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ON THE RECONSTRUCTION OF A STAR-SHAPED BODY
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Abstract

The problem is the reconstruction of the shape of an object, whose shell is a surface star-shaped with
respect to a point 0, from the knowledge of the volume of every " half-object" obtained by taking any
plane through 0. Conditions for the existence and uniqueness of the solution are given. The main
result consists in showing that any uniform a-priori bound on the mean curvature of the shell
reestablishes continuous dependence on the data for bodies satisfying a certain symmetry condition.

1980 Mathematics subject classification (Amer. Math. Soc): 53 C 65, 44 XX.

0. Introduction

In the paper [5] P. Funk considered the following problem. Let Q be a solid in R3

and let Q be its boundary. We suppose that fi is a closed surface star-shaped with
respect to a point 0 (see [8]): thus any ray issued from 0 meets fi only once. Any
plane through 0 divides Q in two parts; we suppose that we know the volumes of
both parts for every plane through 0. The problem consists in reconstructing the
shape of Q from the knowledge of such "half-volumes". This problem will be
denoted in the following as Problem (F).

Assuming the point 0 to be the origin of our coordinate system, let $(z) denote
the distance from 0 to the point of fl in the direction z. Thus the points x on fl are
described by the following parametric representation
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244 Stefano Campi [2]

where z is the variable point running over the unit sphere S2 = {z G R3: \z\= 1}.
By introducing the usual spherical coordinate system on S2, $ turns out to be a
function of (0, </>), where 6 is the colatitude and <$> the east longitude of any point
z £ S2. By a solution of Problem (F) we shall mean equivalently the surface i2 or
the corresponding function $.

Setting u(z) = i$3(z), Problem (F) can be expressed by the following integral
equation

(0.1) Lu(z) = ( u{z')do(z')=f{z),
J

where (-, •) denotes the scalar product in R3, da(z') denotes the element of area
on S2 and/is a known function on S2. Actually/(z) is the volume of the part of
Q cut out on the side of z by the plane through 0 orthogonal to the direction z.
We notice that Lu may be regarded as a generalized Radon transform of «;
Problem (F), like several problems of practical interest, falls in the framework of
integral geometry problems. A method of solution for equation (0.1) is described
in [5]: this method is based upon the fact that if u is a solution of (0.1), then
certain averages of u satisfy an Abel equation. The present paper deals with the
ill-posedness of Problem (F), in particular with the lack of continuous dependence
of the solutions upon the data.

Before summarizing our results, we need to recall two simple preliminary
remarks contained in [5].

i) If there exists a solution of equation (0.1), then for every z G S2 we have
(0.2) / ( Z ) + / ( _ Z ) = F ,

where -z is the antipodal point of z and V the volume of Q.
ii) We can decompose u as

u(z) = u(z) + w(z) + ^-,

where

u{z) = \[u{z) - u{-z)}

and

Thus w(z) is an even function on S2 (that is, w(-z) = w(z)) with zero mean value.
One can easily verify that Lw(z) = 0. This means that the component w(z) has
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[ 3 ] Reconstruction of a star-shaped body 245

not influence on the data/(z). Therefore, in order to get uniqueness, we shall deal
only with solutions of the form

(0.3) u(z) = u(z) + k,

where w(z) is an odd function on S2. The constant k will be equal to F/47T.
We shall see in Section 1 that if/belongs to H3/2(S2) (the space of functions

with derivative of order 3/2 in L2(S2)) and satisfies (0.2) then one can construct
for equation (0.1) a unique solution u E L2(S2) having the form (0.3).

According to the uniqueness condition described above, in what follows we
shall restrict ourselves to considering only surfaces 12 whose corresponding repre-
sentation $(z) satisfies $3(z) + <J>3(-z) = constant. Thus, solving equation (0.1)
yields the function 4>(z) and Q can be uniquely reconstructed. Unfortunately,
such a solution S2 of Problem (F) cannot depend continuously on the data / . One
can verify the instability by the following example. Let fin be the surfaces of
revolution represented respectively by the functions

= (3[2 + sin(Hcos0)])1/3;

let Qn be the solid enclosed by fin and un = 7O3. The corresponding "half-
volumes" are expressed by

fn{z) = vn(0) = Am + 2 f Jx(nsmt)dt,

where /,(<) is the Bessel function of the first order. An easy computation shows
that

