Similarly a non-inverting input can be flipped to an 
inverting. This makes it possible to change the sign of the input signal if it is 
required.
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Figure 4.17: Integrator with one non-inverting and one inverting input.

4.4.5 EXAMPLE: SC-INTEGRATOR WITH ONE NON-INVERTING 

AND ONE INVERTING INPUT

The assignment here is to calculate the transfer function for a switched capac-
itor integrator with one inverting input and one non-inverting input according 
to Fig. 4.17. The first thing to do is to calculate the charge equations.
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(4.36)

Charge conservation, due to the ideal OP-amp which means that no charge 
can be transported anywhere else than between the capacitors, gives

(4.37)

(4.38)

Equations (4.28), (4.29), (4.30), (4.31), (4.32), (4.37) and (4.38) give

(4.39)

Using the Z-transform on equation (4.39) gives

(4.40)

As one can see, the resulting transfer function for this circuit corresponds to 
the added result of one non-inverting integrator (4.16) and one inverting 
integrator (4.27).

4.4.6 SWITCHED-CAPACITOR ADDERS USING COMPARATORS

When designing sigma-delta modulators, many structures require an addition 
just before the quantizer. This situation could appear as an addition of a refer-
ence level, which has to be subtracted in multibit sigma-deltas, or as a struc-
tural addition according to the design of the modulator. To be able to realize 
this addition, one could either choose to build an addition using one extra 
OTA or to use the comparator to realize the function. The later one can be 
realized since the fact that comparators have high input impedance, which 
means that nearly no charge dissapears into the input of the comparator and 
thereby that the equations of charge conservation is a good approximation of 
the real situation. 
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Figure 4.18: Implementation of two-input adder.

The first circuit is showed in Fig. 4.18 and the transfer function is calculated 
according to the equations below. The following example is calculated when 
S1 is P1, S2 is P2, S3 is P2 and S4 is P1. q1 is the charge on capacitor C1 and q2

is the charge on capacitor C2. The signs of q1 and q2 are defined according to 
Fig. 4.18.
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Charge conservation, due to the fact that the comparator is ideal and have infi-
nitely high input impedance, gives equation  (4.45)

(4.45)

Equation (4.41),  (4.42),  (4.43),  (4.44) and  (4.45) give:
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Since 2τ corresponds to one whole clock period, one can rewrite equation 
 (4.45) and use the z-transform, which gives equation  (4.47).

(4.47)

This means that this particular circuit implements a SC-adder where input V2

is not delayed and input V1 is delayed by half a clock period. Worth noticing 
here is that the output of this adder will be scaled and this has to be consid-
ered when designing the forthcoming analog-to-digital converter. 

Table 4.2. Transfer functions given by trigger signals.

Table 4.2 shows the transfer functions according to the trigger signals 
inserted to the switches triggered by S1, S2, S3 and S4 in Fig. 4.18. According 
to this one can choose to implement this adder with either two half-delaying 
inputs, two non-delaying inputs or one delaying input and one non-delaying 
input. Worth mentioning here is that when building a sigma-delta modulator, 
there must be a half of a delay where the input signal to the modulator is fed 
into this adder, since this is the only way of sampling the signal. If there is 
not, one will need a separate Sample & Hold circuit before the modulator to 
hold the signal steady. 

What needs to be understood when using this circuit is that it will scale the 
input and this is because of the way that the coefficients are realized. The 
input coefficients a’ and b’ are realized according to equation (4.48) and 
equation (4.49).
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(4.49)

Equation (4.48) and equation (4.49) give equation (4.50).

(4.50)

In order to estimate the scale constant k, one has to set a’ and b’ in relation to 
the wanted coefficients a and b. This can be seen in equation (4.51) and 
equation (4.52).

(4.51)

(4.52)

The value of  the scale constant k is given according to equation (4.54).

(4.53)

(4.54)

So in order to use this circuit, the quantizer must have a gain of k. Since the 
capacitor C1 is known, the capacitor C2 can be calculated according to 
equation (4.55).
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Figure 4.19: Implementation of two-input adder.

The next circuit which is proposed is described in Fig. 4.19 and the transfer 
function is calculated according to the equations below. q is the charge on 
capacitor C and the sign of q is defined by Fig. 4.19. 

(4.56)

(4.57)

The rule of charge conservation gives:

(4.58)

Equation  (4.56),  (4.57) and  (4.58) gives: 

(4.59)

(4.60)

This stucture implements an SC-adder with two inputs, where one of them is 
delayed by half of a clock period and the other one is non-delayed. The 
advantage of this structure, compared to the one presented in Fig. 4.18, is that 
we will save a capacitor. The disadvantage is that both of the inputs is just 
multiplied with factor one and added, which means that this structure is most 
suitable for subtracting already constructed reference levels when dealing 
with multibit ADC’s. 
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To be able to use these two structures to its limit, one should implement them 
as fully differential implementations. This makes it possible to multiply any 
of the inputs to these adders with a factor of minus one which gives you full 
flexibility to construct any adder or subtractor with no or half of a clock cycle 
delay at the inputs. 

4.5 FROM SCHEDULE TO CIRCUIT

4.5.1 METHOD TO CONSTRUCT A CIRCUIT FROM A SCHEDULE

We are now going to present the method to transform a schedule to a circuit 
realization. The most important thing during this activity is to have a full 
understanding for the notation in the schedule. 

The first thing to know about the schedule, for example in Fig. 4.6, is that 
only the outputs from the active blocks in the SFG are printed. For example, 
if X1 is the output of the first integrator, the time when the output appear in 
the schedule is when the integrator enters its integration phase. The integra-
tion phase then lasts for the whole half period from time t+nτ until t+(n+1)τ. 
The output signal will remain stable for the following half period t+(n+1)τ
until t+(n+2)τ and this is during the sample period of the integrator. 

This means that in the cases when there is only one half of a unit delay 
between two signals in the schedule, one is able to decide which period to 
clock the signal into the next stage. For example, if there is one half unit 
delay between signal X1 and X2, we can choose either to input X1 to the inte-
grator which creates X2 in integrator 2's sample phase or integration phase 
since the signal X1 ideally is stable in both of these phases. The only differ-
ence is that if we input the signal X1 in the integration phase of integrator 2 
the signal X1 will be inverted, and in the same way not inverted if one choose 
to input the signal in integrator 2's sample period. This particular issue will be 
discussed further later in this report.

The second thing to consider when using this method is that it does not fulfill 
the signs of the original SFG. Since most sigma-delta modulators designs are 
fully differential this is not a big issue. The solution is then to change the pos-
itive input signal for the negative input signal and the other way around. This 
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corresponds to multiplying the specific signal with -1. Another solution, espe-
cially when dealing with single-ended designs, is to adjust the circuit so that 
all of the inputs to the integrators which are supposed to be negative is taken 
in the integrators integration phase. This is not always possible, which means 
that one may have to choose another modulator structure which differs from 
the first design by a few unit delays.

The third thing to consider is the quantizer. If some kind of latched ADC is 
going to be used, one needs to be very careful when designing the clocking 
scheme for the circuit since the output of the quantizer is not stable during a 
whole clock period. This has to be taken in account when setting the trigger 
signals for the addtion which is before the quantizer.

