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A £tudy of the problem of recognizing the set of primes by automata is presented.
A simple alpehiraic condition is derived which shows that peither the sct of primes nor any
subset of the set of primes can be accepted by a pushdown or finite automaten.
Inview of this result aninteresting open problem is to determine the “weakest' automaton
wtich can accept the set of primes. It is shown that the linearly Lounded automaton can ac-
copt the ret of primes, and it is conjectured that no automaton whoso memory grows less
repidly can recoruize the set of primes. One of the results shows that if this conjecture is true,
it canrat be proved by the 1se of arguments about the distribution of primes, as described
Ly the Prines Number Theorem. Sone relations are established between two clnssical conjec-
tures in number theory and the minimal rate of memory growth of automata which can recog-
pize the set of primes.
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1. Introduction

Several interesting results and problems in automata theory have originated in
attempts to characterize the computational power of automata which generate or
recognize sets of numbers that have been studied extensively in mathematics.
Results of this type dealing with the algebraic and transcendental numbers, as well
as with primes and perfect squares, are deseribed in [1-7). Among the scts of integers
studicd in mathematics, there are several that have well-known density properties.
Ou:e such set is the set of primes whose Censity is deseribed by the celebrated

Prave Nusper Turones. If x(n) denoles the number of primes not larger than
n, then

lim =(n)- nn_ 1.
o n
Thus to show that a certain automaton cannot accept the set of primes it is suffi-
cient to show that it cannot accept any set of numbers with the above density, This
approach has recently been used by Minsky and Papert [5), who derived several
properties about the density of sets of numbers nccepted by finite automata and
using these results showed that a finite antomaton eannot necept the set of primes.
In this paper a simple alzebraic eandition is derived which shows that no infinite
got of primes can be aceepted by a pushdown automaton. This answers a problem
raied by Niehy and Papert [5] and strengthens one of their results, "The samo
result using different teehiniques was derived independently by Schiitzenberger (7).
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Recognition of Primes by Automata 33

An interesting open problem is to determine how much memory is required to
recognize the set of primes. We show that a linearly bounded automaton can recog-
nize the set of primes and conjecture that no automaton whose memory grows more

“slowly can recognize the set of primes. One of our results shows that if this coniee-
ture is true, it cannot be proven by the use of density arguments. We also estatlish
some relationships between some classic conjectures in number theory and the rate
of memory growth of automata which can recognize the set of primes.

2. Derivation of Algcbraic Result

In this scetion we derive a divisibility result about sets of numbers which have a
periodic part in their representation.

Let a; denote a binary string and ai the integer represented by the binary string
a; . Lot of denote the binary string obtained by concatenating ¢ times, g > 0, the
string aq ; and let 1(a;) denote the length (number of digits) of the string aq.

In the following proof we make use of a special case of Fermat's Theorem, which
states:

If pisaprimeand p > 2, then 2" = 1 (mod p).

Turonres 1. Let p be a prime with p > 2 and let ay, a1, a3 be binary strings (ay
slarting with a one) such that 2"*Y £ 1 (mod p). Then avo!™'ay = @ (med p),

" Proor. Observe that

-1 Hay) -1 ay)4(p=—1)1(ay)
ol e = ey 4 28l 4 QeI

-a + 2:(-.)[9_, + 2:(-,)?_’ o 2(,—:)1:-.)9_!] + 21(..)“,-1)1(-.)3_‘

Hay) (p=1)

-t 2:(-.);.2 [2 —l l:l + 2:(-,)4(,—1}((-,)5_1.

DUCTI
By Fermat’s theorem we obtain that 2/“?™" & 1 (mod p), and therefore in the
last cquation the middle terin is congruent to zero and a factor of the last term is
congruent to one modulo p. Thus el a; = a3 + 2'"Vay = ¢as (mod p), as
was to be shown. - -

Using the same technique and expanding two terms in a geometric series to show
that they are zero, we obtain our-next result.

Conovrany 1. Let p be a prime larger than two and lct the binary s'rings o, , oy,
oy, o, ag be such that 2'°Y % 1 (mod p) and 2'* # 1 (mod p). Then

»-1 »—1
aar_mal o © s (mod p).