II/o ~fn\\L"(s2) ^ ° a s « ^ + o o (for any 1 < p < + oo),

while the volume of the symmetric difference between QQ and Qn,

is bounded from below by a positive constant independent of n.
The main purpose of the present paper is to find an a-priori geometrical bound

for the solutions of Problem (F) in order to restore the continuous dependence on
the data. The final result we shall prove (Section 4) is the following: solutions
within any class of C2-surfaces whose mean curvatures are uniformly bounded
depend continuously on the data (in the sense that if Qn, £2 are the solutions
corresponding to the data/„,/ and /„ converges to / in L2(S2), as n -> +oo, then
the volume of the symmetric difference Qn* Q converges to 0, where Qn, Q are the
solids enclosed by fin, Q). This conclusion is obtained in several steps. First of all
(Section 1) we shall show that the stability of the solutions of (0.1) can be restored
if we assume an a-priori bound for ||(-As)"w||L2(S2), where a is any positive real
number and -A5 denotes the Laplace-Beltrami operator on 52. Then we prove
that starting from an a-priori uniform bound for the mean curvature of the
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solutions of Problem (F) we can suitably bound the norms ||(-As)
aM||L2(S2). We

obtain such a result by proving two inequalities:
i) an interpolatory estimate, for 0 < a < 1/4, of ||(-AS)"M||L2(52) in terms of

supzeS21 u(z) | and ||£>H||L.(S2) (Section 2);
ii) an isoperimetric inequality stating that the volume enclosed by a star-shaped

C2-surface can be bounded in terms of the area of the surface and the maximum
of the mean curvature (Section 3).

1. The equation Lu = f

Let M, / G L2(S2). Then u{z) and /(z) can be expanded in a series of
normalized spherical harmonics

+ 00 / +00 /

u(z) = 2 2 u?Yf(z), f(z)= 2 2 ffYr
1=0 n = -l 1=0 n = -l

(1.1)

convergent in L2(S2), where

with .P/XO denoting the associated Legendre functions. Let us verify that if u is a
solution of equation (0.1) then

(1.2) fr
where

(1.3)

•n
3/2

o otherwise.

In order to deduce (1.2), (1.3) we can apply an argument by G. Backus in [1] (see
also [4]). Let zN be the north-pole of S2. One may verify that

(1.4) LY,"(zN) = -

W2/ + 1

o

ifn = 0and/ = 0,l ,3,5,

otherwise
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[s ] Reconstruction of a star-shaped body 247

(use, for instance, 7.126 of [7]). Let z be any point on S2 distinct from zN and let g
be a rotation of R3 which carries z into zN. Setting z' = g(z) gives

Yl"(z)=(1.5)

where

From (1.4), (1.5) it follows that

Tn/2/ + 1

0 otherwise.

The addition theorem for spherical harmonics implies that

(1.7)

Therefore, by substituting (1.7) in (1.6), we deduce (1.2), (1.3).

REMARK. For X = 0, 1,2,..., one has

1/2)

hence, as X -» +oo, #2X+1 is of the same order as K~3/2. This fact can be
expressed by saying that L"1 behaves like (-As)

3/4, a derivative of order 3/2. We
define

+ 00

l=\
V 2 ffY?(z),

a being any positive number. This explains the instability phenomenon noticed
before.

In order to restore the stability we need an a-priori estimate for the solutions in
the form (0.3) of equation (0.1). Let a be a positive number and suppose that the
solution u of our equation belongs to H"(S2), that is, ||(-As)

a/2M||L2(S2) < +oo.
By repeating the procedure of [2], Section 2, one has

(1.8)
\«/2.
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where u{z) = u(z) — UQ/2JW. Since

B2

[/(/+ l ) ] " 3 / 2 < g ^ , for every/odd,*

from (1.8) we deduce the estimate

where/(z)=/(z)-/0°/2VSr.
The above results can be summarized by the following theorem.

THEOREM 1. / / / £ H3/2(S2) and f(z) + / ( -z ) is constant for all z e S2, then
there exists a unique solution u E L2(S2) of equation (0.1) such that u(z) + u(-z) is
constant for all z E S2. Such a solution is given by

/0 +00 2/+1

2w3 / 2 /=0 n = -2l-\

where the f" and Bj are defined respectively by (I.I) and (1.3), and the convergence

of the series is in the L2-sense. Moreover

(1.11)

/o
4a/(2a

2« + 3)

lMli'(S>, < 17T" " ""

provided u<=Ha(S2).