To illustrate the method in a good way, we are going to use the second-order 
sigma-delta modulator, which have been used throughout this chapter to illus-
trate the different design steps.

4.5.2 EXAMPLE: SDM2 SC REALIZATION

The schedule in Fig. 4.6 is the schedule corresponding to the second-order 
SDM which SFG is shown in Fig. 4.5, transformed from the original SFG in 
Fig. 4.4. 

The first thing to observe in the schedule is that the input signal Xin is stable 
between time t and time t+2τ. This is an initial assumption which can be 
revised if it turns out that all of the integrators sample the input signal at the 
same time, which means that an external S&H circuit before the sigma-delta 
modulator will not be needed. One can also see that the integrator which pro-
duces X1 starts its integration phase at time t+τ, which means that we can 
choose to connect Xin to the integrator in the sample phase or the integration 
phase. The one to prefer is to connect Xin into the sample phase because this 
way does not require the signal to be stable. This is also the only way if one 
would like to avoid a Sample & Hold circuit at the input of the modulator.  

The first step is then accomplished by connecting Xin into the first integrators 
sampling phase and let integrator 1 have its integration phase during phase 2 
in the schedule.

The next step is to set the right clocks to the right switches in the second inte-
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grator, which produces X2. This is delayed one half clock cycle compared to 
X1, which means that it shall be clocked on the opposite phase of the integra-
tor which produces X1. This is done to fulfill the requirement that X2 should 
appear at the output of integrator 2 one half clock cycle after X1 appears. It 
means that this integrator shall have its integration phase during phase 1 in 
the schedule. 

When it comes to deciding in which period of integrator 2 X1 shall be input-
ted, one can choose either to input the signal in the sample phase or the inte-
gration phase of integrator 2. In this case we choose, for purposes of the 
example, to input the signal in the integrating period of the integrator. It is 
here necessary to interchange the input wires to get the correct sign according 
to the SFG, since an inverting input produces the input multiplied by -1, and 
this has been illustrated in Fig. 4.21 as a mutiplication with the factor -1. 

When it then comes to the input Xin to integrator 2, one can see that Xin is 
delayed with a whole clock period compared to X2. This means that the way 
to realize this connection is by inputting it into the sample phase of integrator 
2. One can now realize that integrator 2 samples Xin t time units later than 
integrator 1 and a Sample & Hold circuit at the input of the modulator is 
therefore required.

Now it is time to realize the addition between integrator 2 and the quantizer 
and since there are no delay elements at the input of this addition it would be 
good to use the first model with no delays which is described in chapter 4.4.6. 
The way to choose the trigger signals for this circuit is to perform the addition 
during the first phase were X2 is stable, since there is no delay between X2 

and Y, which means that Y has to be stable at least during the later phase when
X2  is stable.  This can been seen in Fig. 4.20 where the output of the this 
addition has been called X3.  
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Figure 4.20: Modified schedule with trigger signals and signal X3. 

The next step, before we construct the feedback paths, is to connect the quan-
tizer to the circuit. The way of constructing the circuit can differ a little bit 
depending on the choice of quantizer, but here it is assumed that the quantizer 
is a latched comparator were the output signal appears on the negative edge of 
the trigger signal P1a. This is because of the fact that signal X3  needs to be 
stable when latching the quantizer and this can be seen in Fig. 4.20, as signal 
y(n) appears when signal x3(n) is stable. 

It is now time to check the feedback paths and it is proper to start by checking 
integrator 1. One can see in Fig. 4.9 that the quantizer output y(n) has to be 
inputted to produce x1(n) in the integration phase of integrator 1 since the out-
put of the latched quantizer is then stable. This also means that the sign of the 
input will be correct. 

For signal x2(n) which is used to create x1(n) one can choose to either input 
the signal in the integration phase or in the sampling phase of integrator 1. 
Here it is proper to input the signal x2(n) into integrator 1 in the integration 
phase due to the fact that this will mean that integrator 2 will experience a 
smaller load during its integration phase. This connection also fulfills the sign 
conventions of the SFG.

The last step is to  connect y(n), which is the delayed and quantized version of 
X2, to integrator 2. Here we can see that the only solution is to connect it into 
integrator 2's sampling phase. The sign specified of this input according to the 
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SFG is in this case not fulfilled and it is therefore needed to interchange the 
differential input wires.

Figure 4.21: Single-ended version of the sigma-delta modulator.

The fully differential version of the circuit presented in Fig. 4.21 is presented 
in Fig. 4.22.
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Figure 4.22: Circuit implementation of the second-order sigma-delta modulator.

4.5.3 FURTHER DISCUSSION OF ALTERNATIVES IN CASE OF 

HALF UNIT DELAYS

In the case when there is a half unit delay between two output signals there 
are, as stated in the text above, two possible choices of realization. The first 
one is to sample the signal in the sample phase of the integrator and the sec-
ond one is to connect the signal into the integration phase of the integrator. 
Here we will try to explain the difference between the use of these two ways 
of interconnection by setting up a one pole model of each settling senario. 

The model of the integrator with a non-inverting input is shown in Fig. 4.23
and the model of the integrator with one inverting input is shown in Fig. 4.24.
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Figure 4.23: Model of the settling scenario for the non-inverting integrator.

To be able to fully analyze the two given situations, we need to calculate the 
step responses of the two circuits. This is done according to the calculations 
below.

Figure 4.24: Model of the settling scenario for the inverting integrator.
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4.5.4 STEP RESPONSE FOR THE INTEGRATOR WITH ONE 

INVERTING INPUT

(4.61)

(4.62)

(4.63)

It is assumed here that the term  is negligible, since G=1/R, where 
R is the output resistance of the OTA and are supposed to be large. If Vin(t) is 
a step, the corresponding , which gives equation (4.64).

(4.64)

The expression can be rewritten for convenient inverse Laplace transforma-
tion by the following rule:
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4.5.5 STEP RESPONSE FOR THE INTEGRATOR WITH ONE NON-

INVERTING INPUT

(4.68)

(4.69)

(4.70)

As before we neglect . Vin(t) is in this model equal to a step of the 
ratio between the input and hold capacitances, we insert , and 
with similar approach as in the inverting case, the step response can be found.

(4.71)

, (4.72)

4.5.6 SIMULATION OF SETTLING WITH TWO CASCADED OTA’S

This simulation is done to be able to show that it is better to have at least half 
of a delay at every integrator input than to have no delay in between two inte-
grators. The later case will lead to a situation where two cascaded OTA’s have 
to settle in one half period. The simulation model is built of the one-pole OTA 
model shown in Fig. 4.24, here two of those have been cascaded. This means 
that the input voltage source of the second OTA has been replaced by the out-
put of the first OTA. Two other simulations with the circuit shown in Fig. 4.24
and in Fig. 4.23 have also been done, with the exact same parameter values to 
show the differences between these three cases.  
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Figure 4.25: Simulated step response for non-inverted, inverted and cascaded SC-
integrators.

The one of the three simulations that has the fastest settling time is the non-
inverting integrator and it is followed by the inverting integrator, which settles 
nearly as fast if one is looking for a small settling error. The slowest settling 
time by far, is the system with the two cascaded OTA’s, and that is why this 
case has been neglected in this report. Worth mentioning here is that, for the 
inverting integrator, the input step voltage has been adjusted to a negative step 
voltage for a better plot. 