We now restate our results in a form which can be used directly to show that no
infinite subsct of the set of primes can be necepted by a pushdown or finite automa-
ton,

COROLLARY 2, Ifp = onan'ay i3 a prime larger than two and 2" W 1 (mod ?),
then
aa'ol oy amlo; 1m0 (modp).

Conotrany 3. If p = f:llfY_z_.g;‘ljji:'_li is a prime larger than two, and 2" # 1
(mod p) and 2" 34 1 (mod p), then

el - L
ey a7 g al ag ¥ aag salay 3 0 (mod p).
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384 J. MARTMANIA AND H. BHANK

3. Application to Automata Theory

It ia known [S] that for every regular ret. B there exista apositive mh';,('r q such that
win K and {(w) > q implices that w = wanuywith w # A and wae w, is in 12, for
koo 1,2, 00, .

Similarly, it i known [S] that for every eontext-free Inngunge L there exists a g
such thut win L and I(x) 2 ¢ implies that w = wawawatrgey with wa 7 Aorw, » A
and wadwardws is in L, for k = 1, 2, -+ - . Furthermore, we recall that the scts
accepted by finite-state machines are regular sets and vice versa. Similarly, it is
known that centext-free languages are churacterized as the sets of strings accepted
by (rondeterminictic) pushdown automata.

We now combine these reaults with our coroilaries to show that no pushdown

utomaton aud, therefore, no finite automaton can aceept an infinite subset of the
set of primes

Tiieorex 2. If P is an infinile subset of 1(0 4 1)* (the set of all finite binary
slrings slarling with one) and w € P implies that w 1s a prime, then I 13 not a context-
Jree language.

Panor. LetB, B C 1(0 + 1)*, be an infinite eontext-free language. Then there
exivts win B such that w = wawaesweaw, withw, # Aorw, # A,and forn = 1,2, --+,
wirs ey isin B \\ cassiume that wy # A and we € A; the other cases are handled
similarly by using Corollary 2 instead of (‘nmllury '3 I.Lt kben positive integer
such that 2"V < w.wz'uw'.'w_. and 2'“Y < wetwawtu wlhch ingures thn‘

AT (mod w.w,"wzw.u Y and 2 £ 1 (mod wawtwaedw,). Thus if

P = w.u-, w,m v wy is & prime, (,oro.lnry 3 implics that

q = wui” u‘aw“’_'w‘ =0 (modp).
Thercfore ¢ is divisible by p and since ¢ and p are in B we see that B cannot be
an infinite subset of the set of primes, as was to be shown.

4. .‘!cmo'ry Reguirements

Since neither the finite automata nor the pushdown automata ean recognize the

set of primes, it remaing an interesting problem to find the “weakest” automaton
. B b
which can recognize the sot of primes,

A natural measure of the computationad power of an automaton is the amount of
memnory it uses, To make this concept precise, we now recall some definitions about
memory-Emited computations from {0},

Ce

il

cra tico-tape T ll’.ll_} machine 3 ; one of the tapes is a read-only input tape
on which, at the gt b of the computation, is written down between endmarkers the
input stritg, and the rending head is placed on the first digit of the input string;
the machine can move the reading head in either direction on this tape but cannot
write on it. On the other tape, referred to as working tape, the Turing machine can
read and write, and at the start of the computation this tape is blank.

A machine operalion consists of reading the tape symbols under the reading heads,
overprinting the symbol on the working tape, moving the tapes independently one
square to the right or left or no move, and changing the internal state.

A set A C I” (I* denotes the set of all finite strings over I) is accepted by M if,
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Recognition of Primes by Automata 385

and only if, A started onte, win 1%, stops in an necepting stato if w is in A and
stops in norejecting state if w s not in A,

Let Ln) be n computable funetion from nonnegative integers into nonnegative
integers, Then we sy that noset 4 s aceepted by Moon L(n) tape if, nnel only if, M
acecpty LU evary input w of length n, noe (), is rejected oF necepted by M
without using more thun L(n) tape squares of the working tupe.

The next resuit is not new and it states that if the available memory grows linearly
with the memory required to represent the input, then the automaton ean recognize
the set of primes.

Turonex 3. The set of primes can be recognized on L(n) = n-lape.