Theorem 1 tells us how we may choose the functional classes for the solutions u
and the data / in order to get existence and uniqueness for equation (0.1).
Moreover, estimate (1.11) implies that in every subset of solutions satisfying in
addition the condition ||(-AS)'*«||L2{S2) < /J, where /} is any fixed constant, the
continuous dependence on the data holds. The remaining part of the paper is
devoted to showing that if we replace the above "analytical" a-priori bound by
one of geometrical meaning, namely a uniform a-priori bound on the mean
curvature of the solutions of Problem (F), then the stability for this problem is
guaranteed. This conclusion is achieved by using the results of the next two
sections.

The constant l/8w is the best possible.
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2. An interpolator} estimate

This section is devoted to proving the following theorem.

THEOREM 2. Let u be a function on S2 such that u is bounded and \Du\ is
summable on S2. Then for any a £ (0, j) we have

(2.1) \\(-*s)
a/2u\\L2(Si)<y(supJu(z)\) \\Du\\hs*)>

where y is a constant independent of u.

REMARK. An estimate like (2.1) does not hold when a > {. This fact can be
checked, for instance, by the help of the function u(z) = v(6) = | c o s ^ | a ^ ' / 2 . For
such a function sup| u\ and H ^ H H ^ ^ are both finite, while ||(-As)

a/2M||£2(S2) =
+ 00.

For the proof of Theorem 2 we need a preliminary result. Let G(x), x =
(x,, x2, x3) £ R3, denote the matrix

G(x) — eXih'+X2fl2+X:>h\

where

/ 0 0 0 \ / 0 0 1 \
hx = 0 0 -1 , h2= 0 0 0 , h3 =

\ 0 1 0 / 1 - 1 0 0/

0 - 1 0
1 0 0
0 0 0

One can verify that G(x) represents a rotation of R3 through an angle | x | around
the direction x/\ x \ (see [3]). Let us prove the following

LEMMA. Let a be a fixed real number, 0 < a < 1. For every nonconstant function
u £ Ha(S2) we have

( 2 2 ) m ^ UA^ dxls,[u{G{x)z) - u(z)]2da{z)

where m and M denote respectively the inf and the sup of the sequence
{(21 + iyl[l(l + \))'allk=xk

2a}, with I s* 1, and

(2 3) < 7 {
I-cos(77ia)r(-2a) otherwise.
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PROOF. Let us expand u in spherical harmonics
+ 00 /

(2-4) u(z) = 1 2 u"Y,n{z),
1 = 0 n = -l

and recall that for any / and n we have (see (1.5))

(2.5)

where

Notice that

(2-6)

Yl"{G{x)z) =
j=-t

cfj(x) =fsYl"(G(x)z)Y/(z)da(z).

k = -l

For fixed / let us consider the ( 2 / + l ) X ( 2 / + l ) matrix

with -/ < n, k < /. The map T: G(x) -» C,(x) is an irreducible unitary represen-
tation of the group of proper rotations of R3 (see [3]). Thus the matrix C,(x) can
be expressed as

(2.7)

where

_ 1

0

0

0

j

V-i+\
0

1-1+2

0

% = \i

C,(x) =

0

0

*

0

-1J-/+1
0

0

e l ( / / ,X , + H2X2 + W3X3)̂

• o "

• 0

• v,
1,, 0

•»?-/+1

0

-TJ./ + 2

0

. %

0
1)-/+2

0

= [(l + k

0

0

1/
-r,, 0

/ - 1

- ( / - I )
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191 Reconstruction of a star-shaped body 251

(see [6]). An easy computation, involving (2.4), (2.5), (2.6), (2.7) and the Parseval
identity, yields

(2.8) [ \x\-^+^dxf [u(G(x)z)-u(z)]2do(z) = 2Re+i u{U,X A,),
•'R3 JS2 1= i

where tr stands for "trace" and U,, At are matrices defined by

U, = {Urk), U,nk = u?uf, - / = £ « , £ « £ / ,

(2.9) A,= f |
yR3

dx

( / is the (2/ + l)-dimensional identity matrix).
We shall show that

(2.10) A, = a,I,

where

q being defined by (2.3). Therefore, by putting (2.10) in (2.8) and taking into
account that

ii(-A5)"/2«ni^)=+f ['('+!)]" 2 i«/"i2,
/ = 1 n = -l

one obtains the inequalities (2.2) from (2.11). To deduce (2.10), (2.11) we rewrite
(2.9) as