4.5.7 CONCLUSIONS

According to the the analytic expressions for the step responses of the settling 
scenarios for the inverting and non-inverting integrator, there is no clear 
answer to the question which circuit settles fastest. After analyzing some sim-
ulations with the same values of the constants, one could say that if the input 
and hold capacitances have the same value and the input capacitance of the 
second integrator is significantly bigger than the load capacitor of the first 
stage, it would be better to have an inverting input. Though, if there is no 
extra load capacitor at the output of the first integrator, it is much better to use 
a non-inverting input which samples the signal. This input is faster without 
any load and can accept an input signal which is not stable.
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So finally the conclusion is to take the design issues of the OTA into account 
when choosing how to implement the circuit. If, for example, one knows that 
an uncompensated or lightly compensated OTA will manage to meet the 
requirements of the circuit, the capacitive load will be rather small and it 
would then in most cases be better to use the non-inverting input.
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5 

NOISE SOURCES IN SC SDM’S

The dominating noise sources of a differential SC-realization of a sigma-delta 
ADC are quantization noise, thermal noise and flicker noise. Quantization 
noise can be  reduced by high oversampling ratio or modulator order, while 
thermal noise effects are reduced if large capacitor values are used or the sig-
nal power is strong. This gives a trade-off between speed, power consumtion 
and accuracy. Flicker noise can be prevented by special techniques. 
The problem with clock-feedthrough and charge injection, that can occur in 
transistor switches, should be prevented by proper swich configuration. These 
and other noise sources, such as power supply noise and substrate noise, are 
well suppressed by differential design and can be included in a noise margin 
in estimations. 

5.1 NOISE BUDGET

The obvious noise source of every ADC is the quantization noise. However, 
with the noise-shaping sigma-delta modulation this noise source is well con-
trolled, and a proposal is that the thermal noise will be allowed to degrade 
SNR the most. The less one has to suppress thermal noise, the smaller capac-
itor values are needed. One wants to avoid unneccesarily large capacitor val-
ues, which otherwise would mean unneccesarily large chip area and slow 
circuits, or high power consumtion. 

A proposed noise budget from[1] allows the thermal noise power to be 75% 
of the whole degradation of SNR, the quantization noise power to be only 
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5%, and then a good 20% margin for various additional noise sources. Aim-
ing for this budget, given a SDM and a required SNR one can consider noise 
proportions as follows.

SNR is the signal-to-noise ratio, where the noise power sums up from its 
three sources, quantization noise, thermal noise and a noise margin. 

(5.1)

(5.2)

By simulating a mathematical model of the circuit one can get an SNR unaf-
fected by everything but the quantization noise, i.e. the signal-to-quantiza-
tion-noise ratio, SQNR. Now, the quantization noise power for the simulated 
circuit is given by

(5.3)

With the quantization noise being 5% of the noise budget, the total noise 
power will be 20 times the quantzation noise. If this holds to get the wanted 
SNR, thermal noise power can be allowed to a quantity of 15 times the quan-
tization noise. 

With the quantization noise part of the total noise fixed to 5%, the SNR will 
be propotional to the SQNR, as

(5.4)

Since , the SNR in dB becomes

(5.5)

The conclusion is that a margin of 13 dB has to be achieved when simulating 
the ideal circuit, if one wants to follow the proposed noise budget, where 
quantization noise is 5% of total noise. Otherwise the budget has to be modi-
fied in order to make the specific circuit reach the required SNR.

If the noise margin is supposed to be 20% of the total noise, the following 
expression for thermal noise power received from (5.2) will enable the proper 
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SNR:

(5.6)

EXAMPLE

Assume that the required SNR is 60 dB, i.e. 106 times more powerful signal 
than noise. The signal swing of the circuit is 0 to 3.3 V but differential, which 
gives a full-swing signal of -3.3 to 3.3 V, i.e. maximum amplitude of 3.3 V. 
The system is fed with a sinusoidal input with 61% of full-swing. The signal 
power is 

 [V2] (5.7)

Desired SNR is reached if total noise is no more than

(5.8)

Now, say the simulated SQNR reaches 70 dB. We know that this can not ful-
fill the budget where quantization noise is 5% of total noise, since SNR then 
would be  dB. Still, a close enough distribution of noise sources 
can be made. 

Power of the quantization noise is

(5.9)

From (5.6), the maximum allowed thermal noise power will be

(5.10)

This results in a noise budget of 10% quantization noise, 70% thermal noise 
and 20% noise margin. 

PN T
PN tot

PM– PN Q
– 0.8PN tot

PN Q
–= =

PS

3.3 0.61⋅( )2

2
----------------------------- 2≈=

PN tot

PS

SNR
----------- 2 10

6–⋅= =

70 13– 57=

PN Q

PS

SQNR
---------------- 2 10

7–⋅= =

PN T
0.8PN tot

PN Q
– 0.8 2 10

6–
2 10

7–
1.4 10

6–⋅≈⋅–⋅ ⋅= =



60 On the realization of switched-capacitor integrators for sigma-delta modulators

5.2 THERMAL NOISE

Thermal noise in MOS transistors causes a small variation in the drain current 
of the transistor, and can be modeled as a voltage source in series with the 
transistor, with power spectral density evenly spread over all frequencies, i.e., 
white noise. [2]

When analyzing transistor switches as in SC-integrators, one common assum-
tion is that the transistor can be replaced by a resistance during its conducting 
time period and open circuit during its non-conducting period. The resistance 
is called the on-resistance Ron and has the thermal noise voltage source in 
series. [5]

Thermal noise voltage of the on-resistance is white and have the power mag-
nitude 4kTRon [V2/Hz], where  [J/K] is the Bolzmann constant 
and T is the absolute temperature of the device. This means that its power 
spectral density (PSD) is

(5.11)

5.2.1 EXAMPLE: THERMAL NOISE IN AN SC-INTEGRATOR [5]

Figure 5.1:  Non-inverting SC-integrator.

To study the noise effects in a SC-integrator, we shall follow calculations 
made in [5], for a single-ended integrator with one non-inverting input. 
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INPUT-REFERRED NOISE

Figure 5.2: Noise analysis for the sample phase of a non-inverting integrator.

The thermal switch noise over the capacitor C1 in Fig. 5.2:a has contributions 
from vn1 and vn3, which are uncorrelated and thus may be added together to 
the equivalent noise voltage source vn in Fig. 5.2:b. Assuming Ron1 and Ron2 

are equal, the noise voltage across C1 for the integrator’s sample phase will be

, (5.12)

(5.13)

If Sn,i(f) is the PSD of noise voltage source i, and Hi(f) is the expression for 
voltage over a certain capacitor originated from noise source i, the PSD 
across the capacitor is given as

(5.14)

Thus, the PSD of thermal noise over C1 for the sample phase is found by the 
PSD of the equivalent noise voltage source vn, multiplied by the magnitude 
response from source to C1 in square.

(5.15)

Integrating SC1 over all frequencies gives a mean-square value of the thermal 
noise over C1, also referred to as the total noise power, for half the clock 
period.
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(5.16)

The thermal noise over C1 of the sample phase is thus independent on the 
switch resistances. The possible ways to suppress the noise are to keep tem-
perature low, and foremost to chose a high value for the capacitance. 