Iroor. (The proof is only outlined.) To construct the desired (deterministic-
incar-bounded) automaton, let M have two separate tape tracks on its working
tape and let 30 at the start of the computation mark off {(w) tape squarcs on its
working tape for input w. Then Af writes successively on the upper track of its
working tape the integers ¢ = 2,3, -+, w; and on its lower track for each integer 1,
M writes suzcessively the multiples ik, k = 2,3, .- , until either 1% = w or the
marked-off working tape is used up. In the first case w is rejected; otherwise the
process is repeated for ¢ 4 1. The computation stops and w is accepted when ¢ = w
is renched. It is scen that M operates on L(n) = n-tape and accepts the set of
primes, as was to be shown.

From previnus work (9] it is known that if 3 recognizes a set 4 on L(n)-tape and

then the set 4 is regular. Furthermore, it is known that there exist nonregular sets
which are recognizable on L(n) = [log log n}-tape. (The symbol {z] denotes the
largest integer less than or equal to z, and log n denotes log; n.)

Since Theorem 2 showed that the set of primes is not a regular set, it is eoncluded
that the growth of the minimal amount of tape to recognize the set of prires (or
any infinite subsct of the sct of primes) must be at least as rapid as
L(n) = [{log log n}. At the same time it scems impossible that the set of primes could
be recognized by an automaton which uses the minimal amount of tape for the
recognition of nonregular rets. After a considerable amount of experimenting and
“intuitive reasoning” the authors eonjecture that the lincarly bounded automaton
is the “weakest” automaton which can recognize the sct of primes. Stated inore
precisely: :

CoONJECTURE. If A 18 recognized Ly M on L(n)-tape and
lim I—‘(i)- = 0,

new 71
then A is not the sct of primes.

The authors also conjecture that there are infinite subsets of the sct of primes
which are casier to recognize than the full sct of primes, but have no conjectures
about the minimal rate of memory growth for the recognition of such rets.

Next it is shown that if the set of primes contains infinitely many primes which
have in their binary representation many consccutive ones or zeros, then a lower

Journal of the Assoolatioa for C ing Maschinery, Vol. 13, No. 3, Juiy 1648
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bound enn be given an the amount of memory required for their recognition, Tho
first result relates this problem to an unsolved problem in number theory.

Turoney 4. If there are infinitely meny primes of the form p = 2" 4 1, then
the act of primes cannot be recognized with 1.(n)-lape auch that

lim L(n) -

== lOogn

0.

Proor. We refer to the combination of the state of Af, the tape pattern written
on the working tape, and the position of the read-write head on the working tapo
as the {ofal slale of the machine. It is seen that for tape length L(n) the machine
with S states and Q different tape symbols can have no more than S-I(n)-Q*™
total gtates, where the factor S accounts for the possible state of Af,  L(n) gives
the aumber of possible positions for the reading hicad, and Q“*™ describes the num-
ber of diferent patterns which ean be written on the L(n) tape squares of the work-
irg tape. For lurge L(n) there is n g, ¢ > Q, such that S-L(n) Q"™ < ¢*™,
Because of the limit condition

there is an N such that n > N implies that S-L(n) QM < q””’ < n. This implics
that on an input stringw = 10:."1, I(w) > n, representing the number ot 41 -
10"7'1, the machine must be at least twice in the same total state every time iy
crosses the run of zeros, If on one such crossing, the total state repents itself after
f(¢ > 1) zeros, then the machine will be in the same total state after crossing the
gequences 107771, r = 0, 1,2, -+ . Since this is truc for cach crossing, we &co
that the machine is not able to distinguish Letween the sequences w = 10°7'1 and
w, = 1077 r = 1,2, 3, -0, Bince after cach traversing of these input
strings, the total state of the machine is the same and thus w is accepted if and only
if w, is uccepted.
Now, using Theorem 1 we see that the sct accepted by 3 on L(n)-tape, with

lim L(n)

new lOZ T

= 0,

cannat he the set of primes, if there are infinitely many primes of the form 2" +1,
as was to be shown,

By the same technique the next result can be obtained.