(2.12) A,= f Xp-<2a+1) dp \ f

where A(0,<f>) = HX sin 6 cos <£ + H2 sin $ sin <j> + H3 cos 0. If f is a rotation which
carries (sin 6 cos <j>, sin 6 sin </>, cos 6) into (0,0,1), and 7} = (tnj), -I *z n, j *z I,
denotes the corresponding matrix in our representation, then

(2.13) Tf ATf"1 = H3

(see [6]).Thus, because of the spectral theorem, we have

(2.14) e .pA(»,#)= 2 elf>kEk(0,<t>),
k = -i

where the Ek = (e"k
J), -I < n, j *£ /, are projection matrices. By (2.13) we have

£nj — (kntkj^ yyjy^ j n t u r n

(2.15) /
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for every k (see, for instance, [9]). Therefore from (2.12), (2.14) and (2.15) we
deduce

(2-16) Hi

The latter integral equals m/2 if a — 1/2, and equals -cos(7ra)F(-2a) otherwise.
Thus (2.10) and (2.11) are proven and the lemma is proved. The estimates (2.2) of
the above lemma correct the equality (A.I) of the Appendix in the paper [2] (the
y4/s were wrongly evaluated there). That equality does not affect however any
result presented in [2].

PROOF OF THEOREM 2. The first inequality of (2.2) can be rewritten as

(2.i7) wi-^r^whs^-^Lz (+xp-2a-{F(p)dP,

where

16-rrqm

F(p) = f da(z')f [u(G(pz')z) - u(z)]2da(z).
s s2

Firstly let us show that for every p > 0

(2.18) |.

It is easy to see that

(2.19) \F'(

But

p) | < 21 sup | M
res2

fpu(G{pz')z)

(z)\)f da(z')f
1 J Q2 J C2

^\Du(G{pz')z)\-

ipu(G(Pz')z)

d

do(z).

= \Du(G{pz')z)\-\[G(pz')W(z')]z\,

where W(z') = z[hx + z'2h2 + z'^h3. One can verify directly that | W\= 1, where
| -| denotes the Euclidean matrix norm. Then | GW\= 1, since G is unitary. Thus
we obtain

d
(2.20)

Since

dp u(G(pz')z) -:\Du(G(pz')z)\.

\Du(G{pz')z)\do(z) = f \Du(z)\da(z),

from (2.19), (2.20) we can deduce (2.18).
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[li] Reconstruction of a star-shaped body 253

Let us fix now R > 0. Integrating by parts yields

fRp-2"-<F(p) dp < - L / V « F ' ( p ) dp,

where we used the fact that F, by (2.18), is a Lipschitz function. Therefore

fRp-2^F(p)dp< * '~2" ( sup \F'(p)\Jo 2a( l - 2a) \ 0 < P « «

Since

one has
y + OO

(2.21) / p - l a

Minimizing the right-hand side of (2.21) with respect to R then yields

(2.22) ( + CCp-2a-[F(p)dp^£^—(sup\F'(P)\) °(sup|F(p)|) ".

Notice that

(2.23)

Therefore, by using (2.17), (2.22), (2.18) and (2.23), one obtains inequality (2.1).

3. An isoperimetric inequality

Let 12 be any closed star-shaped (with respect to the point 0, assumed as the
origin of our coordinate system) C2-surface in R3 and let Q be the solid enclosed
by 12. We orient 12 by always choosing the normal pointing inward; in this way if
12 is convex its mean curvature will be positive. Let us denote by 7V(w) the unit
normal to 12 at « and by //(«) the mean curvature of 12 at u. We want to obtain
an estimate of the area A of 12 in terms of the volume V of Q and the maximum of
H.

THEOREM 3. We have

(3.1) A<3(max / / (« ) )F ;

the sign = holds if and only //12 is a sphere.
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PROOF. Let us introduce the following support function of fi

s(a) = (u,-N(u)), w G S2.

The function s(u) is, for a general surface, the oriented distance from the origin
of the tangent plane at w. Since 52 is star-shaped with respect to 0 we have
s(co) > 0 for every w e S2. Our proof is based upon the following Minkowski's
formula (see [8]):

(3.2) A= fs(w)H{o)do(a),

where do(u) denotes the element of area on fi.
If we denote by S2+ the subset of fl where H is positive, from (3.2) we deduce

that

(3.3) A « ( m a x # ( « ) ) / " s(a)do(w).