Figure 5.3: Noise analysis for the integration phase of a non-inverting integrator, 
with one-pole model of the OTA.

For the integrating phase, Fig. 5.3:a, the noise over C1 depends also on ther-
mal noise of transistors in the OTA. The switch thermal noise can again be 
combined to a common noise voltage source as in Fig. 5.3:b. One should 
know that the one-pole model of the OTA is a heavily simplified scenario, and 
even more simplification is now done by assuming . This is true for 
an ideal OTA, where RL is infinitely large. RL is supposed to be large, but to 
say it can be infinite is a rough approximation. With this assumption the cur-
rent gmv flows through the switch-resistance and C1.
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Elimination of V in (5.17) and (5.18) will give an expression for the noise 
voltage across C1 for the integrating phase of the integrator:

(5.19)

With this, the PSD of thermal noise over C1 for the integration phase is given 
by

(5.20)

Missing here is the PSD of the OTA thermal noise. This depends on the input 
stage of the OTA. The line of reasoning in [5] reaches the result that this noise 
mainly contributes from two transistors, if the input stage of the OTA is a dif-
ferential pair. These are modelled with noise voltage sources with PSD 

 at the gates. The PSD of the OTA thermal noise is then supposed 
to be

(5.21)

Total noise power over C1 for the integrating period is given by integrating 
 (5.20) for frequencies zero to infinity:

(5.22)

One can see that if  is large, that is, if , then the switch noise 
become , and the OTA noise can be neglected. But if it is the other way 
round, if  is small, the OTA noise will be most significant. In later cal-
culations,  will often be assumed. This gives the least thermal noise 
for a given capacitor size, but requires sufficient large current throw the OTA. 

Total thermal noise power of the whole clock period over C1 adds together 
from the two phases:
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, (5.23)

What is done here, is that the input-referred thermal noise power in a circuit 
has been determined by the following procedure:

Define noise voltage sources, set other signals to zero and calculate expres-
sions for noise voltages over a specific capacitance. From this PSD over the 
capacitance is found as the square of the absolute value of the voltage across 
the capacitance, where every noise voltage source in square corresponds to 
the PSD of that specific source. Integrating the PSD over frequencies from 
zero to infinity gives the total noise power. 

When the circuit works in several phases, this derivation is done for each 
phase, and in the above case of a two-phase SC-integrator the contributions 
from each phase adds to each other, because the affected node right to the 
capacitor senses all noise of both phases. 

OUTPUT-REFERRED NOISE

If we chose to determine total noise voltage on capacitor C2 instead of C1, the 
result would have been the output-referred noise voltage, determined by both 
capacitor C1 and C2. In [5], this result instead comes from the following dis-
cussion. 

The mean-square thermal noise voltage from (5.23) corresponds to a mean-
square noise charge in C1 of 

, (5.24)

All noise charge also reaches C2. The two capacitors senses same noise in the 
integration phase, where they are connected in series, and also the contribu-
tion from the sample phase is then transferred from C1 to C2. Thus, if the 
assumtion  is made:

(5.25)
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(5.26)

Equation (5.26) shows the output-referred thermal noise power from one inte-
grator input. 

The gain of the integrator is determined by the quotient , as shown 
in Chapter 4.4. If the output-referred noise power is divided by the gain in 
square, the input-referred noise power is again given. Equation (5.27) gives 
the same expression as (5.23).

(5.27)

MORE THAN ONE INTEGRATOR INPUT

If there are several inputs to the integrator, they all contribute with the 
approximate mean-square noise charge 2kTC1,i for one whole period. The 
mean-square noise charge in the output capacitor becomes

(5.28)

This means that the output-referred thermal noise power, assuming 
, will be

(5.29)

To instead refer this thermal noise power to one input, one have to divide it by 
the gain from that input to the output, , in square. 
Equation (5.30) gives that the input-referred thermal noise voltage is only 
depending on temperature, the chosen input capacitor and the integrator’s 
gain coefficients. 
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It is possible to chose C1,i so that the maximum thermal noise power is not 
higher than allowed, and then fixed values for C2 and other input capacitors 
are given. The higher the ratio  is, the lower value for C2 will be 
required for the circuit, given a value of C1. Now, if it is possible to scale up 
the coefficient ai, that will be desirable to minimize total capacitor size of the 
SC-integrator. 

If the coefficient ai is scaled up with S, it is the same as scale down C2 by S.

(5.31)

In sigma-delta modulators of order higher than one, the first integrator is the 
most critical one in aspect of thermal noise. This is due to the noise-shaping 
nature of the modulator, and will require the input capacitors of the first inte-
grator to have larger value than any other capacitors, from noise view. There-
fore, if one can scale up the capacitor ratios in the first integrator, and then 
scale down the capacitor ratios in the next integrator, one get smaller value 
for the capacitor C2 in the first integrator, and thus save chip area. One instead 
will get larger values for the capacitor ratios in the second integrator, but here 
the input capacitors can be much smaller than in the first integrator, and the 
total capacitance quantity will be smaller. 

5.2.2 GENERAL METHOD FOR THERMAL NOISE ESTIMATION

The procedure described for calculating noise in an SC-circuit is a general 
method, that can be as accurate as needed, depending on how many noise 
sources one includes. 

For each phase of the period, the circuit is drawn with on-resistances instead 
of conducting switches, and open circuits instead of non-conducting 
switches. The operational amplifier has to be replaced by, for example, a one-
pole model. Of course, more sophisticated is the two-pole model, but also 
harder to work with. Equivalent noise voltage sources are inserted in the cir-
cuit, other input signals are set to zero. 

Now an expression for the voltage over the desired capacitor is determined. If 
the chosen capacitor is the hold capacitor, the final result will be output-
referred, and if the chosen capacitor is one input capacitor, the result will be 
referred to that input. 
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The expression of the noise voltage across the capacitor will consist of noise 
voltage sources multiplied by transfer functions. Noise PSD over the capaci-
tor will be given by PSD of each noise voltage source times the magnitude of 
the corresponding transfer function squared. 

Mean-square noise voltage over the capacitor is found by integrating its noise 
PSD over all frequencies. This is the total noise power of the present phase. 
Total noise power of the whole clock period adds up from every phase. 

The noise calculations in this chapter have concerned thermal noise in a sin-
gle-ended SC-circuit. With a fully differential implementation, the number of 
transistor switches as well as capancitances are doubled, and so are the power 
of the thermal noise. One has to multiply the single-ended noise power by 
two, to get the noise power of the corresonding fully differential circuit.

One should remember that differential implementation also means that the 
signal swing can be doubled, giving that the signal power becomes four times 
the case of single-ended implementation. Thus, a differential design is prefer-
able because it will reduce thermal noise compared to signal power. 

5.3 FLICKER NOISE

Intrinsic noise in CMOS devices caused by trapping and release of charge 
carriers is called flicker noise or 1/f-noise. This brings low-pass shaped noise 
into the drain current. Its power spectral density is approximately propotional 
to 1/fa, where f is the frequency and  [2].  

Flicker noise power is also proportional to 1/(WL), i.e. inversely proportional 
to the channel widht and length of the MOS transistor. Large transistors 
causes less flicker noise. 