Conovtany 4. 1S there are infinitcly many primes of the form 2% — 1, where p 18
a prime, then the set of primes cannot be recognized with L(n)-tape such that

U L(n)
m -
w-wlogn

0.

The same reasoning can be used to show that if there are infinitcly many primes
whose binary representation has no more than k zeros.{or k oncs), then tho set of
prizacs cannot be recognized oa tape L(n) with

. Ln
lim '“":)' - 0.

new l'.)‘,( n
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Unfortunntely, it is not known whether any of the above-mentioned propertics
holds for the set of primes, and the first two propertics are classic conjectures in
number theory,

5. Decnsity Considerations

In this scction the distribution of numbers recognized by nutomata is considered,
and it iy shown that these are computationally “weak” automata which can accept
gcts of numbers with the same distribution as the set of primes (as given by the
Prime Number Theorem). This shows that if the conjecture is truc it cannot be
proven by the use of arguments about the distribution of priines.

Forn subsct 4 of 1(0 + 1) let x4(n) denote the number of clementswin 4 such
thnty_ < n.

To prove the next theorem we need the following result from analysis,

Lesma, Ifai,as,ap, ¢+, 18 a scquence of positive numbers such that

Ii'm—a:--a>l,

new Ga )

R 1
f.’f'.'. (-1_..: .Z; G = a—1°
Tm:on):u( §. Thesel A = (w]wC 1(0 + 1)° and w = [I(w) = 1]k for soms
inleger k] is recognizable with L(n) = {log n)-tape and
logs w
im x,(w) Y - 1.
w

wen

Proor. It is scen that I(w) = [log w] 4+ 1, and a straightforward algorithm
shows that the sct 4 is recognizable with tape bound L(n) = {log n). (This can be
done by carrying out division of w by {(w) — 1; this process can be performed on
L(n) = [log n)-tape.)

Next we computo wa(w). Obscrve that

(w) — 1

lim——— w1
e lnggy

and denote [ra(2' — 1) log (2*)])/2" by O.. Then

. b
Oy we -2}: g [I’4(2' - 1) - "4(2'-.l - l)]v
and thercfore

k 13 21-1
O~ s L=

Thus, using tho Jemama with a = 2, we conclude that

lim O, = 1,
Ao
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Tornw2'+r, 0S5 r <2, wohave

raln) = wu(2 = D ~TEL
end thercfore

ra(n)logn ~

- (’ Tl %o) k + log(1 + r2™))(2* + )™

_2*o.+r+1
2+

- [1 + 2_____1 “’;‘2‘2___'; ‘] (1 + log (1 4 r27)"),

From the last expression we sce that

{14 log (1 4 r27*)"

{(n)]
. i ogn
i A\ ) 14 x.
new

as was to be shown,

Nole 1. The above density result differs from the density for prime numbers by
the factor log, e; due to the different buses for logarithma,

lim r(n)

= log, e.
nen Xa(n) &

This factor can be climinated by a somewhat more complicated construction of the
sct 44 and the machine M which reeognizes A: for ench input w, A computes an
approxinmation e of log. 2, using no more than log I(w)-tape, and then accepts w if,
and only if, v is divisible by [e«l(w)]. Since

lim leulw)] 1,
wen Inw

we sce that on L{n) = [log n}-tupe we can recognizo a set of integers with the samo
density as the set of primes,

Nole 2. By an ceven more complicated process, which utiizes ideas developed
in {0} about L(n) = {loz log n)-recognizable scts and which uses properly encoded
markers on the input tape to help check the division process, & machine A cun be
constructed which works on L(n) = log log n)-tape and accepts a sct of integers
with the same density as the set of primes,

From Theorem 5 and the Notes it is scen that if the Conjecture is true, it can-
rot be proven by arguments about the density of the prime numbers as described
by the Prime Number Theorem.

6. Conclusion

In this paper severnd results are derived about the recognition of tho set of primes
by automata. Still the most interesting problem about the “wenkest” automaton
which can reeognize the sed of primes remains open, At the same time it sccms that
in the problem of recugnizing the web of prinied by nutomata wo huve un interesting
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Internction between a elwsical braneh of muthematics and automata theory. It

is our hope that further work may reveal deeper connections and contribute to both
ficlda
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