But

(3.4) / s(a) do{u) = 3V+ ,

where V+ denotes the volume of the solid

Q+ = { x e R 3 : x = r«,Vw E fi+,V? e [0,1]}.

Since Q+ C Q, we have V+ ̂  V. Therefore from (3.3), (3.4) we deduce (3.1).
Clearly, if fi is a sphere then (3.1) is actually an equality. Conversely, if in (3.1)
the equality sign holds then H(u) must be constant. Therefore £2 is a sphere, by
the Liebmann-Aleksandrov theorem (see, for instance, [8]).

REMARK 1. The proof shows that (3.1) remains valid if we replace V by V+ .

REMARK 2. If we deal with a plane closed star-shaped C2-curve T, the analog of
(3.1)is

max
1ST

k(t))a,

where / is the length of T, a is the area enclosed by T and k(t) is the curvature of T
at /.

4. Conclusion

Now we are in position to prove a stability result for the solutions of Problem
(F) under the assumption of an a-priori uniform bound on the mean curvature.
For any fixed positive real /x, let us denote by M^ the set of all closed star-shaped
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(with respect to the same point 0) C2-surfaces 12 such that:
i) $3(z) + $3(-z) is a constant function on S2, where 3>(z) is the representa-

tion of 12;
ii) H(u) < fi, for every w E 12, where H(u) is the mean curvature of 12 at to.
The following theorem holds.

THEOREM 4. Let $2,, 122 fee solutions in MM of Problem (F) corresponding to the
data / , , /2, a«rf to <2,, (?2 ^e ^ e 50//A enclosed by 12,, 122. For awy rea/ a,
0 < a < 2, ?ftere exwte a constant K, depending only on a and fi, such that

(4.1)
_.4a/(2«-

where vol(Q| A Q2) denotes the volume of the symmetric difference Qx
 A Q2, f{, fi

denote the mean values on S2 of fx,f2 and f(z) — ft{z) — / • ' , / = 1, 2.

COROLLARY. Ler 12n, 12 fee solutions in MM 0/ Problem (F) corresponding to the
data /„, / W /e? Qn, Q fee the solids enclosed by 12n, 12. / / \\fn ~ f\\L\s

2) -" °> a^
« ^ + 00, then vo\{Qn

 A Q) -> 0.

PROOF OF THEOREM 4. Let $,(z), O2(z) be the representations of the surfaces
12,, 122; let us set j$,3(z) = M,(Z), J = 1, 2. By applying inequality (2.1) to
M, — u2, we obtain

(4.2) ||(-As)
a/2(W, - M2

2(z))
7maxM2

Notice that

where A, denotes the area of the surface 12,. Therefore

(4.3) I I^W/I IL^S 2 )^ (max$ , ( z ) )A , , / = 1 , 2 .

For every z G S2 we have
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where Vt is the volume of £?,; thus, since the M,(Z)'S are nonnegative functions, we
deduce that

(4.4) ^

By using (4.4) and (3.1), from (4.3) we obtain

34/3
(4.5) I|£K,.||L,(S2) < —-T7J

(2ir)

Therefore (4.2), (4.4) and (4.5) imply

where ju' = 34a/\2ir)2a/3- 'y/ia. Notice that, for every z e S2,/-(z) + /,(-z) = Vt,
J = 1, 2; thus

(4.7) Vt = 2f-, i=l,2.

Finally, let us apply inequality (1.11) to w, — u2 and use (4.6), (4.7). By taking
into account that

vol(0,* Q2) = fjuM - u2{z)\do{z),

one can deduce the estimate (4.1).

REMARK. From the above proof it is clear that any set of solutions such that the
corresponding areas are uniformly bounded is a class of stability for Problem (F).
Moreover, by applying the Holder inequality to (3.2) and by using the fact that
the support function s(u>) is bounded above by the maximum of the representa-
tion <E»(z), it is easy to deduce that

A < ('\H(w)f do{a)( max®(z)Y,
Ja v z e s 2 '

for any p > 1. Therefore, if we assume an a-priori uniform bound on ||//||L*(a),
by the arguments of the proof of Theorem 4 the continuous dependence is also
guaranteed.
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