[1] clames that flicker noise in SC-switches are negligible, since the current 
flow in short pulses, and flicker noise occurrs at long intervals. Problems 
should only occur in active blocks. Therefore, it is good to have large sized 
transistors at OTA inputs. By the difference in PN-junctions, for some tech-
nologies PMOS transistors are less distorted by flicker noise than NMOS. [3]
If it is the case for the technology one is going to use, the OTA should prefer-
ably be designed with PMOS transistor at its input. 

a 0.8 1.3,[ ]∈
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If required, there are some known techniques to further reduce the flicker 
noise effect in operational amplifiers. Foremost, correlated double-sampling 
(CDS) can be used to reduce effects of not only of flicker noise, but also 
effects of offset voltage and sensitivity to finite DC-gain in the amplifier [7].
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6 

SIZING OF CAPACITORS IN SC SDM’S

The sizing of the capacitors is the first step to be able to realize a fully func-
tional circuit realization of a SDM. This step is relevant due to the fact that 
too small capacitors will introduce unwanted thermal noise at the output of 
the SDM, which might decrease the SNR, and too large capacitors will result 
in increased requirements on the OTA’s due to the larger load. The goal is to 
choose the capacitors to be as small as possible in order to let the OTA’s drive 
the smallest load possible, and to still make the capacitors large enough so 
that the desired SNR is still fulfilled.

The method here is to start by inserting equivalent noise sources at one of the 
inputs of each integrator and to calculate the input-referred spectral density of 
the noise generated inside of the integrator. The next step is to calculate the 
transfer function from each noise source to the output. The last step is to 
mulitiply each input-referred noise spectral density with the corresponding 
transfer function and to integrate this over the frequency band of interest. The 
frequency band of interest is the passband of the modulators STF and the 
result of these calculations will be the noise power at the output of the SDM. 
This resulting expression will depend on the capacitors of each integrator and 
the capacitor sizes will here be adjusted so that the output power is smaller or 
equal to our calculated noise budget.

6.1 EQUIVALENT NOISE MODEL

The first step when trying to estimate the thermal noise at the output of the 
SDM, is to insert equivalent noise sources at one of the inputs of every inte-
grator. Which actual input that is chosen does not really matter since the 
transfer function from the noise source of interest to the output of the modula-
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tor is used to calculate the noise power at the output of the modulator. To be 
able to illustrate this operation the second-order SDM used earlier in the 
report have been used. The SFG describing the modulator can be seen in 
Fig. 6.1 and the result of the operation can be seen in Fig. 6.2.

Figure 6.1: A second-order SDM.

The method used in this chapter when calculating the input-referred noise 
powers of the integrators is assuming that . This means that the 
noise due to the switches is dominating the noise due to the OTA, and that 
this method calculates the input-referred noise power as a noise generated by 
the switches. However, in most cases it is important to optimize the power 
dissipation of the modulator and then one should use the general method to 
estimate the input-referred noise power, presented in Chapter 5. This general 
method does not assume anything, which means that the noise will also 
depend on the design of the OTA, and an iterative design flow will therefore 
be required in order to obtain the minimum power dissipation. 

The total mean-square noise charge generated by a SC-integrator with one 
input is , where Cs is the sampling capacitor of the integrator. It 
is common that integrators have several inputs, which often result in several 
sampling capacitors. This can for example be seen in Fig. 6.3. Since the ther-
mal noise generated at the different capacitors can be seen as uncorrelated 
noise sources, it is possible to add the different mean-square noise charges 
generated by each capacitor according to equation  (6.1). The index i is the 
index of all the sampling capacitors of the circuit.

(6.1)

Ron gm 1»⋅

qe

2
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qe

2
2kT C i

i
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In order to calculate the input-referred noise power, one needs to start with 
calculating the output-referred noise power. This is done by transfering the 
mean-square noise charge to a noise power over the output capacitor Ch. The 
expression for doing this is shown in equation (6.2). 

(6.2)

Finally, the input-referred noise power is obtained if one divides the input-
referred noise power with the gain, from the noise source to the output of the 
modulator, to the power of two. The resulting input-referred noise power is 
shown in equation  (6.3), where the input capacitor is assumed to be Ck and k
is the index of the sampling capacitor where the equivalent noise source is 
added.

(6.3)

6.2 TRANSFER FUNCTION FOR THERMAL NOISE

To be able to estimate the noise power at the output of the modulator, one 
needs to calculate the transfer functions from the different noise sources to 
the output. This is done by creating a linear model of the SFG where the 
quantizer is removed due to the fact that the quantization error and the input 
signal is considered to be zero when calculating the transfer function from the 
different error sources. The second-order SDM, which has been used as an 
example troughout this report, has been used to illustrate this. The simplified 
version of the SFG which is used when calculating these transfer functions 
can be seen in Fig. 6.2.
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Figure 6.2: Simplified SFG representing the second-order SDM.

Equations (6.4), (6.5) and (6.6) are given from the SFG shown in Fig. 6.2. All 
three noise sources are included in these equations.

(6.4)

(6.5)

(6.6)

Equations  (6.4),  (6.5) and  (6.6) give:

(6.7)

The last step is to set  and  in order to get H1(z),  and 
 to get H2(z) and  and  in order to get H3(z). H1(z) is the 

transfer function from the error source vn1 to the output of the modulator, 
H2(z) and is the transfer function from the error source vn2 to the output of the 
modulator and H3(z) and is the transfer function from the error source vn3 to 
the output of the modulator.

(6.8)

(6.9)
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(6.10)

The three equations  (6.8),  (6.9) and  (6.10) are the transfer functions from 
the three noise sources inserted in the SFG in Fig. 6.2 and these equations are 
going to be used to calculate the total noise power due to thermal noise at the 
output of the modulator in section 6.4.

6.3 NOISE AT THE OUTPUT OF THE SDM

Up to this, the input-referred noise power at the input of the integrators and 
their respective transfer functions to the output of the modulator have been 
calculated. The only thing that remains is to integrate each noise power spec-
tral density in the band of interest. The band of interest is the passband of the 
SDM’s STF and the resulting output noise powers can then be added to 
achieve the total output noise power. In this specific case we are dealing with 
a lowpass SDM which means that the integration is specified by the expres-
sions below. 

The expression for calculating the output noise power resulting from one 
noise source is done according to equation (6.11). Hi is the transfer function 
from the noise source, which generates the noise power vi

2, to the output of 
the modulator and fs is the sampling frequency of the modulator and M is the 
oversampling factor. In order to get the frequency spectra of Hi(z) one needs 
to substitute . 

(6.11)

The resulting total noise power at the output is then calculated according to 
equation (6.12).
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6.4 EXAMPLE: SECOND-ORDER SDM

In this section the noise power at the output of the second-order SDM, which 
can be seen in Fig. 6.1, is going to be calculated. 

6.4.1 THE FIRST INTEGRATOR OF THE SECOND-ORDER SDM

The first step in this example is to insert equivalent noise sources at the input 
of every integrator. This has already been done in section  6.1 and the result 
of this is shown in Fig. 6.2. To be able to calculate the output noise power of 
the modulator one also needs to have knowledge about how the circuit is 
implemented. The single-ended circuit implementation can be seen in 
Fig. 6.3. The multiplications with factor -1 in this schematic is not going to be 
considered in these calculations since they are easily implemented when deal-
ing with a fully differential circuit.

Figure 6.3: Circuit implementation of the second-order SDM.

The noise charge generated by the two sampling capacitors is calculated by 
using equation (6.1) and the result is shown in equation (6.13).
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(6.13)

When the noise power generated by the sampling capacitors in integrator 1 is 
calculated, the output-referred noise power is obtained using equation (6.2). 
The result of this operation can be seen in equation (6.14).

(6.14)

Finally the input-referred noise power is obtained using equation  (6.3) and 
input capacitor were the equivalent noise source is inserted is capacitor Cs11. 
The result is presented in equation  (6.15).

(6.15)

6.4.2 THE SECOND INTEGRATOR OF THE SECOND-ORDER SDM

A faster approach is going to be used when calculating the input-referred 
noise power of the second integrator since the calculations are almost the 
identical. The first step is then to calculate the mean-square noise charge 
which is generated by these three capacitors according to equation (6.1) and 
the result is shown in equation (6.16).

(6.16)

Equation (6.3) and (6.16) gives:

(6.17)

Equation (6.17) now represents the input-referred noise power at the input of 
integrator 2.

6.4.3 THE QUANTIZER ADDITION

The last noise power which is supposed to be calculated is the one in front of 
the quantizer where the equivalent noise source vi3 is inserted. The only dif-
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ference here is that once the mean-square noise charge is declared, the only 
thing that is left is to look at the total noise power which the mean-square 
noise charge causes on the input capacitor Cs31 where the noise is added. This 
is done by first calculate the total mean-square noise charge, according to 
equation (6.1). The result is shown in equation (6.18).

(6.18)

The input-referred noise power vi3
2 is then obtained according to 

equation (6.19).

(6.19)

6.4.4 CALCULATION OF THE OUTPUT NOISE POWER

The last thing to do in this example is to integrate each noise power spectral 
density in order to get the noise power at the output of the SDM. The noise 
transfer functions from the noise sources have already been calculated and 
they are presented in section 6.2. The transfer function according to the first 
noise source vi1 is shown in equation (6.8), the transfer function according to 
the second noise source vi2 is shown in equation (6.9) and the transfer func-
tion according to the third noise source vi3 is shown in equation (6.10). The 
output noise power generated by each noise source is then calculated accord-
ing to equation (6.11).
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The parameter values used to calculate the output presented in Table 6.1.

Table 6.1. Parameter values for the SDM.

These parameter values together with equation (6.20), (6.21) and (6.22)
gives:

(6.23)

(6.24)

(6.25)

Finally, the total output power is computed using equation (6.12), (6.23), 
 (6.24) and (6.25).

(6.26)

6.4.5 CAPACITOR SIZES

Before calculating the different capacitor sizes, one needs to estimate the total 
amount of noise power which is allowed at the output of the modulator due to 
thermal noise. This can be determined according to the model described in 

Cefficient Realization Value

b0 Cs11/Ch1 0.30788

a0 Cs12/Ch1 0.29557

g1 Cs13/Ch1 0.01545

v1 Cs21/Ch2 0.32370

b1 Cs22/Ch2 0.11162

a1 Cs23/Ch2 0.21128

v2 - 2.50850

b2 - 0.47000

M - 32
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chapter 6. In this calculation the noise power due to thermal noise is 
.

The next step is to decide how large parts of the total noise power allowed 
each term shall contribute with. This can easily be seen as an optimization 
problem where several iterations can be needed. The parts of the noise is 
defined according to equation (6.27).

(6.27)

The index i is the index of the different noise sources and in this example the 
indexes are 1, 2 and 3. The equation which then needs to be solved to find the 
capacitor sizes is equation (6.28).

(6.28)

In the current example with three different noise powers according to 
equation (6.23), (6.24) and  (6.25), equation (6.28) gives:

(6.29)

(6.30)

(6.31)

In this example k1, k2 and k3 are chosen to be:

(6.32)

(6.33)

(6.34)

The values of ki can be changed to allocate different amounts of the noise 
budget to different noise sources. This problem can be seen as an optimiza-
tion problem where one migth be able to find a optimal solution for the small-
est power dissipation or area. The coefficient ki together with equation (6.29)
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, (6.30) and  (6.31) and  gives the capacitor values:

(6.35)

(6.36)

(6.37)

With the capacitor relations showed in table 6.1 and equations (6.35), (6.36)
and (6.37) the rest of the capacitor values can be calculated.

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

6.4.6 CAPACITOR AREA DEPENDING ON ALLOWED NOISE

Another way of choosing the capacitor sizes is by defining an optimization 
problem where the summation of all the capacitor values in the circuit is 
assumed to be proportional to the area of the circuit. The assignment is then 
to choose the capacitor values to fulfill equation (6.46) and to minimize the 
summation of the capacitors according to equation (6.45). One also need to 
consider that the noise due to thermal noise is not too large and the criteria for 
this is given by equation (6.46), where Nk

2 is the noise power at the output of 
the modulator generated by a specific noise source and Nt0

2 is the total 
amount of noise power due to thermal noise allowed at the output of the mod-
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ulator.

(6.45)

(6.46)

The last thing that limits this optimization problem is that the capacitors can-
not be to small since the fact that the switches in the modulator have a limited 
off-resistance. This means that leakage current will occur which will mean 
that charge will be lost from the sampling capacitors in between the sampling 
and integration phase when all of the switches are non-conducting. This 
parameter have to be chosen individually for each capacitor, since they in 
most designs have different amount of switches connected to each capacitor.

The optimization problem corresponding to the second-order sigma-delta 
modulator presented in this report can be formulated according to the equa-
tions below. The minimum size of the capacitors have here been chosen to be 
the same for all of the capacitors and the value is Cmin.

(6.47)

(6.48)

(6.49)

6.4.7 CONCLUSION

One can see by looking at equation (6.26), that the noise power at the output 
of the modulator in this example is dominated by the noise produced in inte-
grator 1.  This is beacuse of the fact that every noise source is damped by the 
gain of the integrators before the noise source and it means that the capacitors 
in integrator 1 will be the largest ones. Worth mentioning here is that the 
result presented in equation (6.26) is when dealing with a single-ended cir-
cuit. If one want to expand this theory to apply to differential circuits, one 
only need to multiply the resulting noise power in the single-ended case by a 
factor 2 since differential design have twice as many capacitors and switches.
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7 

OTA SPECIFICATIONS FOR SC SIGMA-

DELTA MODULATORS 

7.1 OTA SPECIFICATION

This chapter is supposed to explain a method to in a structured way set the 
requirements on a OTA which should be used in a SC-integrator. The purpose 
of setting the requirements as precise as possible is to optimize the power dis-
sipation of the OTA. The parameters which are supposed to be set is unity-
gain bandwitdh wu, Slewrate SR, phase margin φm, DC-gain a0, and output 
range.

The actual SC-design of the integrator, were the OTA is used, has to be speci-
fied since the startpoint of this analysis is the load of the OTA. Lets look at 
the integrator in Fig. 7.1. It is possible to represent this integrator as a model 
with the parameters gain and feedback factor β, as showed in Fig. 7.3.
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Figure 7.1: Equivalent circuit of SC-integrator for calculation of β.

To be able to calculate the feedback factor β, one needs to look at the at the 
schematic representation of the integrator in Fig. 7.1. The feedback factor for 
this particular configuration is defined as:

(7.1)

A more general expression for β for a SC-integrator with n inputs can be seen 
in equation (7.2) and the corresponding modulator can be seen in .

(7.2)

Figure 7.2: Equivalent SC-integrator with n inputs for calculation of β.
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The feedback factor β will later be used to estimate the the phase margin for 
optimal settling according to the method suggested by [9].

Figure 7.3: Model of a SC-integrator.

7.1.1 DC-GAIN REQUIREMENTS ON AN OTA

The first parameter which is to be decided is the DC-gain of the OTA. This 
can be done by setting up a model of how the DC-gain affects the output of a 
SC- integrator. The first thing that needs to be done is to specify the function 
of an OTA with limited DC-gain and this is shown according to 
equation (7.3). A0 is the DC-gain, Vin

+ and Vin
- is the inputs and Vout is the 

output of the OTA.

(7.3)

The obtained transfer function of a SC-integrator with n inputs using 
equation (7.3) is presented in equation (7.4), with α and β according to 
equation (7.5) and equation (7.6). kn is a variable which decides if input is an 
inverting input(kn = 0) or a non-inverting input(kn = 1).
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Figure 7.4: SC-integrator with n inputs.

The resulting model of the integrator can be seen in Fig. 7.5 and the idea is 
that this model shall be used to simulate the modulator in matlab with differ-
ent values on the DC-gain A0  in order to determine the requried DC-gain of 
the different OTA’s used to implement the modulator.

Figure 7.5: SFG describing the integrator. a) Variable DC-gain A0.b) Ideal model.

7.1.2 REQUIREMENT OF SETTLING ERROR

To be able to estimate the phase margin for optimal settling one needs to 
know the maximum settling error which is tolerated in order to fulfill the 
requirements on the SNR. This is done by simulating a model of the system 
with variable DC-gain, for example in Matlab,  where the maximum settling 
error is specified and the output error is measured by observing the SNR. The 
output of such a simulation can look something like in Fig. 7.6. 
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Figure 7.6: SNR depending on settling error.

In Fig. 7.6 one can see that the settling error cannot be larger than 0.2% if the 
system is supposed to perform over 64 dB SNR. This design parameter  is 
called error bound and is later used to obtain the phase margin for optimal 
settling.

7.1.3 PHASE MARGIN FOR OPTIMAL SETTLING

The method for finding the phase margin for optimal settling is based upon a 
time-domain analysis of an under-damped system decribed in [9]. The result 
of this analysis is the optimal phase margin for a SC-integrator with specified 
feedback factor β and a specified error bound D. The expression for the opti-
mal phase margin is defined by equation (7.7).

(7.7)

The pole separation factor is defined by the two poles w1 and w2 according to 
equation (7.8).
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(7.8)

What is also given out of this theory is that one can also obtain the pole sepa-
ration factor from the phase margin and this is done according to 
equation (7.9). 

(7.9)

7.1.4 SLEWRATE AND OUTPUT RANGE

When it comes to specifying slewrate, there are several different methods of 
doing this. The method suggested by [1] is just to allocate 25% of the total 
settling time, which is half the time of a clock period, for slewing. What is 
left is only to divide the worst case step with the allocated time. This gives the 
expression:

(7.10)

Worth mentioning about slewrate is that the chance of that an integrator’s out-
put has to go from Vmin to Vmax or the other way at one time period is most 
unlikely, which basicly means that the slewrate according to equation (7.10)
is too large. The needed slewrate seems to be dependent on the modulator 
design and the number of quantization steps in the modulator and until a more 
precise theory is developed the suggested way of deciding the correct sle-
wrate is to simulate and iterate.

When it comes to specifying the output range, the most important thing is that 
one have taken this in account when designing the ADC and setting the scale 
constants. The scaling compensates for non-ideal input- and output ranges 
and almost any ranges are acceptable if the scaling is done well, although a 
good output range is preferable in order to be able to scale the first integrator 
in the modulator as much as possible to be able to minimize the total area of 
the capacitors.
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7.2 SIMULATION OF TWO-POLE MODEL OF OTA

In order to specify the last parameter, which is the unity-gain bandwith wu, 
one has to set up a model which simulates a two-pole OTA. The pole separa-
tion factor is accessable according to equation (7.9), and this will be used to 
decide the second pole of the system, when the first one is specified. 

Figure 7.7: Two-pole model of an OTA.

The two-pole model presented in Fig. 7.7 has the following transfer function:

(7.11)

In equation (7.11) one can start by identifying the DC-gain A0 and the two 
poles ω1 and ω2.

(7.12)
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One can also use equation (7.8), which together with equation (7.11), 
equation (7.12), equation  (7.13) and equation (7.14) gives:

(7.15)

Equation (7.15) gives an expression which only depends on the dominating 
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pole w1. The pole-separation factor γ is a constant which is calculated accord-
ing to equation (7.9). The parameteters needed to simulate the two-pole 
model of the OTA is given by table 7.1.

7.3 EXAMPLE OF OTA SPECIFICATIONS

This example is going to illustrate how to obtain the specifications of the OTA 
which is used to realize the first integrator in the second-order SDM used as 
an example troughout this report. The circuit realization of the first integrator 
can be seen in Fig. 7.8. It is here assumed that the signal X1 is connected into 
the next integrators sampling period, which basicly means that the only load 
which the OTA experiences is the capacitor C4.

Parameter Value

gm1

R1

C1

gm2

R2

C2

Table 7.1. Parameter values of the two-pole OTA model.
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Figure 7.8: Circuit realization of the first integrator of the second-order SDM.

The first thing to do is to simulate the differential equations describing the 
modulator with limited DC-gain in order to find the required DC-gain. The 
same DC-gain has been used for both of the integrators in the second order 
SDM and the result of this simulation can be seen in Fig. 7.9.

Figure 7.9: SNR plotted against DC-gain of the OTA’s.

As one can see, it would be enough to choose a DC-gain of 30 dB, but to have 
some design margin left when the settling fault is added the DC-gain is cho-
sen to be 50 dB for both of the integrators in the second order SDM.

In order to be able to find the optimal phase margin and pole-separation fac-
tor, one needs to start by finding out the feedback factor β for the SDM 
showed in Fig. 7.8. The expression for this can be seen in equation (7.16).



90 On the realization of switched-capacitor integrators for sigma-delta modulators

(7.16)

The modulator coefficients have been calculated earlier in this report and they 
are realized by the following capacitor relations:

(7.17)

(7.18)

(7.19)

Equation (7.16), (7.17), (7.18) and (7.19) gives:

(7.20)

The next thing to be done is to simulate the system in order to obtain the 
allowed settling error of the circuit. This has been done with a DC-gain of 50 
dB and the result can be seen in Fig. 7.10. Lets say that 62 dB of SNR is 
enough to be able to fulfill the specifications of the modulator and this means 
that  is the allowed settling error.
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Figure 7.10: SNR depending on the settling-error in percent.

The error bound  D and feedback factor β is now specified so the phase mar-
gin and pole-separation factor can now be calculated according to equation 
 (7.7) and (7.9).

(7.21)

(7.22)

The thing that is left to do now is to set up the two-pole model of the integra-
tor and to simulate it with the calculated values of A0, γ0 and Rout which here 
is chosen to be 10kΩ. The parameters of the two-pole model is set according 
to  Table 7.1. and the only parameter which is left to variate now is the value 
of the first pole, which is supposed to be changed until one can see that the 
first peak of the settling signal just goes exactly as far as the tolerated limit. 
This is needed due to the theory of perfect settling suggested by [10]. After 
achieving a good settling behaviour  the model of the OTA can be discon-
nected and simulated in order to find the unity-gain bandwith ωu. The 
achieved parameters can be seen below.

(7.23)

φm 61.8°=

ϒ
0

592.9=

A
0

50dB=
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(7.24)

(7.25)

The output range has to be chosen during the scaling of the integrator and if it 
cannot be fullfilled with the chosen OTA-structure the scaling has to be done 
again with another output range in mind. The scaling for this model has been 
done according to the following output range.

(7.26)

7.4 OTA TEST

In order to test our OTA-specifications an OTA was constructed. The only 
problem was that we were not, due to lack of time, able find an OTA-structure 
with the rules of freedom that was requested. The chosen OTA-structure was 
therefore taken from [1], which is an fully-differential folded cascode single-
stage OTA. The advantages with this structure is that it has low power dissi-
pation due to the single-stage design. The drawback is though, that the phase 
margin will always be good and this means that there is not really a point in 
trying to find the optimal phase margin. Instead the main goal of the unity-
gain bandwith simulation was to let the bandwith be low enough to let the 
signal settle within the allowed settling error D during a time of 330 ns, 

which was our allowed settling time when running with 44.1k Samples/sec-

ond and an OSR of 32. This gave us a bandwith of 3.16 MHz with a capaca-
tive load of 2 pF.

ωu 3.13 MHz=

ϕm 60°=

OR 0.4 to 2.9V=
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Figure 7.11: Schematic of the folded-cascode OTA.

After several simulations with the constructed OTA, which can be seen in 
Fig. 7.11, one could see that the SNR of the system was well within range of 
the desired SNR which shows that our estimation of the OTA- specifications 
was correct. The bias current in each branch of this OTA was 16 uA, which 
probably could have been made even lower. Some measured values of the 
SNR at the output of the modulator can be seen in table 7.2. The maximum 
bandwitch according the Nyquist Sampling Theorem is then 

, because the fact that our eample modulator is an low-
pass SDM.

As one can see, the SNR of the simulations is a few dB better than expected 
and this is explained due to the fact that the matlab simulations are pessimis-

Frequency SNR

1 kHz 67.31 dB

5 kHz 70.80 dB

10 kHz 69.77 dB

15 kHz 69.67 dB

20 kHz 67.72 dB

25 kHz

Table 7.2. Measured SNR at the output of the modulator.

44.1 10
3⋅( )

2
---------------------------- 22.05 kHz=
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tic, which means that the resulting SNR always is the worst one that could be 
found.
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8 

CONCLUSIONS

8.1 CONCLUSIONS & RESULTS

8.1.1 SCALING

Scaling is a very important activity when building a SDM and in this chapter 
we suggest a method that is supposed to scale the inputs of the integrators so 
that the chance of clipping at the output of the OTA is reduced. Our simula-
tions showed that clipping at the output of the integrators reduced the SNR 
significantly, so we thought that a scaling method which allowed as little clip-
ping as possible should be best. This particular issue could easily be simu-
lated even further to find out how much clipping an integrator can have before 
it starts to reduce the SNR significantly. This might mean that the first inte-
grators inputs could be scaled up even further which would mean that the 
capacitor sizes, due to the thermal noise, could be reduced and power might 
be saved.

The most important discovery in this chapter is that chip area and power can 
be saved if the scaling is done properly.

8.1.2 METHOD TO REALIZE AN SDM USING SC-NETS

Even though the theory of sigma-delta noise shaping filters are well-known 
since allmost two decades, there are very little litterature with structured 
methology for top-down design. The many trade-offs makes it hard to go 
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right from a mathematical modulator structure down to a realization on cir-
cuit level. 

What is presented in this thesis, is a suggested design flow from a given sig-
nal flow graph down to a switched-capacitor circuit realization. We have not 
seen anything similar in any litterature we have read.

With this design flow, the final realization are known allready at SFG level. 
When chosing the modulator structure, aspects as capacitive load at OTA out-
puts, requirement for external S&H, time given for quantization and DAC can 
be considered. Once understood, the approach is intuitive and straight-for-
ward.

Some conclusions concerning the possibility of using inverting or non-invert-
ing input to a differential SC-integrator are made. One can be able to avoid 
driving extra load at an integrators integration phase by using the best-suited 
coupling (inverting or non-inverting) into the following integrator. The best 
choice depends of the size of the capazitors, which is depending of coeffi-
cients, scaling and thermal noise. The research and simulations on this sub-
ject has to be continued to get accurate results. 

8.1.3 NOISE ANALYSIS AND CAPACITOR SIZING

Oppertunities for formulation of optimization is what characterizes the inves-
tigations of capacitor sizing depending of thermal noise. The first oppertunity 
is when dealing with the noise budgets for thermal noise, quantization noise 
and the noise margin for other noise sources. It would be very interesting here 
to see if we would be able to save power by choosing to construct a better 
modulator, which produces a smaller amount quantization noise, and to have 
a larger budget for thermal noise.

The second opportunity to formulate an optimization problem is a variation 
of the one that is already formulated in Chapter 6. The only difference is that 
it would be interesting to formulate some kind of cost function which 
describes the power estimation of the different OTA’s depending on the 
capacitor sizes. 

A thing that we can feel is missing here is a detailed analysis of the switches 
in the design that specificly focusing on the leakage currents.
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8.1.4 OTA SPECIFICATIONS

The OTA-specifications seems like an area where over-estimation of the 
requirements are very common. Since the OTA’s is the main power consum-
ers of a SDM it is also very important to optimize the requirements to be able 
to have as low power disspation as possible. 

We feel that more extensive testing of the constructed OTA would have been 
needed to really prove our point and we think that even our estimation of the 
demands are a little bit over the top. Still, the methodology suggested in this 
chapter is something that we have not seen anywhere else and it proves that 
the requirements of the OTA’s in SDM’s can be turned down a few notches.

Another thing that has to be taking into account into this analysis is the noise 
of the OTA, for example the flicker noise.

8.2 FURTHER WORK AND DEVELOPMENT

The main thing of further work is to look at the other parts of the SDM which 
is the ADC and DAC. The only thing that reamins in order to build a com-
plete SDM is to analyze at the switches in the design. Another component, 
which is not needed in all structures, is the S&H and this component would 
also have to be analyzed in order to build a SDM, especially when it comes to 
bandpass versions of the system.

Other things that would be interesting to evaluate further is the different opti-
mization problems described in section 8.1 and to really investigate the dif-
ferent OTA structures to find out the benefits and drawbacks of them.

Finally, the hardest problem is not to build SDM’s which can produce good 
results, but to make them power efficient and this is also the main problem 
when building sigma-delta ADC’s and the main focus of further research.
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